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ABSTRACT 
Hyperbolic equations are related to advection problems in which dissipative phenomena are 
minimal or may be considered negligible. There are a number of environmental problems 
involving this type of equation. This paper provides new, efficient schemes to solve problems of 
contaminant transport of a soluble contaminant through saturated soil under stationary flow in 
which reversible equilibrium controlled by sorption and irreversible decay are considered. The 
solution of this equation using classical methods, such as Finite Differences and Lax-Wendroff, is 
typically found to produce dissipation and other spurious effects that are purely numerical. The 
Cubic Interpolated Pseudo-particle (CIP) method is used to eliminate these numerical errors. 
Specifically, the CIP approach is used to provide stable numerical predictions to the advection-
sorption-decay equation even in cases where the solution involves discontinuities in the 
concentration profile. Comparisons of the numerical predictions obtained using this method for the 
case of one-dimensional problems of known analytical solution show a clear superiority of the CIP 
approach in relation to other numerical approaches. 

KEYWORDS: Contaminant transport; Advection; Linear sorption; First order decay;
Numerical schemes, CIP method. 

INTRODUCTION 
Many problems in environmental engineering involve advection phenomena. Perhaps the best 

known of such problems is the transport of solutes by fluids percolating in porous media. This 
problem is governed by different mechanisms, including advection, hydrodynamic dispersion, 
sorption and decay (Freeze & Cherry, 1979; Van Genutchen, 1991; Bear & Cheng, 2010).  

Among the multiple mechanisms that are relevant for the proper representation of the 
phenomenon, advection is the transport mechanism whose numerical implementation often leads 
to problems. This is because the solution to the advection process is fundamentally different than 
that of the hydrodynamic dispersion, sorption and decay processes. Specifically, while the latter 
processes tend to smooth the concentration profile, the advection process tends to maintain it and 

Cavalcante, A.L.B., and Zornberg, J.G. (2016). “Numerical Schemes to Solve Advective Contaminant Transport Problems with Linear 
Sorption and First Order Decay.” Electronic Journal of Geotechnical Engineering, Vol, 21, No. 5, March, pp. 2043-2060.

http://www.ejge.com/Index.htm
http://www.caee.utexas.edu/prof/zornberg/
https://www.researchgate.net/profile/Andre_Cavalcante


Vol. 21 [2016], Bund. 5   2044 
 
often results in discontinuities in the concentration profile. Consequently, special attention should 
be paid to the implementation of numerical techniques to solve the transport equations if the 
advective transport dominates the problem.  

Among the various transport mechanisms, advection is the one by which the solute is carried 
by the fluid, generally water, with or without interaction with the porous media. In problems 
involving advective transport without interaction with the porous media, the contamination front 
is often abrupt, advancing at a velocity equal to the average linear velocity (v) of the percolating 
fluid. In addition, the advective transport in this case does not lead to alterations in the peak 
concentration.  

The effective percolation velocity of the fluid can be computed as the discharge velocity 
(defined using Darcy’s law) divided by the porosity of the medium. The hydraulic conductivity of 
the soil is a fundamental parameter for the solute transport problem, since it quantifies the media 
resistance to the movement of the percolating fluid and, consequently, of the dissolved solute. 
Accordingly, advection represents solute transport induced by the presence of a hydraulic 
gradient. 

Hyperbolic equations govern advective problems in which dissipative phenomena are either 
not present or can be considered negligible. The solution of such problems requires the 
knowledge of initial and boundary conditions. The general mathematical formulation of an 
advective problem, in one-dimensional space, is described by the following hyperbolic equation: 

 

0t p xc v c+ ⋅ =                                                                     (1) 

 

where vp is the effective percolation velocity. The independent variable c is the solute 
concentration, with cx and ct denoting the concentration derivatives in relation to distance x and 
time t, respectively. The term vp.cx in Eq. (1) is often referred to as the advective term. 

Ultimately, Eq. (1) represents the transport of solute with concentration c for increasing 
distance x. Since this equation does not contain a dissipative term, cxx, the solute is just 
transported along x, without undergoing any alteration from time t0 to time t0 + ∆t. The absence of 
dissipative mechanisms implies that any discontinuity in the initial conditions should propagate to 
the solution at any time. Accordingly, the solution to this transport problem should admit 
discontinuous concentration profiles, and the numerical method adopted to solve the hyperbolic 
equations should be able to deal efficiently with such discontinuities. 

The initial value problem, or Cauchy problem, for the advection equation involves finding a 
function c(x, t) in the semi-space D = {(x, t)/ t ≥ 0, -∞ < x < ∞}, that satisfies Eq. (1) and a 
particular set of initial and boundary conditions. The solution to this problem is often not a 
continuous or sufficiently differentiable function. 

This paper presents the Cubic Interpolated Pseudo-particle (CIP) method as a new tool to deal 
with problems involving advection processes with linear sorption and first order decay. While the 
CIP method has been previously used to solve other hyperbolic equations, it has never been used 
to solve contaminant transport problems involving both advective and decay mechanisms. 
Specifically, this study investigates this problem using the CIP approach to provide stable 
numerical predictions to the advection-sorption-decay equation. Numerical predictions obtained 
using this method will be compared against analytical results as well as against numerical 
predictions obtained using other traditional numerical schemes such as Finite Differences and 
Lax-Wendroff. 
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ADVECTIVE CONTAMINANT TRANSPORT WITH LINER 
SORPTION ISOTHERM AND FIRST ORDER DECAY 
The mass conservation equation can be derived considering the mass balance of a 

contaminant moving through a one-dimensional Representative Elementary Volume (REV) in a 
saturated undeformable porous media (Bear, 1972), as follows: 

 

( )A tx
J n c r− = ⋅ +                                                                  (2) 

 

where JA is the advective mass flux of contaminant in pore fluid, with (JA)x denoting its derivative 
in relation to the spatial coordinate x, n is the porosity of the soil, r is the rate of contaminant 
mass sink per unit volume, and t is the time.  

The advective mass flux is given by: 

 

A pJ v n c= ⋅ ⋅                                                                       (3) 

 

The mass sink rate represents the sorption of the contaminant onto the soil skeleton, and it 
can be represented by: 

 

d tr Sr= ⋅                                                                         (4) 

 

where rd is the soil dry density and S is the mass of sorbed contaminant per unit mass of dry soil, 
with St denoting its derivative in relation to time t.   

Combining Eqs. (3) and (4) into Eq. (2), and assuming that the soil porosity is spatially 
invariant, results in the one-dimensional advection transport equation with sorption: 

 

p x t d tn v c n c Sρ− ⋅ ⋅ = ⋅ + ⋅                                                          (5) 

 

Applying the chain rule to Eq. (5) leads to the one-dimensional advective transport equation 
with reversible equilibrium controlled by sorption: 

 

( )p x d c tn v c n S cρ− ⋅ ⋅ = + ⋅ ⋅                                                         (6) 

 

Considering the case of advective transport with linear sorption, the rate of change of sorbed 
contaminant with respect to the contaminant concentration remains constant, as follows (Freeze 
& Cherry, 1979): 
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c dS K=                                                                      (7) 

where Kd is the equilibrium partitioning coefficient of the contaminant between the fluid and solid 
phases. 

Substituting Eq. (7) into Eq. (6) leads to the linear advective transport equation: 

0p
t x

v
c c

R
+ ⋅ =                                                                   (8) 

with, 

1 d dKR
n

ρ
= +                                                                   (9) 

 

where R is the retardation coefficient. 

Considering the effect of a linear first-order irreversible decay, acting simultaneously with 
linear reversible sorption, the sink term can be rewritten as: 

( ) ( )d d tR n K c cρ λ= + ⋅ ⋅ + ⋅                                                 (10) 

where λ is the rate coefficient for the first-order decay. 

Combining Eqs. (3) and (10) into Eq. (2) leads to the advective transport equation with linear 
sorption and first order decay, as follows: 

0p
t x

v
c c c

R
λ+ ⋅ + ⋅ =                                                       (11) 

ANALYTICAL SOLUTION FOR THE ADVECTIVE 
EQUATION WITH LINEAR SORPTION ISOTHERM AND 

FIRST ORDER DECAY 
The analytical solution of Eq. (11) in the semi-space D, subjected to an initial condition     

c(x, 0) = c0(x), is given by: 

( ) ( )0, .exppv
c x t c x t t

R
λ

 
= − ⋅ − ⋅ 

 
                                          (12) 

where c0(x) is a function describing the initial concentration profile for any x and t = 0. If the 
transport occurs in a finite domain (e.g. x ∈ [xL, xR]) and if vp/R > 0, a boundary condition of the 
form c(xL,t) = cL(t) must be specified, where cL(t) is a known boundary condition. In contaminant 
transport problems, this boundary condition specifies the concentration at the “outflow 
boundary”. 

When the linear sorption and reactive decay are not considered, R equals 1 and λ equals 0. 
Consequently, the solution presented in Eq. (12) turns into: 
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( ) ( )0, pc x t c x v t= −                                                        (13) 

which is the traditional analytical solution for the advection problem. 

In fact, in the absence of any other term, and for a constant effective percolation velocity vp, it 
is not necessary to use numerical methods to solve this equation. Nonetheless, this problem was 
selected to illustrate the occurrence of unrealistic dissipative components that appear in the 
numerical solutions predicted when using some classical numerical methods. This problem will 
also allow comparison of the analytical solution to the numerical predictions obtained using the 
CIP method.  

As an example, consider the problem of a constant wave propagating at a velocity vp = 1 m/s, 
along x, with the initial condition given by (Fig. 1): 

 

0

0 mg/L, 0 m 1 m
( ) 0.5 mg/L, 1 m 2 m

0 mg/L, 2 m

x
c x x

x

≤ <
= ≤ ≤
 >

                                                 (14) 

 
Figure 1: Initial condition (t = 0 s) for the advective example problems. 

 

As the initial constant wave propagates due to the advection as the only transport mechanism, 
it will not suffer any dissipation or retardation (Fig. 2a). However if sorption and decay 
phenomena are considered (e.g. considering R = 2 and λ = 0.1 s-1), the initial constant wave will 
suffer retardation and dissipation due to these processes, as illustrated in Figs. 2(b), 2(c) and 2(d).  
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Figure 2: Analytical solutions for the advective propagation problem: (a) without 

sorption nor decay (v = 1 m/s; R = 1; λ = 0 s-1), (b) without decay but with sorption (v = 1 
m/s; R = 2; λ = 0    s-1), (c) with decay but without sorption (v = 1 m/s; R = 1; λ = 0.1 s-1), 

and (d) with decay and sorption (v = 1 m/s; R = 2; λ = 0.1 s-1). 
 

The overall solutions (x, t, c(x,t)), for the four cases, are also shown in the Fig. 3 using three-
dimensional plots. Specifically, Fig. 3(b) allows observing the three-dimensional representation 
of the analytical solution of the advective phenomenon with sorption and without decay when 
compared with the results in Fig. 3(a), where only the advective phenomenon is observed. As can 
be observed, the sorption phenomenon results in a retardation processes, but it does not cause 
dissipations in the concentration. Fig. 3(c) allows observing the effect of the decay phenomenon, 
which results in a dissipation process but it does not cause retardation. Finally, Fig. 3(d) 
illustrates the effect of advection when both sorption and decay are relevant processes. 
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Figure 3: Three-dimensional representation of the analytical solutions for the advective 

propagation problem: (a) without sorption nor decay (v = 1 m/s; R = 1; λ = 0 s-1), (b) 
without decay but with sorption (v = 1 m/s; R = 2; λ = 0    s-1), (c) with decay but without 
sorption (v = 1 m/s; R = 1; λ = 0.1 s-1), and (d) with decay and sorption (v = 1 m/s; R = 2; 

λ = 0.1 s-1). 

NUMERICAL SOLUTIONS OF ADVECTION PROBLEMS 
USING TRADITIONAL METHODS 

As previously discusses, hyperbolic equations such as that represented by Eq. (1) involve 
propagation of the initial condition of the relevant variable (i.e. c) at a constant velocity that may 
not suffer physical dissipation mechanisms. The initial condition may present discontinuities, 
which in this case should propagate without showing dissipation. The solution may show 
erroneous dissipation trends if the problem is not adequately treated numerically. When the 
problem involves physical dissipation mechanisms such as those represented by Eq. (11), the 
numerical results could present dissipative trends that are a combination of actual physical 
dissipation mechanisms and erroneous numerical spurious results.  

The most common numerical treatment for problems such as that represented by Eq. (1) 
involves adopting a forward scheme in time and a central scheme in the space domain. Despite its 
simplicity, the stability of this method cannot be guaranteed with a simple criterion. A more 
stable solution using Finite Differences may be obtained by adopting a forward scheme in time 
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and a backwards difference in space, leading to the following fully explicit algorithm (Xiao, 
1996; Zienkiewicz & Morgan, 2006): 

( )1
1 1n n n

k r k r kc C c C c+
−= ⋅ + − ⋅                                                      (15) 

with, 

r p
tC v
x

∆
= ⋅

∆
                                                                 (16) 

where Cr is known as the Courant number and, according to von Neumann (Smith, 1985), a 
stability criterion can be defined when Cr ≤ 1.  

Using this numerical approach, the exact solution, ck
n+1 = ck-1

n, can only be obtained when Cr 
= 1. Also, the solution at an upstream location k-1 of a given point k at time n, ck-1

n, should be 
transported to the point k at time n+1, ck

n+1, without any dissipation. While there is sufficient 
information to compute ck

n+1 without numerical instabilities in cases with Cr < 1, the exact 
solution is not predicted accurately. The profile c(x, t) is similar to that observed for problems 
involving dissipative phenomena, although this dissipative trend in the solution is purely 
numerical and undesirable. Fig. 4(a) shows the numerical results for the previously discussed 
problem with initial conditions defined by Eq. (14) and with the exact solution being shown in 
Fig. 2(a). The prediction in Fig. 4(a) used a Courant number Cr = 0.5, with the propagation of the 
initial condition being shown for times t = 4, 8, 12, 16 s. Numerical dumping of the initial 
condition can be clearly noticed, with decreasing amplitudes of the constant wave as the 
numerical solution propagates in time. 

The dissipative trend observed in Fig. 4(a) is the product of numerical errors, which should be 
avoided since the real problem does not involve dissipation mechanisms. Since the numerical 
solution should approximate better the exact solution illustrated in Fig. 2(a), a novice in the use  
numerical techniques may be tempted to “improve” the numerical solution by using smaller time 
intervals ∆t. This would, in fact, resulting a decrease of the Courant number Cr and provide a 
significantly poorer numerical approximation. Fig. (4b) illustrates the results for the same 
problem and at the same times (t = 0, 4, 8, 12, 16 s) but using Cr = 0.25 (Fig. 4b). The smaller 
time intervals (and smaller Cr) led to more pronounced undesirable numerical results. 

Another classical method to solve numerically the advective problem is that proposed by Lax 
& Wendroff (1960). In this case, the numerical approximation for the advection equation        
(Eq. (1)) is expressed as: 

( ) ( ) ( )1
1 1 2 3 1

n n n n
k r k r k r kc p C c p C c p C c+

− += ⋅ + ⋅ + ⋅                                         (17) 

with, 

( ) ( )1
1 1
2r r rp C C C= ⋅ ⋅ +                                                        (18) 

( ) ( ) ( )2 1 1r r rp C C C= − ⋅ +                                                     (19) 

( ) ( )3
1 1
2r r rp C C C= ⋅ ⋅ −                                                       (20) 

where Cr is the Courant number and  pk(Cr) are the polynomials given in Eqs. (18), (19), (20) and 
illustrated in Fig. 5. 
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Figure 4: Numerical solution of the advection equation (v = 1 m/s; R = 1; λ = 0 s-1) 

using the Finite Differences (a) using Cr = 0.5, and (b) Cr = 0.25. 
  

 
Figure 5: Polynomials  pk(Cr) of Lax-Wendroff Method 

For a Courant number Cr = 1, the Lax-Wendroff polynomials correspond to p1=1, p2=p3=0. In 
this case, the exact analytical solution, ck

n+1 = ck-1
n, is obtained as was also the case when using 

Finite Differences. However, numerical dissipation is also observed when using the Lax-
Wendroff method if values of Cr < 1 are assumed. This is illustrated in Fig. 6(a), which shows the 
solution for the previous problem, involving a constant wave initial condition represented by Eq. 
(14), at different times (t = 0, 4, 8, 12, 16 s). The solution was obtained using Eq. (17) with Cr = 
0.5.  

An erroneous dissipation trend is also obtained when using the Lax-Wendroff method, 
although it appears less pronounced than that computed when using the Finite Differences 
method. On the other hand, a different type of numerical perturbation is observed in the Lax-
Wendroff solution, which results in erroneous oscillations preceding the peak values. As the 
solution propagates in time, the peaks in the solution are observed to decrease while the 
oscillations are observed to increase with increasing x. 

Fig. 6(b) illustrates the effect of the Courant number in predictions obtained using the Lax-
Wendroff numerical approach. The solution is shown for the same times (t = 0, 4, 8, 12, 16 s) as 
those in Fig. 6(a), but using the Lax-Wendroff scheme (Eq. (17)) with Cr = 0.25. Dissipation also 
occurs in this case, but results show decreasing peaks for decreasing values of the Courant 
number. However, these lower peaks seems to be “compensated” with larger oscillations 
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preceding the peaks. The solution also lags behind for increasing time, with this effect being more 
pronounced for smaller values of Cr. 

  
Figure 6: Numerical solution of the advection equation (v = 1 m/s; R = 1;  = 0 s-1) 

using Lax-Wendroff method, (a) using Cr = 0.5, and (b) using Cr = 0.25. 

NUMERICAL SOLUTIONS OF ADVECTION PROBLEMS 
USING CIP METHOD 

The cubic interpolated pseudo-particle method, CIP, proposed by Takewaki et al. (1985) and 
Takewaki & Yabe (1987), is used here to find an approximate solution c(x, t) to advection 
problems that are also characterized by sorption and decay.  

Although the CIP method has been previously used to solve hyperbolic equations (Yabe & 
Aoki, 1981; Kikuchi, et al., 2007), use of the CIP is developed in this study to solve the advective 
contaminant transport with linear sorption and first order decay, i.e., the advection-sorption-decay 
equation. The numerical evaluations presented in this paper were implemented in Mathematica 
codes. 

For a given constant advection velocity vp > 0, the solution should propagate the initial 
condition, displacing the solution by an amount equal to ∆x = vp.∆t during the time interval ∆t. 
For this to happen, the following condition is adopted: 

( )( , ) ,c x t c x x t t≅ − ∆ − ∆                                                         (21) 

This condition is also illustrated in Fig. 7(a). In the CIP method (Yabe & Aoki, 1991), the 
discrete solution ck

n at time n for a mesh of nodes xk in the space domain x is smoothed by 
approximating a Hermite cubic polynomial C(x) in the interval ∆x between successive points [xk-1, 
xk]. The general form of the polynomial is given by: 

( ) ( ) ( )3 2

1 1 1 1 1 1 1( ) n n n n n n n
k k k k k k kC x a x x b x x d x x e− − − − − − −= ⋅ − + ⋅ − + ⋅ − +                           (22) 

The space derivative of the cubic Hermite polynomial is given by: 

( ) ( )2

1 1 1 1 1'( ) 3 2n n n n n
k k k k kC x a x x b x x d− − − − −= ⋅ ⋅ − + ⋅ ⋅ − +                                    (23) 

The CIP method forces the polynomial approximation and its derivatives, C(x) and C’(x), to 
match the discrete values, c(x, t) and c’(x, t), at the extremes of each space interval [xk-1, xk] (Fig. 
7b): 
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( )1 1 1( , ) n n
k n k kc x t C x c− − −= =  and ( )1 1 1( , ) n n

k n k kc x t C x c− − −′ ′ ′= =                            (24) 

( )( , ) n n
k n k kc x t C x c= =  and ( )( , ) ' 'n n

k n k kc x t C x c′ = =                                 (25) 

  
Figure 7: Hypothesis of CIP Method: (a) for the function C(x) and, (b) for the function 

C' (x). 
 

Considering the approximation presented in Eq. (24) and using Eqs. (22) and (23), the 
coefficients 1

n
kd −  and 1

n
ke −  can be determined as: 

1 1
n n
k kd c− −′=    and   1 1

n n
k ke c− −=                                                       (26) 

Noticing that 1
n n
k k px x x v t

−
∆ = − = ∆  and applying the approximation presented in Eq. (25) to 

the nodes values in Eqs. (22) and (23), it is possible to determine the other coefficients 1
n
ka −  and 

1
n
kb −  as: 

( ) ( )1 1
1 2 3

2n n n n
k k k kn

k

c c c c
a

x x
− −

−

′ ′+ −
= +

∆ ∆
                                                   (27) 

( ) ( )1 1
1 2

3 2n n n n
k k k kn

k

c c c c
b

x x
− −

−

′ ′− +
= −

∆ ∆
                                                 (28) 

After having determined all coefficients, the discrete values of c(x, t) and c’(x, t) may be 
propagated to the next time step n + 1, as follows: 

1 3 2
1 1 1 1( ) ( ) ( )n n n n n

k k p k p k p kc a v t b v t c v t c+
− − − −′= ⋅ ∆ + ⋅ ∆ + ⋅ ∆ +                               (29) 

1 2
1 1 13 ( ) 2 ( )n n n n

k k p k p kc a v t b v t c+
− − −′ ′= ⋅ ⋅ ∆ + ⋅ ⋅ ∆ +                                      (30) 

The CIP method should be used at time step n for all nodes in the space domain. This allows 
explicit determinations of c and c’ for the next time step n+1. In this way, the initial solution at     
t = 0 h is propagated in time for as many time steps as necessary. It should be noted that the CIP 
scheme requires not only the values of the polynomial function in all nodes as an initial condition, 
ck

0, but also the values of the derivatives, c´k
0. If these derivatives are not explicitly defined by a 
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continuous function, c’(x, 0) = f’(x), it is still possible to estimate them using the central finite 
differences of the initial discrete function values, as follows (Moriguchi, 2005): 

1 1

2

n n
n k k

k
c cc

x
+ −−′ =

∆
                                                                (31)  

The CIP method is expected to eliminate the dissipation and oscillation numerical problems 
observed when solving the advection equation using the Finite Differences and Lax-Wendroff 
methods with Courant numbers less than a unit. This is fundamental in order to achieve an 
efficient discretization of the problem both in the time and space domains. 

The solution for the advection problem with the initial conditions defined by Eq. (14), was 
obtained using the CIP method and a Courant number Cr = 0.5. The predicted results are shown 
in Fig. (8) for different times (t = 0, 4, 8, 12, 16 s).  

As shown in the Fig. (8), the predicted results are propagated in time without loss of 
information, dissipation or oscillations. The predicted results are considered to match well the 
analytical solution shown in Fig. 2(a). Also, the results in Fig. 8 illustrate clear superiority of the 
CIP method in relation to the predictions obtained using classical numerical techniques such as 
the Finite Differences method (Fig. 4) and the Lax-Wendroff method (Fig. 6). 

 

 
Figure 8: Numerical solution of the advection equation (v = 1 m/s; R = 1; λ = 0 s-1) using the 

CIP method and Courant number Cr = 0.5. 

NUMERICAL SOLUTIONS USING TRADITIONAL 
METHODS FOR ADVECTION PROBLEMS WITH LINEAR 

SORPTION ISOTHERM AND FIRST ORDER DECAY 
Advection problems with linear sorption and first order decay have been conventionally 

solved numerically using Finite Differences by adopting a forward scheme in time and a 
backward difference in space. This approach leads to the following fully explicit algorithm (Xiao, 
1996; Zienkiewicz & Morgan, 2006): 
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1
11n n nr r

k k k
C Cc t c c
R R

λ+
−

 = − − ⋅∆ ⋅ + ⋅ 
 

                                                 (32) 

Fig. 9(a) and 9(b) show the numerical solution of this problem obtained using Finite 
Differences and a Courant number of 0.5. The parameters used in these examples are the same as 
those used to obtain the exact solution presented in Fig. 2(c), 2(d) and 3(c), 3(d). That is, values R 
= 1 or 2 and λ = 0.1 s-1 were adopted. 

 

  
Figure 9: Numerical solution of the advection-sorption-decay equation with Cr = 0.5, 

obtained using: (a) Finite Differences without sorption nor decay (v = 1 m/s; R = 1; λ = 
0.1 s-1), (b) Finite Differences sorption and decay (v = 1 m/s; R = 2; λ = 0.1 s-1), (c) Lax-
Wendroff method without sorption nor decay (v = 1 m/s; R = 1; λ = 0.1 s-1) and (d) Lax-

Wendroff method with sorption and decay (v = 1 m/s; R = 2; λ = 0.1 s-1). 

In this case, the validity of numerical solutions may be particularly difficult to assess even 
when the general trend of the exact solution is known. This is because of the difficulty to 
establish whether the dissipation trend observed in Fig. 9(a) and 9(b) are the product of actual 
physical phenomenon (e.g., sorption, decay processes), or they are due to numerical errors. 

The approach proposed by Lax & Wendroff (1960) was modified in this paper in order to be 
also used to solve this problem. In this case, the following fully explicit algorithm can be deduced 
to be applied to the advective phenomenon with linear sorption and first order decay: 

 

( ) ( ) ( )1
4 1 5 6 1, , , , , ,n n n n

k r k r k r kc p C R c p C R c p C R cλ λ λ+
− += ⋅ + ⋅ + ⋅                   (33) 
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with, 

 

( )4 ( , , ) 1
2

r r
r

C C
p C R t

R R
λ λ

 
= − ∆ + 

 
                                           (34) 

22 2

25 ( , , ) 1
2

r
r

Ctp C R t
R

λλ λ
 ∆

= − ∆ + − 
 

                                        (35) 

 

( )6 ( , , ) 1
2

r r
r

C C
p C R t

R R
λ λ

 
= − − ∆ 

 
                                        (36) 

 

When R = 1 and λ = 0 s-1, Eqs. (32) and (33) reduce to the advection case presented in Eqs. 
(15) and (17). Fig. 9(c) and 9(d) present the results obtained using the Lax-Wendroff method after 
adopting the same parameters used to define the exact solution shown in Fig. 2(c), 2(d) and 3(c), 
3(d), (i.e., R = 1 or 2, λ = 0.1 s-1). 

NUMERICAL SOLUTIONS USING CIP METHOD FOR 
ADVECTION PROBLEMS WITH LINEAR SORPTION 

ISOTHERM AND FIRST ORDER DECAY 
The CIP method was found to efficiently solve advection problems such as that represented 

by Eq. (1). This problem corresponds to hyperbolic equations for which dissipation phenomena 
are not present or may be considered negligible. In order to use the CIP method to simulate the 
transport model represented by Eq. (11), the problem should be solved by considering two 
components: an advective (Lagrangian) component, and a non-advective (Eulerian) component.  

Accordingly, Eq. (11) which governs advection with sorption and decay processes was 
divided into non-advective and advective components. The equation governing the non-advective 
process is as follows:  

 

tc cλ= − ⋅                                                                       (37) 

 

while the equation governing the advective process is as follows: 

 

0p
t x

v
c c

R
+ ⋅ =                                                                  (38) 
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The CIP method should be applied to the advective equations, thus avoiding the introduction 
of spurious numerical dissipations in the solution that result when using traditional numerical 
schemes. The non-advective equations may still be solved using classical methods such as the 
Finite Differences Method (FDM). In this case the Finite Differences scheme for the non-
advective component, Eq. (37), can be written as: 

( )1 1n n
k kc t cλ+ = − ⋅∆ ⋅                                                            (39) 

The analytical solution for this one-dimensional first order decay equation is given by: 

 ( ) ( )0, expc x t c tλ= ⋅ − ⋅                                                          (40) 

Fig. 10(a) and 10(b) show the results obtained for the non-advective equation (Eq. (37)) using 
the FDM (Cr = 0.5) and the exact analytical solution (Eq.(40)), respectively. The numerical 
prediction shows a very good agreement with the analytical results. In fact, errors were found to 
be less than 0.1%. 

After solving the non-advective component (Eq. (37)), at a given time n+1, the solution 1n
kc + , 

obtained from Eq. (39), is used as the initial condition ck0 in the CIP method to solve the 
advective component. The derivative c’k

0  is obtained using Eq. (31).  

The CIP method was used to find the solution of Eq. (11) after n+1 time steps. Fig. 11 
presents the results obtained using the CIP method. The parameters adopted in this problem are 
the same as those used in the exact solution presented in Fig. 2(c), 2(d) and 3(c), 3(d) (i.e., R = 1 
and 2, λ = 0.1 s-1). Values of Cr = 0.5 were used in the predictions. As shown in Fig. 11, the 
numerical prediction matches very well the analytical solution presented in Fig. 2(c) and 2(d). No 
decay or oscillations due to numerical errors appear in the results using the CIP method. The 
good quality of these predictions is in clear contrast with that of the predictions shown in Fig. 9, 
which had been obtained using the FDM and Lax Wendroff Methods (Fig. 9).   

 

Figure 10: Numerical solution of the non-advective component (decay λ = 0.1 s-1): (a) 
obtained using FDM, with Cr = 0.5 and, (b) Analytical solution. 
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Figure 11: Numerical solution of the advection-sorption-decay equation with Cr = 0.5, 
using the CIP Method: (a) without sorption nor decay (v = 1 m/s; R = 1; λ = 0.1 s-1), (b) 

with sorption and decay (v = 1 m/s; R = 2; λ = 0.1 s-1). 
 

As discussed in the paper, the non-advective component of the transport process is solved 
using the finite difference method. However, it should be noted that if this non-advective 
component meets the numerical stability criteria, the CIP method presented in this work can be 
easilyeasily extended for use in any other linear partial differential equations with an advective 
component. This includes a dispersion component in Eq. (2), which would allow using the CIP 
method to model the transport of contaminants that consider processes other than those 
considered in this paper. 

CONCLUSIONS 
This paper introduces a new numerical scheme, the Cubic Interpolated Pseudo-particle (CIP) 

method, to solve the hyperbolic differential equation that represents advection problems involving 
linear sorption and first order decay processes. The method is used to provide numerical solutions 
to problems involving advective, sorption and decay mechanisms, ultimately resulting in a new, 
superior numerical approach to this problem. The benefits of the new scheme is evaluated by 
comparing the numerical predictions against known analytical solutions and other common 
numerical schemes, including: (a) the explicit Finite Differences Method with forward derivatives 
in time and backwards derivatives in space; and (b) the Lax-Wendroff method. The various 
numerical solutions were compared to the exact analytical solution of transport problems 
characterized by having a constant wave as the initial condition. 

The solution obtained using Finite Differences was found to be conditionally stable but to 
present spurious numerical dissipation errors for schemes involving Courant number smaller than 
one. This undesirable dissipation effect led to increasing dumping of the solution for decreasing 
Courant numbers. Therefore, the solution was found to rapidly deteriorate when using small time 
intervals. 

The solution obtained using the Lax-Wendroff method was found to provide a slightly better 
approximation than that provided by the Finite Differences method. However, this method was 
found to also produce spurious numerical effects. They included solutions with erroneous 
oscillations and retardations. These undesirable effects were found to be more pronounced for 
smaller Courant numbers. 
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Ultimately, only when selecting the value of Courant number Cr = 1, the Finite Differences 
and Lax-Wendroff methods were found to produce results that compare well with the exact 
solution. However, selection of this value of Cr results in interdependent time and space 
discretizations. Such an ideal discretization can only be achieved in simple one-dimensional 
problems with equal intervals in the space domain. 

The CIP method was found to successfully overcome the numerical problems observed when 
using the other two numerical schemes. Specifically, the initial constant wave was found to 
propagate in time and space without undue dissipations or oscillations. The good match of the 
numerical solution against analytical results was found to be independent of the adopted Courant 
number. Consequently, this method was found to allow highly efficient and independent 
discretizations in time and space. 

Overall, the CIP method shows significant potential for applications in environmental 
problems. This is because many problems have at least one component in their governing 
equations that corresponds to advective mechanisms. In these cases, the results of this study show 
that the governing equations can be solved using the CIP method without introducing spurious 
numerical effects. 
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