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1. Introduction

Water resources system planners must identify and
evaluate alternative water resources system designs or
management plans on the basis of their economic, eco-
logical, environmental, and social or political impacts.
One important criterion for plan identification and evalu-
ation is the economic benefit or cost a plan would entail
were it to be implemented. Other criteria can include the
extent to which any plan meets environmental, ecological
and social targets. Once planning or management per-
formance measures (objectives) and various general alter-
natives for achieving desired levels of these performance
measures have been identified, models can be developed
and used to help identify specific alternative plans that
best meet those objectives.

Some system performance objectives may be in
conflict, and in such cases models can help identify the
efficient tradeoffs among these conflicting measures of
system performance. These tradeoffs indicate what com-
binations of performance measure values can be obtained
from various system design and operating policy variable
values. If the objectives are the right ones (that is, they are

59

Modelling Methods 
for Evaluating Alternatives

Water resources systems are characterized by multiple interdependent
components that together produce multiple economic, environmental, ecological
and social impacts. Planners and managers working to improve the performance
of these complex systems must identify and evaluate alternative designs and
operating policies, comparing their predicted performance with the desired goals
or objectives. These alternatives are defined by the values of numerous design,
target and operating policy variables. Constrained optimization together with
simulation modelling is the primary way we have of estimating the values of the
decision variables that will best achieve specified performance objectives. This
chapter introduces these optimization and simulation methods and describes what
is involved in developing and applying them in engineering projects.

3 

what the stakeholders really care about), such quantita-
tive tradeoff information should be of value during the
debate over what decisions to make.

Regional water resources development plans designed
to achieve various objectives typically involve investments
in land and infrastructure. Achieving the desired eco-
nomic, environmental, ecological and social objective
values over time and space may require investments in
storage facilities, including surface or groundwater
reservoirs and storage tanks, pipes, canals, wells, pumps,
treatment plants, levees and hydroelectric generating
facilities, or in fact the removal of some of them.

Many capital investments can result in irreversible
economic and ecological impacts. Once the forest of a
valley is cleared and replaced by a lake behind a dam, it
is almost impossible to restore the site to its original
condition. In parts of the world where river basin or
coastal restoration activities require the removal of engi-
neering structures, water resources engineers are learning
just how difficult and expensive that effort can be.

The use of planning models is not going to eliminate
the possibility of making mistakes. These models can,
however, better inform. They can provide estimates of the
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different impacts associated with, say, a natural unregu-
lated river system and a regulated river system. The
former can support a healthier ecosystem that provides a
host of flood protection and water quality enhancement
services. The latter can provide more reliable and cheaper
water supplies for off-stream users and increased
hydropower and some protection from at least small
floods for those living on flood-prone lands. In short,
models can help stakeholders assess the future conse-
quences, the benefits and costs, and a multitude of other
impacts associated with alternative plans or management
policies.

This chapter introduces some mathematical optimiza-
tion and simulation modelling approaches commonly
used to study and analyse water resources systems. The
modelling approaches are illustrated by their application
to some relatively simple water resources planning and
management problems. The purpose here is to introduce
and compare some commonly used methods of (or
approaches to) modelling. This is not a text on the state-
of-the-art of optimization or simulation modelling. In
subsequent chapters of this book, more details will be
given about optimization models and simulation meth-
ods. More realistic and more complex problems usually
require much bigger and more complex models than
those developed in this book, but these bigger and more
complex models are often based on the principles and
techniques introduced here.

Regardless of the problem complexity or size, the mod-
elling approaches are the same. Thus, the emphasis here is
on the art of model development: just how one goes about
constructing a model that will provide information needed
to solve a particular problem, and various ways models
might be solved. It is unlikely anyone will ever use any of
the specific models developed in this or other chapters,
simply because they will not be solving the specific exam-
ples used to illustrate the different approaches to model
development and solution. However, it is quite likely 
that water resources managers and planners will use the
modelling approaches and solution methods presented 
in this book to analyse similar types of problems. The
particular problems used here, or any others that could
have been used, can be the core of more complex models
addressing more complex problems in practice.

Water resources planning and management today is
dominated by the use of predictive optimization and
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simulation models. While computer software is becoming
increasingly available for solving various types of opti-
mization and simulation models, no software currently
exists that will build those models themselves. What and
what not to include and assume in models requires
judgement, experience and knowledge of the particular
problem being addressed, the system being modelled and
the decision-making environment. Understanding the
contents of, and performing the exercises for, this chapter
will be a first step towards gaining some judgement and
experience in model development.

1.1. Model Components

Mathematical models contain algebraic equations. These
equations include variables that are assumed to be known
and others that are unknown and to be determined.
Known variables are usually called parameters, and
unknown variables are called decision variables. Models
are developed for the primary purpose of identifying the
best values of the latter. These decision variables can
include design and operating policy variables of various
water resources system components.

Design variables can include the active and flood
storage capacities of reservoirs, the power generating
capacity of hydropower plants, the pumping capacity of
pumping stations, the efficiencies of wastewater treatment
plants, the dimensions or flow capacities of canals and
pipes, the heights of levees, the hectares of an irrigation
area, the targets for water supply allocations and so on.
Operating variables can include releases of water from
reservoirs or the allocations of water to various users over
space and time. Unknown decision variables can also
include measures of system performance, such as net
economic benefits, concentrations of pollutants, ecological
habitat suitability values or deviations from particular
ecological, economic or hydrological targets.

Models describe, in mathematical terms, the system
being analysed and the conditions that the system has 
to satisfy. These conditions are often called constraints.
Consider, for example, a reservoir serving various water
supply users downstream. The conditions included in a
model of this reservoir would include the assumption that
water will flow in the direction of lower heads (that is,
downstream unless it is pumped upstream), and the
volume of water stored in a reservoir cannot exceed the
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reservoir’s storage capacity. Both the storage volume over
time and the reservoir capacity might be unknown. If 
the capacity is known or assumed, then it is among the
known model parameters.

Model parameter values, while assumed to be known,
can often be uncertain. The relationships between
various decision variables and assumed known model
parameters (i.e., the model itself) may be uncertain. In
these cases the models can be solved for a variety of
assumed conditions and parameter values. This provides
an estimate of just how important uncertain parameter
values or uncertain model structures are with respect to
the output of the model. This is called sensitivity analysis.
Sensitivity analyses will be discussed in Chapter 9 in
much more detail.

Solving a model means finding values of its unknown
decision variables. The values of these decision variables
can define a plan or policy. They can also define the costs
and benefits or other measures of system performance

associated with that particular management plan or
policy.

While the components of optimization and simulation
models include system performance indicators, model
parameters and constraints, the process of model devel-
opment and use includes people. The drawing shown in
Figure 3.1 illustrates some interested stakeholders busy
studying their river basin, in this case perhaps with the
use of a physical model. Whether a mathematical model
or physical model is being used, one important consider-
ation is that if the modelling exercise is to be of any value,
it must provide the information desired and in a form that
the interested stakeholders can understand.

2. Plan Formulation and Selection

Plan formulation can be thought of as assigning particular
values to each of the relevant decision variables. Plan
selection is the process of evaluating alternative plans and
selecting the one that best satisfies a particular objective
or set of objectives. The processes of plan formulation and
selection involve modelling and communication among
all interested stakeholders, as the picture in Figure 3.1
suggests.

The planning and management issues being discussed
by the stakeholders in the basin pictured in Figure 3.1
could well include surface and groundwater water alloca-
tions, reservoir operation, water quality management and
infrastructure capacity expansion.

2.1. Plan Formulation

Model building for defining alternative plans or policies
involves a number of steps. The first is to clearly specify
the issue or problem or decision(s) to be made. What are
the fundamental objectives and possible alternatives?
Such alternatives might require defining allocations of
water to various water users, the level of wastewater treat-
ment, the capacities and operating rules of multipurpose
reservoirs and hydropower plants, and the extent and
reliability of floodplain protection from levees. Each of
these decisions may affect system performance criteria or
objectives. Often these objectives include economic meas-
ures of performance, such as costs and benefits. They may
also include environmental and social measures not

Figure 3.1. These stakeholders have an interest in how their
watershed or river basin is managed. Here they are using a
physical model to help them visualize and address planning
and management issues. Mathematical models often replace
physical models, especially for planning and management
studies. (Reprinted with permission from Engineering 
News-Record, copyright The McGraw-Hill Companies, Inc.,
September 20, 1993. All rights reserved.).
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expressed in monetary units. (More detail on performance
criteria is contained in Chapter 10.) 

To illustrate this plan formulation process, consider
the problem of designing a tank to hold a specific amount
of water. The criterion to be used to compare different
feasible designs is cost. The goal in this example is to find
the least-cost shape and dimensions of a tank that will
hold a specified volume, say V, of water.

The model of this problem must somehow relate 
the unknown design variable values to the cost of the
tank. Assume, for example, a rectangular tank shape. The
design variables are the length, L, width, W, and height,
H, of the tank. These are the unknown decision variables.
The objective is to find the combination of L, W, and H
values that minimizes the total cost of providing a tank
capacity of at least V units of water. This volume V will be
one of the model parameters. Its value is assumed known
even though in fact it may be unknown and dependent in
part on the cost.

The cost of the tank will be the sum of the costs of
the base, the sides and the top. These costs will depend
on the area of the base, sides and top. The costs per 
unit area may vary depending on the values of L, W and
H; however, even if those cost values depend on the 
values of those decision variables, given any specific
values for L, W and H, one can define an average 
cost-per-unit area. Here we will assume these average
costs per unit area are known. They can be adjusted if
they turn out to be incorrect for the derived values of L,
W and H. 

These average unit costs of the base, sides and top will
probably differ. They can be denoted as Cbase, Cside and
Ctop respectively. These unit costs together with the tank’s
volume, V, are the parameters of the model. If L, W, and
H are measured in metres, then the areas will be
expressed in units of square metres and the volume will
be expressed in units of cubic metres. The average unit
costs will be expressed in monetary units per square
metre. 

The final step of model building is to specify all the
relations among the objective (cost), function and deci-
sion variables and parameters, including all the condi-
tions that must be satisfied. It is often wise to first state
these relationships in words. The result is a word model.
Once that is written, mathematical notation can be
defined and used to construct a mathematical model.
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The word model for this tank design problem is to
minimize total cost where:

• Total cost equals the sum of the costs of the base, the
sides and the top.

• Cost of the sides is the cost-per-unit area of the sides
times the total side area.

• Cost of the base is the cost-per-unit area of the base
times the total base area.

• Cost of the top is the cost-per-unit area of the top
times the total top area.

• The volume of the tank must at least equal some spec-
ified volume capacity.

• The volume of the tank is the product of the length,
width and height of the tank.

Using the notation already defined, and combining some
of the above conditions, a mathematical model can be
written as:

Minimize Cost (3.1)

Subject to:

Cost � (Cbase � Ctop)(LW) � 2(Cside) (LH � WH) (3.2)

LWH � V (3.3)

Equation 3.3 permits the tank’s volume to be larger than
that required. While this is allowed, it will cost more if the
tank’s capacity is larger than V, and hence the least-cost
solution of this model will surely show that LWH will
equal V. In practice, however, there may be practical,
legal and/or safety reasons why the decisions with respect
to L, W and H may result in a capacity that exceeds the
required volume, V.

This model can be solved a number of ways, which
will be discussed later in this and the next chapters. The
least-cost solution is

W� L � [2Cside V/(Cbase � Ctop)]
1/3 (3.4)

and H � V/[2Cside V/(Cbase � Ctop)]
2/3 (3.5)

or H � V1/3[(Cbase � Ctop)/2Cside]
2/3 (3.6)

The modelling exercise should not end here. If there is
any doubt about the value of any of the parameters, a sen-
sitivity analyses should be performed on those uncertain
parameters or assumptions. In general these assumptions
could include the values of the cost parameters (e.g., the
costs-per-unit area) as well as the relationships expressed
in the model (that is, the model itself). How much does
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the total cost change with respect to a change in any of the
cost parameters or with the required volume V? How
much does any decision-variable change with respect 
to changes in those parameter values? What is the percent
change in a decision-variable value given a unit percent
change in some parameter value (what economists call
elasticity)?

If indeed the decision-variable values do not change
significantly with respect to a change in the value of an
uncertain parameter value, there is no need to devote
more effort to reducing that uncertainty. Any time and
money available for further study should be directed
toward those parameters or assumptions that substan-
tially influence the model’s decision-variable values.

This capability of models to help identify what data are
important and what data are not can guide monitoring
and data collection efforts. This is a beneficial attribute of
modelling often overlooked.

Continuing with the tank example, after determining,
or estimating, all the values of the model parameters and
then solving the model to obtain the cost-effective values
of L, W and H, we now have a design. It is just one of a
number of designs that could be proposed. Another
design might be for a cylindrical tank having a radius and
height as decision-variables. For the same volume V and
unit area costs, we would find that the total cost is less,
simply because the areas of the base, side and top are less.
We could go one step further and consider the possibility
of a truncated cone, having different bottom and top
radii. In this case both radii and the height would be the
decision-variables. But whatever the final outcome of our
modelling efforts, there might be other considerations or
criteria that are not expressed or included in the model
that might be important to those responsible for plan
(tank design) selection.

2.2. Plan Selection

Assume P alternative plans (e.g., tank designs) have 
been defined, each designated by the index p. For each
plan, there exist np decision variables xj

p indexed with 
the letter j. Together these variables and their values,
expressed by the vector Xp, define the specifics of the 
pth plan. The index j distinguishes one decision-variable
from another, and the index p distinguishes one plan
from another. The task at hand, in this case, may be to

find the particular plan p, defined by the known values 
of each decision-variable in the vector Xp, that maximizes
the present value of net benefits, B(Xp), derived from 
the plan.

Assume for now that an overall performance objective
can be expressed mathematically as:

maximize B(Xp) (3.7)

The values of each decision-variable in the vector Xp that
meet this objective must be feasible; in other words, they
must meet all the physical, legal, social and institutional
constraints.

Xp feasible for all plans p. (3.8)

There are various approaches to finding the ‘best’ plan or
best set of decision-variable values. By trial and error, one
could identify alternative plans p, evaluate the net bene-
fits derived from each plan, and select the particular plan
whose net benefits are a maximum. This process could
include a systematic simulation of a range of possible
solutions in a search for the best. When there is a large
number of feasible alternatives – that is, many decision-
variables and many possible values for each of them – it
may no longer be practical to identify and simulate all
feasible combinations of decision-variable values, or even
a small percentage of them. It would simply take too long.
In this case it is often convenient to use an optimization
procedure.

Equations 3.7 and 3.8 represent a discrete optimiza-
tion problem. There are a finite set of discrete alternatives.
The set could be large, but it is finite. The tank problem
example is a continuous optimization problem having, 
at least mathematically, an infinite number of feasible
solutions. In this case optimization involves finding
feasible values of each decision-variable xj in the set of
decision variables X that maximize (or minimize) some
performance measure, B(X). Again, feasible values are
those that satisfy all the model constraints. A continuous
constrained optimization problem can be written as:

maximize B(X) (3.9)

X feasible (3.10)

While maximization of Equation 3.7 requires a comparison
of B(Xp) for every discrete plan p, the maximization of
Equation 3.9, subject to the feasibility conditions required
in Equation 3.10, by complete enumeration is impossible.
If there exists a feasible solution – in other words, at least
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one that satisfies all the constraints – mathematically there
are likely to be an infinite number of possible feasible
solutions or plans represented by various values of the
decision-variables in the vector X.

Finding by trial and error the values of the vector X
that maximizes the objective Equation 3.9 and at the same
time meet all the constraints is often difficult. Some type
of optimization procedure, or algorithm, is useful in such
cases. Mathematical optimization methods are designed
to make this search for the best solution (or better solu-
tions) more efficient. Optimization methods are used to
identify those values of the decision-variables that satisfy
specified objectives and constraints without requiring
complete enumeration.

While optimization models might help identify the
decision-variable values that will produce the best plan
directly, they are based on all the assumptions incorpo-
rated in the model. Often these assumptions are limiting.
In these cases the solutions resulting from optimization
models should be analysed in more detail, perhaps
through simulation methods, to improve the values of the
decision-variables and to provide more accurate estimates
of the impacts associated with those decision-variable
values. In these situations, optimization models are used
for screening out the clearly inferior solutions, not for
finding the very best one. Just how screening is performed
using optimization models will be discussed in the next
chapter.

The values that the decision-variables may assume are
rarely unrestricted. Usually various functional relation-
ships among these variables must be satisfied. This is what
is expressed in constraint Equations 3.8 and 3.10. For
example, the tank had to contain a given amount of water.
In a water-allocation problem, any water allocated to and
completely consumed by one user cannot simultaneously
or subsequently be allocated to another user. Storage
reservoirs cannot store more water than their maximum
capacity. Technological restrictions may limit the capaci-
ties and sizes of pipes, generators and pumps to those
commercially available. Water quality concentrations
should not exceed those specified by water quality
standards or regulations. There may be limited funds
available to spend on water resources development
projects. These are a few examples of physical, legal and
financial conditions or constraints that may restrict the
ranges of variable values in the solution of a model.
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Equations or inequalities can generally express any
physical, economic, legal or social restrictions on the
values of the decision-variables. Constraints can also
simply define relationships among decision-variables. 
For example, Equation 3.2 above defines a new decision-
variable called Cost as a function of other decision-
variables and model parameters.

In general, constraints describe in mathematical terms
the system being analysed. They define the system com-
ponents and their inter-relationships, and the permissible
ranges of values of the decision-variables, either directly
or indirectly.

Typically, there exist many more decision-variables
than constraints, and hence, if any feasible solution exists,
there may be many such solutions that satisfy all the con-
straints. The existence of many feasible alternative plans is
a characteristic of most water resources systems planning
problems. Indeed it is a characteristic of most engineering
design and operation problems. The particular feasible
solution or plan that satisfies the objective function – that
is, that maximizes or minimizes it – is called optimal. It is
the optimal solution of the mathematical model, but it
may not necessarily be considered optimal by any decision-
maker. What is optimal with respect to some model may
not be optimal with respect to those involved in a plan-
ning or decision-making process. To repeat what was
written in Chapter 2, models are used to provide infor-
mation (useful information, one hopes), to the decision-
making process. Model solutions are not replacements for
individuals involved in the decision-making process.

3. Modelling Methods: Simulation
or Optimization

The modelling approach discussed in the previous section
focused on the use of optimization methods to identify
the preferred design of a tank. Similar methods can be
used to identify preferred design-variable values and oper-
ating policies for multiple reservoir systems, for example.
Once these preferred designs and operating policies have
been identified, unless there is reason to believe that a
particular alternative is really the best and needs no fur-
ther analysis, each of these preferred alternatives can be
further evaluated with the aid of more detailed and robust
simulation models. Simulation models address ‘what if ’
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questions: What will likely happen over time and at one
or more specific places if a particular design and/or
operating policy is implemented?

Simulation models are not limited by many of the
assumptions incorporated into optimization models. For
example, the inputs to simulation models can include a
much longer time series of hydrological, economic and
environmental data such as rainfall or streamflows,
water supply demands, pollutant loadings and so on
than would likely be included in an optimization model.
The resulting outputs can better identify the variations
of multiple system performance indicator values: 
that is, the multiple hydrological, ecological, economic
and environmental impacts that might be observed over
time, given any particular system design and operating
policy.

Simulating multiple sets of values defining the designs
and operating policies of a water resources system can
take a long time. Consider, for example, only 30 decision-
variables whose best values are to be determined. Even if
only two values are assumed for each of the 30 variables,
the number of combinations that could be simulated
amounts to 230 or in excess of 109. Simulating and com-
paring even 1% of these billion at a minute per simulation
amounts to over twenty years, continuously and without
sleeping. Most simulation models of water resources
systems contain many more variables and are much more
complex than this simple 30-binary-variable example. In
reality there could be an infinite combination of feasible
values for each of the decision-variables. 

Simulation works when there are only a relatively few
alternatives to be evaluated, not when there are a large
number of them. The trial and error process of simulation
can be time consuming. An important role of optimiza-
tion methods is to reduce the number of alternatives 
for simulation analyses. However, if only one method 
of analysis is to be used to evaluate a complex water
resources system, simulation together with human judge-
ment concerning which alternatives to simulate is often,
and rightly so, the method of choice.

Simulation can be based on either discrete events or
discrete time periods. Most simulation models of water
resources systems are designed to simulate a sequence of
discrete time periods. In each discrete time period, the
simulation model converts all the initial conditions and
inputs to outputs. The duration of each period depends in

part on the particular system being simulated and the
questions being addressed.

3.1. A Simple Planning Example

Consider the case of a potential reservoir releasing water
to downstream users. A reservoir and its operating policy
can increase the benefits each user receives over time by
providing increased flows during periods of otherwise
low flows relative to the user demands. Of interest is
whether or not the increased benefits the water users
obtain from an increased flow and more reliable
downstream flow conditions will offset the costs of the
reservoir. This water resources system is illustrated in
Figure 3.2.

Before this system can be simulated, one has to define
the active storage capacity of the reservoir and how much
water is to be released depending on the storage volume
and time period; in other words, one has to define the
reservoir operating policy. In addition, one must also
define the allocation policy: how much water to allocate
to each user and to the river downstream of the users
given any particular reservoir release.

For this simple illustration assume these operating and
allocation policies are as shown in Figure 3.3. Also for
simplicity assume they apply to each discrete time period.

The reservoir operating policy, shown as a red line in
Figure 3.3, attempts to meet a release target. If insufficient
water is available, all the water will be released in the time
period. If the inflow exceeds the target flow and the reser-
voir is at capacity, a spill will occur. This operating policy
is sometimes called the ‘standard’ operating policy. It is
not usually followed in practice. Most operators, as
indeed specified by most reservoir operating policies, will
reduce releases in times of drought in an attempt to save

river Q
tX 1t

user 1

user 2

user 3

X2t X3t

reservoir

 E0201
08

w

Figure 3.2. Reservoir-water allocation system to be simulated.
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some water in the reservoir for future releases in case 
of an extended period of low inflows. This is called a
hedging policy. Any reservoir release policy, including a
hedging policy, can be defined within the blue portion of
the release policy plot shown in Figure 3.3. The dash–dot
line in Figure 3.3 is one such hedging function. 

Once defined, any reservoir operating policy can be
simulated.

3.2. Simulation Modelling Approach

The simulation process for the three-user system shown
in Figure 3.2 proceeds from one time period to the next.
The reservoir inflow, obtained from a database, is added
to the existing storage volume, and a release is determined
from the release policy. Once the release is known, the
final storage volume is computed and this becomes the
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initial volume for the next simulation time period. The
reservoir release is then allocated to the three downstream
users and to the river downstream of those users as
defined by the allocation policy. The resulting benefits
can be calculated and stored in an output database.
Additional data pertaining to storage volumes, releases
and the allocations themselves can also be stored in the
output database, as desired. The process continues for the
duration of the simulation run. Then the output data can
be summarized for later comparison with other simula-
tion results based on other reservoir capacities and oper-
ation policies and other allocation policies. Figure 3.4
illustrates this simulation process.

It would not be too difficult to write a computer program
to carry out this simulation. In fact, it can be done on a
spreadsheet. However easy that might be for anyone familiar
with computer programming or spreadsheets, one cannot
expect it to be easy for many practicing water resources
planners and managers who are not doing this type of work
on a regular basis. Yet they might wish to perform a simula-
tion of their particular system, and to do it in a way that
facilitates changes in many of its assumptions.

Computer programs capable of simulating a wide vari-
ety of water resources systems are becoming increasingly
available. Simulation programs together with their inter-
faces that facilitate the input and editing of data and the
display of output data are typically called decision support
systems. Their input data define the components of the
water resources system and their configuration. Inputs
include hydrological data and design and operating policy
data. These generic simulation programs are now becom-
ing capable of simulating surface and groundwater water
flows, storage volumes and qualities under a variety of
system infrastructure designs and operating policies. 

3.3. Optimization Modelling Approach

The simple reservoir-release and water-allocation plan-
ning example of Section 3.1 can also be described as an
optimization model. The objective remains that of maxi-
mizing the total benefits that the three users obtain from
the water that is allocated to them. Denoting each user’s
benefit as Bit (i � 1, 2, 3) for each of T time periods t, this
objective, expressed symbolically is to:

maximize total benefits � (3.11){ }B B Bt t t
t
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Figure 3.3. Policy defining the reservoir release to be made
as a function of the current storage volume and current inflow
and the reservoir release allocation policy for the river flow
downstream of the reservoir. The blue zone in the reservoir
release policy indicates the zone of feasible releases. It is
physically impossible to make releases represented by points
outside that blue zone.
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The benefit, Bit, for each user i in each time period t
depends on the amount of water, Xit, allocated to it.
These benefit functions, Bit � Bit(Xit), need to be 
known and expressed in a form suitable for solution
using the particular optimization solution algorithm
selected. The unknown variables include the allocations,
Xit, and associated reservoir releases Rt for all periods 
t � 1, 2, 3, . . . , T. Assuming there is no significant incre-
mental runoff between the upstream reservoir and the
sites where water is diverted from the river, the amounts
allocated to all users, the sum of all Xit in each period t,
cannot exceed the amount of water released from the
reservoir, Rt, in the period. This is one of the optimiza-
tion model constraints:

Rt � X1t � X2t � X3t (3.12)

The remaining necessary constraints apply to the reser-
voir. A mass balance of water storage is needed, along
with constraints limiting initial storage volumes, St, to the
capacity, K, of the reservoir. Assuming a known time-
series record of reservoir inflows, It, in each of the time
periods being considered, the mass-balance or continuity
equations for storage changes in each period t can be
written:

St � It – Rt � St�1 for t � 1, 2, . . . , T; 

If t � T, then T�1 � 1. (3.13)

The capacity constraints simply limit the unknown initial
storage volume, St, to be no greater than the reservoir
capacity, K.

St � K for t � 1, 2, . . . , T. (3.14)

A one-year analysis period with T � 12 time periods of one
month each in combination with three allocation vari-
ables, Xit, a storage variable St, and a release Rt, variable in
each period t, includes a total of sixty unknown decision-
variables. The job of the optimization solution procedure
is to find the values of these sixty variables that will satisfy
the objective, Equation 3.11, that is to say, maximize total
benefits, and at the same time satisfy all of the thirty-six
constraint equations and inequalities as well.

In this example the reservoir inflows, It, its storage capac-
ity, K, and each user’s benefit functions, Bit, are assumed
known. In some cases such information is not known. Nor
were other purposes, such as hydropower, flood control,
water quality or recreation considered in this example, to
mention only a few possible extensions. Such conditions
and extensions will be considered in later chapters.

3.4. Simulation Versus Optimization

Unlike simulation models, the solutions of optimization
models are based on objective functions of unknown
decision-variables that are to be maximized or minimized.
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Figure 3.4. Flow diagram of the
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simulation terminates after
some predefined number of
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The constraints of an optimization model contain
decision-variables that are unknown and parameters
whose values are assumed known. Constraints are
expressed as equations and inequalities. The tank model
(Equations 3.1, 3.2 and 3.3) is an example of an opti-
mization model. So is the reservoir water-allocation
model, Equations 3.11 to 3.14. The solution of an opti-
mization model, if one exists, contains the values of all 
of the unknown decision-variables. It is mathematically
optimal in that the values of the decision-variables satisfy
all the constraints and maximize or minimize an objective
function. This ‘optimal’ solution is of course based on the
assumed values of the model parameters, the chosen
objective function and the structure of the model itself.

The procedure (or algorithm) most appropriate for
solving any particular optimization model depends in 
part on the particular mathematical structure of the 
model. There is no single universal solution procedure
that will efficiently solve all optimization models. Hence,
model builders tend to model water resources systems 
by using mathematical expressions that are of a form
compatible with one or more known solution procedures.
Approximations of reality, made to permit model solution
by a chosen optimization solution procedure (algorithm),
may justify a more detailed simulation to check and
improve on any solution obtained from that optimization.
Simulation models are not restricted to any particular form
of mathematics, and can define many relations including
those not easily incorporated into optimization models.

One of many challenges in the use of optimization
modelling is our inability to quantify and express
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mathematically all the planning objectives, the technical,
economic, and political constraints and uncertainties, and
other important considerations that will influence the
decision-making process. Hence at best a mathematical-
model of a complex water resources system is only an
approximate description of the real system. The optimal
solution of any model is optimal only with respect to the
particular model, not necessarily with respect to the real
system. It is important to realize this limited meaning of the
word ‘optimal,’ a term commonly used by water resources
and other systems analysts, planners and engineers.

Figure 3.5 illustrates the broad differences between
simulation and optimization. Optimization models need
explicit expressions of objectives. Simulation models do not.
Simulation simply addresses ‘what-if ’ sceanarios – what may
happen if a particular scenario is assumed or if a particular
decision is made. Users must specify the values of design 
and operating decision-variables before a simulation can be
performed. Once these values of all decision-variables are
defined, simulation can help us estimate more precisely the
impacts that may result from those decisions. The difficulty
with using simulation alone for analysing multiple alterna-
tives occurs when there are many alternative, and potentially
attractive, feasible solutions or plans and not enough time or
resources to simulate them all. Even when combined with
efficient techniques for selecting the values of each decision-
variable, an enormous computational effort may still lead to
a solution that is still far from the best possible.

For water resources planning and management, it 
is often advantageous to use both optimization and
simulation modelling. While optimization will tell us

water resources system

water resources system
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system design and operating policy

system design and operating policy
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Figure 3.5. Distinguishing
between simulation and
optimization modelling.
Simulation addresses ‘what if ’
questions; optimization can
address ‘what should be’
questions. Both types of models
are often needed in water
resources panning and
management studies.
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what we should do – what the best decision is – that
solution is often based on many limiting assumptions.
Because of this, we need to use optimization not as a way
to find the best solution, but to define a relatively small
number of good alternatives that can later be tested,
evaluated and improved by means of simulation. This
process of using optimization to reduce the large number
of plans and policies to a few that can then be simulated
and better evaluated is often called preliminary screening.

3.5. Types of Models

3.5.1. Types of Simulation Models

Simulation models can be statistical or process oriented,
or a mixture of both. Pure statistical models are based
solely on data (field measurements). Pure process-
oriented models are based on knowledge of the funda-
mental processes that are taking place. The example
simulation model just discussed is a process-oriented
model. It incorporated and simulated the physical
processes taking place in the system. Many simulation
models combine features of both of these extremes.

The range of various simulation modelling approaches
applied to water resources systems is illustrated in 
Figure 3.6.

Regressions, such as that resulting from a least-squares
analysis, and artificial neural networks are examples of
purely statistical models. As discussed in Chapter 6, a
relationship is derived between input data (cause) and
output data (effect), based on measured and observed
data. The relationship between the input and the output
variable values is derived by calibrating a black-box or
statistical model with a predefined structure unrelated to
the actual natural processes taking place. Once calibrated,
the model can be used to estimate the output variable
values as long as the input variable values are within the
range of those used to calibrate the model.

Hybrid models incorporate some process relationships
into regression models or neural networks. These rela-
tionships supplement the knowledge contained in the
calibrated parameter values based on measured data.

Most simulation models containing process relationships
include parameters whose values need to be estimated. This
is called model calibration. Calibration requires measured
field data. These data can be used for initial calibration and
verification, and in the case of ongoing simulations, for
continual calibration and uncertainty reduction. The latter 
is sometimes referred to as data assimilation.

Other simulation model classifications are possible.
Simulation models can be classified based on what the
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Figure 3.6. Range of simulation
models types based on the
extent to which measured field
data and descriptions of system
processes are included in the
model.
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model simulates: on the domain of application. Today
one can obtain, or develop, computer programs written to
simulate a wide variety of water resources system compo-
nents or events. Some of these include:

• water quantity and/or quality of rivers, bays, estuaries
or coastal zones

• reservoir operation for quantity and/or quality
• saturated and/or unsaturated zone groundwater quan-

tity and/or quality
• precipitation runoff, including erosion and chemicals
• water system demands, supply distribution and treat-

ment
• high-water forecasting and control
• hazardous material spills
• morphological changes
• wastewater collection systems
• wastewater purification facilities
• irrigation operations
• hydropower production
• ecological habitats of wetlands, lakes, reservoirs and

flood plains
• economic benefits and costs.

Simulation models of water resources systems generally
have both spatial and temporal dimensions. These dimen-
sions may be influenced by the numerical methods used,
if any, in the simulation, but otherwise they are usually
set, within the limits desired by the user. Spatial resolu-
tions can range from 0 to 3 dimensions. Models are some-
times referred to as quasi 2- or 3-dimensional models.
These are 1 or 2-dimensional models set up in a way that
approximates what takes place in 2- or 3-dimensional
space, respectively. A quasi-3D system of a reservoir
could consist of a series of coupled 2D horizontal layers,
for example.

Simulation models can be used to study what might
occur during a given time period, say a year, sometime in
the future, or what might occur from now to that given
time in the future. Models that simulate some particular
time in the future, where future conditions such as
demands and infrastructure design and operation are
fixed, are called stationary or static models. Models that
simulate developments over time are called dynamic
models. Static models are those in which the external
environment of the system being simulated is not chang-
ing. Water demands, soil conditions, economic benefit
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and cost functions, populations and other factors do not
change from one year to the next. Static models provide a
snapshot or a picture at a point in time. Multiple years of
input data may be simulated, but from the output statis-
tical summaries can be made to identify what the values
of all the impact variables could be, together with their
probabilities, at that future time period.

Dynamic simulation models are those in which the
external environment is also changing over time.
Reservoir storage capacities could be decreasing due to
sediment load deposition, costs could be increasing due
to inflation, wastewater effluent discharges could be
changing due to changes in populations and/or waste-
water treatment capacities, and so on.

Simulation models can also vary in the way they are
solved. Some use purely analytical methods while others
require numerical ones. Many use both methods, as
appropriate.

Finally, models can also be distinguished according to
the questions being asked and the level of information
desired. The type of information desired can range from
data of interest to policy-makers and planners (requiring
relatively simple models and broader in scope) to that of
interest to researchers desiring a better understanding 
of the complex natural, economic and social processes
taking place (requiring much more detailed models and
narrower in scope). Water management and operational
models (for real-time operations of structures, for exam-
ple) and event-based calamity models are somewhere
between these two extremes with respect to model detail.
The scope and level of detail of any modelling study will
also depend on the time, money and data available for
that study (see Chapter 2).

3.5.2. Types of Optimization Models

There are many ways to classify various types of con-
strained optimization models. Optimization models can
be deterministic or probabilistic, or a mixture of both.
They can be static or dynamic with respect to time. Many
water resources planning and management models are
static, but include multiple time periods to obtain a
statistical snapshot of various impacts in some planning
period. Optimization models can be linear or non-linear.
They can consist of continuous variables or discrete or
integer variables, or a combination of both. But whatever
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type they are, they have in common the fact that they are
describing situations where there exist multiple solutions
that satisfy all the constraints, and hence, there is the
desire to find the best solution, or at least a set of very
good solutions.

Regardless of the type of optimization model, they all
include an objective function. The objective function of
an optimization model (such as Equation 3.11 in the
example problem above) is used to evaluate multiple
possible solutions. Often multiple objective functions
may be identified (as will be discussed in Chapter 10). But
at least one objective must be identified in all optimization
models. Identifying the best objective function is often a
challenging task.

Optimization models can be based on the particular
type of application, such as reservoir sizing and/or opera-
tion, water quality management, or irrigation develop-
ment or operation. Optimization models can also be
classified into different types depending on the algorithm
to be used to solve the model. Constrained optimization
algorithms are numerous. Some guarantee to find the 
best model solution and others can only guarantee locally
optimum solutions. Some include algebraic ‘mathematical
programming’ methods and others include deterministic
or random trial-and-error search techniques. Mathematical
programming techniques include Lagrange multipliers,
linear programming, non-linear programming, dynamic
programming, quadratic programming, fractional pro-
gramming and geometric programming, to mention a
few. The applicability of each of these as well as other
constrained optimization procedures is highly dependent
on the mathematical structure of the model. The follow-
ing Chapter 4 illustrates the application of some of 
the most commonly used constrained optimization tech-
niques in water resources planning and management.
These include classical constrained optimization using
calculus-based Lagrange multipliers, discrete dynamic
programming, and linear and non-linear programming.

Hybrid models usually include multiple solution
methods. Many generic multi-period simulation models
are driven by optimization methods within each time
period. (The CALSIM II model used by the State of
California and the US Bureau of Reclamation to allocate
water in central California is one such model.)

Each of a variety of optimization modelling types 
and solution approaches will be discussed and illustrated

in more detail in subsequent chapters. In some cases, we
can use available computer programs to solve optimiza-
tion models. In other cases, we may have to write our 
own software. To make effective use of optimization, and
even simulation, models one has to learn some model
solution methods, since those methods often dictate the
type of model most appropriate for analysing a particular
planning or management problem or issue.

To date, no single model type or solution procedure
has been judged best for all the different types of issues
and problems encountered in water resources planning
and management. Each method has its advantages and
limitations. One will experience these advantages and
limitations as one practices the art of model development
and application.

4. Model Development

Prior to the selection or development of a quantitative
simulation model, it is often useful to develop a concep-
tual one. Conceptual models are non-quantitative repre-
sentations of a system. The overall system structure is
defined but not all its elements and functional relation-
ships.

Figure 3.7 illustrates a conceptual model, without
indicating what each box represents, defining relation-
ships between what land and water managers can do and
the eventual ecological impacts of those actions.

Once a conceptual model has been quantified
(expressed in mathematical terms), it becomes a mathe-
matical model. The model’s equations typically include
state and auxiliary variables, parameters and other model
components.

The values of the model’s parameters need to be deter-
mined. Model calibration involves finding the best values
for these parameters. It is based on comparisons of the
model results with field measurements. Optimization
methods can sometimes be used to identify the values of
all model parameters. This is called model calibration or
identification. (Illustrations of the use of optimization for
estimating model parameter values are contained in
Chapters 4 and 6).

Sensitivity analysis (Chapter 9) may serve to identify
the impacts of uncertain parameter values and show
which parameter values substantially influence the
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model’s results. Following calibration, the remaining
uncertainties in the model predictions may be quantified
in an uncertainty analysis as discussed in Chapter 9.

In addition to being calibrated, simulation models
should also be validated or verified. In the validation or
verification process the model results are compared with
an independent set of measured observations that were
not used in calibration. This comparison is made to verify
whether or not the model describes the system behaviour
sufficiently correctly.

5. Managing Modelling Projects

There are some steps that, if followed in modelling
projects, can help reduce potential problems and lead to
more effective outcomes. These steps are illustrated in
Figure 3.8 (Scholten et al., 2000).

Some of the steps illustrated in Figure 3.8 may not 
be relevant in particular modelling projects. If so, these
parts of the process can be skipped. Each of these
modelling project steps is discussed in the next several
sections.
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5.1. Creating a Model Journal

One common problem of model studies once they are
underway occurs when one wishes to go back over a
series of simulation results to see what was changed, why
a particular simulation was made or what was learned. It
is also commonly difficult if not impossible for third
parties to continue from the point at which any previous
project terminated. These problems are caused by a lack
of information on how the study was carried out. What
was the pattern of thought that took place? Which actions
and activities were carried out? Who carried out what
work and why? What choices were made? How reliable
are the end results? These questions should be answerable
if a model journal is kept. Just like computer-programming
documentation, this study documentation is often
neglected under the pressure of time and perhaps because
it is not as interesting as running the models themselves.

5.2. Initiating the Modelling Project

Project initiation involves defining the problem to be
modelled and the objectives that are to be accomplished.

land and water management practices and policies

hydrological consequences

ecosystem habitat & function impacts

impacts on specific species
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t

Figure 3.7. An example of a
conceptual model without its
detail, showing the cause and
effect links between
management decisions and
specific system impacts.

wrm_ch03.qxd  8/31/2005  11:50 AM  Page 72



Modelling Methods for Evaluating Alternatives 73

There can be major differences in perceptions between
those who need information and those who are going to
provide it. The problem ‘as stated’ is often not the prob-
lem ‘as understood’ by either the client or the modeller. In
addition, problem perceptions and modelling objectives
can change over the duration of a modelling project.

The appropriate spatial and time scales also need to be
identified. The essential natural system processes must be
identified and described. One should ask and answer 
the question of whether or not a particular modelling
approach, or even modelling in general, is the best way to
obtain the needed information. What are the alternatives
to modelling or a particular modelling approach?

The objective of any modelling project should be
clearly understood with respect to the domain and the
problem area, the reason for using a particular model, 
the questions to be answered by the model, and the
scenarios to be modelled. Throughout the project these
objective components should be checked to see if any
have changed and if they are being met.

The use of a model nearly always takes place within a
broader context. The model itself can also be part of a

larger whole, such as a network of models in which many
are using the outputs of other models. These conditions
may impose constraints on the modelling project.

Proposed modelling activities may have to be justified
and agreements made where applicable. Any client at any
time may wish for some justification of the modelling
project activities. Agreement should be reached on how
this justification will take place. Are intermediate reports
required, have conditions been defined that will indicate
an official completion of the modelling project, is verifi-
cation by third parties required, and so on? It is particu-
larly important to record beforehand the events or times
when the client must approve the simulation results.
Finally, it is also sensible to reach agreements with respect
to quality requirements and how they are determined 
or defined, as well as the format, scope and contents of
modelling project outputs (data files) and reports.

5.3. Selecting the Model

The selection of an existing model to be used in any proj-
ect depends in part on the processes that will be modelled
(perhaps as defined by the conceptual model), the data
available and the data required by the model. The avail-
able data should include system observations for compar-
ison of the model results. They should also include
estimates of the degree of uncertainty associated with
each of the model parameters. At a minimum this might
only be estimates of the ranges of all uncertain parameter
values. At best it could include statistical distributions of
them. In this step of the process it is sufficient to know
what data are available, their quality and completeness,
and what to do about missing or outlier data.

Determining the boundaries of the model is an essen-
tial consideration in model selection. This defines what is
to be included in a model and what is not. Any model
selected will contain a number of assumptions. These
assumptions should be identified and justified, and later
tested.

Project-based matters such as the computers to be
used, the available time and expertise, the modeller’s per-
sonal preferences, and the client’s wishes or requirements
may also influence model choice. An important practical
criterion is whether there is an accessible manual for
operating the model program and a help desk available to
address any possible problems.
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Figure 3.8. The modelling project process is an iterative
procedure involving specific steps or tasks.
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The decision to use a model, and which model to use,
is an important part of water resources plan formulation.
Even though there are no clear rules on how to select 
the right model to use, a few simple guidelines can be
stated:

• Define the problem and determine what information is
needed and what questions need to be answered.

• Use the simplest method that will yield adequate accu-
racy and provide the answer to your questions.

• Select a model that fits the problem rather than trying
to fit the problem to a model.

• Question whether increased accuracy is worth the
increased effort and increased cost of data collection.
(With the advances in computer technology, compu-
tational cost is rarely an issue except perhaps for some
groundwater management problems.)

• Do not forget the assumptions underlying the model
used and do not read more significance into the simu-
lation results than is actually there.

5.4. Analysing the Model

Once a modelling approach or a particular model has
been selected, its strengths and limitations should be
studied in more detail. The first step is to set up a plan for
testing and evaluating the model. These tests can include
mass (and energy) balance checks and parameter sensitivity
analyses (see Chapter 9). The model can be run under
extreme input data conditions to see if the results are as
expected.

Once a model is tested satisfactorily, it can be cali-
brated. Calibration focuses on the comparison between
model results and field observations. An important prin-
ciple is: the smaller the deviation between the calculated
model results and the field observations, the better the
model. This is indeed the case to a certain extent, as 
the deviations in a perfect model are only due to measure-
ment errors. In practice, however, a good fit is by no
means a guarantee of a good model.

The deviations between the model results and the field
observations can be due to a number of factors. These
include possible software errors, inappropriate modelling
assumptions such as the (conscious) simplification of
complex structures, neglect of certain processes, errors in
the mathematical description or in the numerical method
applied, inappropriate parameter values, errors in input
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data and boundary conditions, and measurement errors
in the field observations.

To determine whether or not a calibrated model is
‘good’, it should be validated or verified. Calibrated
models should be able to reproduce field observations not
used in calibration. Validation can be carried out for
calibrated models as long as an independent data set has
been kept aside for this purpose. If all available data are
used in the calibration process in order to arrive at 
the best possible results, validation will not be possible.
The decision to leave out validation is often a justifiable
one especially when data are limited.

Philosophically, it is impossible to know if a model of
a complex system is ‘correct’. There is no way to prove it.
Experimenting with a model, by carrying out multiple
validation tests, can increase one’s confidence in that
model. After a sufficient number of successful tests, one
might be willing to state that the model is ‘good enough’,
based on the modelling project requirements. The model
can then be regarded as having been validated, at least for
the ranges of input data and field observations used in the
validation.

If model predictions are to be made for situations or
conditions for which the model has been validated, one
may have a degree of confidence in the reliability of those
predictions. Yet one cannot be certain. Much less confi-
dence can be placed on model predictions for conditions
outside the range for which the model was validated.

While a model should not be used for extrapolations
as commonly applied in predictions and in scenario
analyses, this is often exactly the reason for the modelling
project. What is likely to happen given events we have not
yet experienced? A model’s answer to this question
should also include the uncertainties attached to these
predictions. Beck (1987) summarized this dilemma in the
following statement: ‘using scientifically based models,
you will often predict an incorrect future with great accu-
racy, and when using complex, non-identifiable models,
you may be capable of predicting the correct future with
great uncertainty’.

5.5. Using the Model

Once the model has been judged ‘good enough’, it may be
used to obtain the information desired. One should
develop a plan on how the model is to be used, identifying
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the input to be used, the time period(s) to be simulated,
and the quality of the results to be expected. Again, close
communication between the client and the modeller is
essential, both in setting up this plan and throughout its
implementation, to avoid any unnecessary misunderstand-
ings about what information is wanted and the assump-
tions on which that information is to be based.

Before the end of this model-use step, one should
determine whether all the necessary model runs have
been performed and whether they have been performed
well. Questions to ask include:

• Did the model fulfill its purpose?
• Are the results valid?
• Are the quality requirements met?
• Was the discretization of space and time chosen well?
• Was the choice of the model restrictions correct?
• Was the correct model and/or model program chosen?
• Was the numerical approach appropriate?
• Was the implementation performed correctly?
• Are the sensitive parameters (and other factors) clearly

identified?
• Was an uncertainty analysis performed?

If any of the answers to these questions is no, then the
situation should be corrected. If it cannot be corrected,
then there should be a good reason for this.

5.6. Interpreting Model Results

Interpreting the information resulting from simulation
models is a crucial step in a modelling project, especially
in situations in which the client may only be interested in
those results and not the way they were obtained. The
model results can be compared to those of other similar
studies. Any unanticipated results should be discussed
and explained. The results should be judged with respect
to the modelling project objectives.

The results of any water resources modelling project
typically include large files of time-series data. Only the
most dedicated of clients will want to read those files, so
the data must be presented in a more concise form.
Statistical summaries should explicitly include any
restrictions and uncertainties in the results. They should
identify any gaps in the domain knowledge, thus generat-
ing new research questions or identifying the need for
more field observations and measurements.

5.7. Reporting Model Results

Although the results of a model should not be the sole basis
for policy decisions, modellers have a responsibility to
translate their model results into policy recommendations.
Policy-makers, managers, and indeed the participating
stakeholders often want simple, clear and unambiguous
answers to complex questions. The executive summary of a
report will typically omit much of the scientifically justified
discussion in its main body regarding, say, the uncertain-
ties associated with some of the data. This executive
summary is often the only part read by those responsible
for making decisions. Therefore, the conclusions of the
model study must not only be scientifically correct and
complete, but also concisely formulated, free of jargon, 
and fully understandable by managers and policy-makers.
The report should provide a clear indication of the 
validity, usability and any restrictions of the model results.
The use of visual aids, such as graphs and GIS, can be very
helpful.

The final report should also include sufficient detail to
allow others to reproduce the model study (including its
results) and/or to proceed from the point where this study
ended.

6. Issues of Scale

Scaling aspects play an important role in many modelling
projects. Four different types of scales can be distin-
guished: the process scale, the information scale, the
model scale and the sampling scale. Each of these is
discussed below.

6.1. Process Scale

Most hydrological processes vary over space and time.
The scale on which the process variations manifest them-
selves is referred to as the process scale. Spatially, process
scale can vary from the movement of small granules of
sediment, for example, to the flooding of large river basins
or coastal zones. All kinds of intermediary scale processes
can be found, such as drainage into ditches of runoff from
parcels of land, transport of sediment in brooks and flow
movements in aquifers.

Various temporal scales can also be distinguished,
varying from the intensity of rain in less than a minute to
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the change in landscape in geological time. Many process
descriptions require a spectrum of scales. Such is the case,
for example, in the simulation of interdependent surface
and groundwater quantity and quality processes taking
place in a watershed.

6.2. Information Scale

Information scale is the spatial and temporal scale of the
information required. Generally, a strategic water resources
manager (for example the local, regional or national
government) needs information on a scale relative to their
responsibilities and authorities. This level of information is
likely to differ from the level desired by operational water
managers dealing with day-to-day issues.

Information at scales smaller than what is needed is
seen as being ‘noise’. Information at scales larger than
what is needed is not relevant or helpful. For local
organizations (e.g., water boards) concerned with runoff,
for example, there is no need to collect information on
individual raindrops. The important spatial variances 
are usually within a range varying from hundreds of
metres to hundreds of kilometres. Larger-scale variations
(differences between precipitation in the Netherlands 
and Russia or between North and South America, for
example) are rarely if ever relevant. The information
scale depends on the task set for the water planner or
manager.

6.3. Model Scale

Model scales refer to their spatial and temporal discretiza-
tion. The model scales determine the required data inter-
polation and aggregation.

If the temporal and spatial scales of the problem have
not been defined clearly enough, this can affect the later
phases of the modelling process negatively. If the model
scale chosen is too large, this may result in too general a
schematization and relevant details might not be derived
from the results. If the chosen model scale is too small,
irrelevant small-scale variations can lead to non-optimal
calibrations for the large-scale variations.

In large, spatially distributed models in particular, it is
vital that the scale and the number of independent
parameters (degrees of freedom) are chosen on the basis
of the available data. If too many parameters are included
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in a model, there is a risk of it appearing to work well but
being unsuitable for interpolation or prediction. This can
actually only be determined if adequate measuring data
are available having a measurement frequency at least
equal to the chosen modelling time step. This must be
taken into account when selecting or constructing the
model, as there is otherwise the risk that the model
cannot be calibrated adequately.

6.4. Sampling Scale

Sampling scale is the scale at which samples are taken.
The sampling spatial scale can vary from ‘point observa-
tions’ (for example, a temperature measurement at a
certain location at a certain time) to area observations
(using, for example, remote sensing images). The density
of the measuring network and the sampling or measuring
and recording frequency determine the sampling spatial
and temporal scales.

6.5. Selecting the Right Scales

Modellers must choose the model scale in such a manner
that the model provides information at the required
information scale, taking into account the process scales
present, in combination with the spatial and temporal
sampling scales. It is possible that situations will occur
that are impossible to model just because of these scale
issues.

The relationship between the types of scales is repre-
sented in Figure 3.9. The relative level of detail is given on
the horizontal axis, from considerable detail on the left to
much less detail on the right.

To show that the various types of scales may not be
mutually compatible, consider the following three
examples.

sampling
scale

small scale

process
scale

information
scale

large scale

E0201
10

v

Figure 3.9. Relationships among various scale types.
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Example 1: The information scale is different from the process
scale

Water resources planning studies are typically carried out
at a river basin or watershed scale. From a hydrological
(process) point of view, this makes sense because it enables
a comprehensive analysis (including upstream and down-
stream impacts), makes it easier to develop a water balance
for the study area, and reduces the amount of information
needed at the borders of the study area. However, most
decision-makers are not interested in results at river basin
or watershed scale; they want to know what these results
mean for their province, municipality or city. This conflict
of scales can be solved by a well-considered selection of the
(sub)watersheds that will be considered in the study and a
post-processor that translates the results at these process
scales into the required administrative scales.

Example 2: The information scale is smaller than the process
scale

Imagine that a water resources manager wants to evaluate
alternative anti-dehydration measures on the groundwater
level over a period of five years. Thus the required
information scale is a five-year period. However, the
groundwater level is characterized by a very slow response.
The relevant temporal groundwater-level process scale is
around fifteen to twenty years. Whatever management
alternative is implemented, it will take fifteen to twenty
years to determine its impact. Thus, regardless of the choice
of measuring frequency (sampling scale) and the model
scale, it is impossible within the five-year period of interest
to arrive at information on the groundwater-level changes as
a consequence of anti-dehydration measures.

Example 3: The sampling scale is larger than the process scale
and information scale

Assume it is necessary to estimate the change in concen-
trations of certain substances in the soil and groundwater
in an urban area. The information spatial scale is one to
two decimetres. This corresponds to the spatial variation
of cohesion processes that take place in the soil and
groundwater aquifer. However, logistic and budgetary
considerations make it impossible to increase the spatial
sampling density to less than a measurement site every
few hundred metres. As the spatial sampling scale is
much larger than the spatial process scale, useful inter-
polations cannot be made.

7. Conclusions

This chapter has reviewed some basic types of models and
presented guidelines for consideration when undertaking 
a modelling project. Generic models for water resources
system analyses are increasingly becoming available, saving
many organizations that need model results from having to
develop their own individual models. While many readers of
this book may get involved in writing their own models,
most of those involved in water resources planning and man-
agement will be using existing models and analysing and
presenting their results. The information provided in this
chapter is intended to help model users plan and manage
effective modelling projects as well as improve the repro-
ducibility, transferability and usefulness of model results.
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