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ABSTRACT: The focus of this paper is on applications (e.g. some leachate collection layers in

landfills) where a drainage system consists of a geocomposite overlain by a sand layer. If the

geocomposite does not have sufficient flow capacity to convey all the collected liquid, a fraction of

the liquid flows in the sand layer. In such drainage systems, the maximum liquid thickness should be

calculated to check that the flow capacity of the sand is not exceeded, and the maximum head should

be calculated to check that it is less than the maximum head prescribed by regulations. This paper

presents a method for calculating the maximum liquid thickness and the maximum head in drainage

systems composed of two layers, with the lower layer being a geocomposite. Equations give the

maximum liquid thickness and the maximum head as a function of the rate of liquid supply, the

hydraulic conductivities of the two layers, the length of the drainage system, and the slope. Design

examples are presented.
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1. INTRODUCTION

1.1. Scope of this paper

There are many landfills where the liner is overlain by a

leachate collection system that consists of a drainage

geocomposite overlain by a sand protective layer

(Figure 1). It should be noted that only the upper

geotextile of the drainage geocomposite is shown in

Figure 1. In many cases, there is a geotextile heat-bonded

to the lower face of the geosynthetic drainage medium

for stability purposes. This geotextile is not shown in

Figure 1 because the focus of this paper is on hydraulic

performance. Stability considerations are briefly dis-

cussed in Section 5.5.

The geocomposite is typically a few millimeters thick,

whereas the sand layer is typically between 0.3 and 0.6 m

thick. Engineers designing such systems are often

required to demonstrate that the head of leachate is

less than a maximum value prescribed by regulations.

This is a challenging problem if leachate flows both in

the geocomposite and in the sand.

More generally, there are applications, other than

leachate collection systems, where a drainage system

consists of two layers. In this paper, the term ‘drainage

system’ will be used generically to designate all types of

drainage systems, including leachate collection systems.

The design of a drainage system requires the calcula-

tion of the maximum liquid thickness and the maximum

head, as explained below:

. The maximum liquid thickness must be less than the
thickness of the drainage system for the following
reasons: (i) to ensure that the drainage system is not
full and, therefore, is able to collect liquid over its
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entire area; (ii) to prevent pore pressure build-up
in cases where pore pressure can be detrimental to the
stability of the drainage system and overlying
materials, and in cases where the resulting head may
be excessive regarding the risk of leakage through the
underlying liner (if any), as explained below; and (iii)
in the case of leachate collection layers, to prevent the
leachate that is conveyed by the leachate collection
layer from being in contact with the waste, which
would increase leachate concentration. Also, in the
case of drainage systems on steep slopes, the liquid
thickness in the drainage system must be as small as
possible because the stability of the drainage system
and overlying materials is impaired by seepage forces
that are proportional to liquid thickness. It should be
noted that the term ‘thickness’ is used instead of the
more familiar term ‘depth’, because thickness (meas-
ured perpendicular to the drainage layer slope), and
not depth (measured vertically), is actually used in
design.

. The maximum head must be as small as possible
because the rate of leakage through the liner (if any)
underlying the drainage system is a function of the
head of liquid above the liner (commonly called
‘head’). To that end, regulations applicable to landfill
design typically require a demonstration that the head
of leachate above the liner is less than a prescribed
value, typically 0.3 m. For applications where there is
no prescribed value for the maximum head, there may
be a project-specific design criterion for the maximum
head.

In summary, a drainage system must meet two design
criteria: the maximum liquid thickness must be smaller
than the thickness of the drainage system, and the
maximum head must be smaller than a prescribed value.

As indicated in Section 2.5, the liquid thickness and
the head are related: the head is slightly smaller than
liquid thickness. In the design of drainage systems that
consist of two layers, with a geocomposite as the lower
layer, two cases should be considered, depending on the
required liquid collection rate and the flow capacity of
the drainage geocomposite:

. If the drainage geocomposite has sufficient flow
capacity to convey (without being full) all the collected
liquid, the liquid thickness in the geocomposite is less
than the geocomposite thickness, and the head is very
small because the thickness of the geocomposite is
small.

. If the drainage geocomposite does not have sufficient
flow capacity to convey all the collected liquid, some
of the liquid flows in the layer located above the
geocomposite (herein referred to as the upper layer).
In this case, the designer should check that: (i) the
liquid thickness in the upper layer is less than the
thickness of the upper layer; and (ii) the total head (i.e.
the head in the geocomposite plus the head in the
upper layer) is less than the prescribed value.

Based on the foregoing discussion, it is important to
have a method for calculating the liquid head and
thickness in the case of a drainage system composed of
two layers. To the best of the authors’ knowledge, no
method has been published for this specific case. The
purpose of this paper is to provide such a method.

1.2. Definitions and assumptions

1.2.1. The drainage system
The considered drainage system is located on a slope of
angle b. The drainage system is underlain by a
geomembrane liner, which is assumed to be without
defects. This assumption is conservative because it
means that there is no liquid loss, and therefore the
drainage system must be designed to convey all the
liquid.

The drainage system is composed of two layers. Each
layer is characterised by its thickness and the hydraulic
conductivity of the drainage material. The hydraulic
conductivity of the lower layer material, k1, is assumed
to be greater than the hydraulic conductivity of the
upper layer material, k2:

k1 > k2 ð1Þ

where k1 is the hydraulic conductivity of the drainage
material used in the lower layer, and k2 is the hydraulic
conductivity of the drainage material used in the upper
layer. In this paper, the subscript ‘1’ will be used for the
lower layer and the subscript ‘2’ for the upper layer. If
the drainage materials do not have the same hydraulic
conductivities in all directions, k1 and k2 are assumed to
be measured in the direction of the slope.

The hydraulic transmissivity of each layer is the
product of the thickness of the layer and the hydraulic
conductivity of the material used in the layer. Thus:

y1 ¼ k1t1 ð2Þ

y2 ¼ k2t2 ð3Þ

Sand
Geotextile filter

Geosynthetic drainage medium

Geomembrane liner

Figure 1. Leachate collection system or other drainage layer composed of a drainage geocomposite overlain by a sand layer
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where y1 is the hydraulic transmissivity of the lower
layer, t1 is the thickness of the lower layer, y2 is the
hydraulic transmissivity of the upper layer, and t2 is the
thickness of the upper layer.

It is assumed that the lower layer consists of a
geocomposite. This assumption allows the use of a
simple equation to calculate the liquid thickness in the
lower layer, which will greatly simplify the analysis. This
assumption is discussed in Section 5.6.

An important parameter of the analysis is the length
of the drainage layer, L. It is important to note that, in
accordance with usual practice, L is measured horizon-
tally.

Finally, it is assumed that the two layers of the
drainage system are separated and/or protected by
properly designed filters. The design of filters is beyond
the scope of this paper.

1.2.2. Liquid supply and flow
The thickness of liquid in a drainage layer depends on
the rate of liquid supply. The rate of liquid supply, qh, is
expressed as a volume of liquid per unit of time and per
unit area (measured horizontally). The resulting units are
expressed in terms of length per time (e.g. m/s, mm/day,
in/day). For the analysis presented in this paper, the rate
of liquid supply is uniform (i.e. it is the same over the
entire area of the drainage layer) and is constant (i.e. it is
the same during a period of time that is long enough so
that steady-state flow conditions can be reached).

Two examples of drainage systems with a uniform rate
of liquid supply can be found in landfills: (i) the drainage
system of the landfill cover, where the liquid that
impinges onto the drainage system is the precipitation
water that has percolated through the soil layer (‘cover
soil’) overlying the drainage system; and (ii) the leachate
collection system, where the liquid that impinges onto
the leachate collection system is the leachate that has
percolated through the waste and through the protective
soil layer (if any) overlying the leachate collection
system. The terminology ‘liquid impingement rate’ is
often used in the case of landfills to designate the rate of
liquid supply.

The rate of liquid supply is assumed to be smaller than
the hydraulic conductivity of the upper layer (which is
smaller than the hydraulic conductivity of the lower
layer, as indicated by Equation 1):

qh < k2 ð4Þ

As a result, the liquid supplied to the drainage system
percolates vertically through the drainage system
material until it meets the surface of a saturated zone
of the drainage system.

The flow rate in a drainage system at a distance x from
the top of the slope (Figure 2) is

Q

B
¼ qhx ð5Þ

where Q/B is the flow rate in the drainage system (in the
direction parallel to the slope) per unit length in the
horizontal direction perpendicular to the direction of

the flow, Q is the flow rate in the drainage system (in the
direction parallel to the slope), B is the unit length in the
horizontal direction perpendicular to the direction of the
flow, and x is the distance measured horizontally from
the top of the slope.

In particular, the flow rate at the toe of the slope is
equal to the total amount of liquid supplied per unit of
time:

Q

B

� �
x¼L

¼ qhL ð6Þ

It is assumed that there is a perfect drain that
promptly removes the liquid at the toe of the drainage
system. The term ‘perfect drain’ indicates that the
elevation of liquid in the drain located at the toe of
the drainage system slope is below the bottom of the
drainage system. The liquid thickness is then quasi-zero
at the toe of the drainage system, as shown by Giroud
et al. (2000). It will be seen that this assumption is not
necessary in the limit case described in Section 2.4; this
comment is important for the validity of the approach
used in this paper.

1.2.3. Liquid
The liquid is assumed to be water, or a liquid that has
physical characteristics similar to those of water. In
particular, the liquid is assumed to be incompressible.

1.2.4. Reduction factors and factors of safety
The use of reduction factors (to account for the decrease
of hydraulic conductivity and hydraulic transmissivity
with time due to clogging and other mechanisms) and
factors of safety is not discussed in this paper. Detailed
guidance on the use of reduction factors and factors of
safety is provided by Giroud et al. (2000).

1.3. Organization of this paper

A review of available equations is presented in Section 2;
a theoretical analysis is presented in Section 3; numerical
applications are presented in Section 4; and a discussion
is presented in Section 5.

Liner

Q/B

qh

X

L

Q /B

Figure 2. Flow rate per unit width in a drainage layer located on a

slope
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2. REVIEW OF AVAILABLE EQUATIONS

2.1. Overview

Section 2 presents equations that make it possible to
calculate the maximum liquid thickness and maximum
head in the usual case of a drainage layer subjected to a
uniform rate of liquid supply and composed of only one
drainage material underlain by an impermeable liner.
These equations will be used in the analyses presented in
Section 3 to develop equations for drainage systems
composed of two layers. These equations are from a
detailed study of liquid flow in a drainage layer with a
perfect drain at the toe of the slope presented by Giroud
et al. (2000).

2.2. Shape of the liquid surface

The shape of the liquid surface in a drainage layer
subjected to a uniform liquid supply is shown in Figure
3. The shape of the liquid surface depends on the
characteristic parameter, l, defined as follows (Giroud
et al. 2000):

l ¼
qh

k tan2 b
ð7Þ

where k is the hydraulic conductivity of the drainage
material in the direction of the flow, and b is the slope
angle of the drainage layer.

Figure 3a shows that, when l is greater than 0.25, the
liquid thickness is not zero at the top of the slope. In this
case, the liquid surface is horizontal at the top of the
slope, which is consistent with a zero hydraulic gradient
at the top of the slope, and hence with zero flow through
the vertical surface VV’ at the top of the slope. The zero
flow condition through VV’ implies that there is liquid
with a zero hydraulic gradient on the other side of VV’
(i.e. the left side of VV’ in Figure 3a).

Figure 3c shows that, when l is very small, the
thickness of the liquid in the drainage layer varies
linearly from zero at the top to a maximum value near
the toe of the drainage layer slope. The maximum liquid
thickness occurs exactly at the toe of the slope in the
limit case where l=0.

2.3. Maximum liquid thickness

Regardless of the shape of the liquid surface, the
maximum liquid thickness in the drainage layer, tmax,
is given by the following equation, known as the
modified Giroud’s equation (Giroud and Houlihan
1995; Giroud et al. 2000):

tmax ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4 qh=k

p
� tan b

2 cos b
L

¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l

p
� 1

2

tan b
cos b

L ð8Þ

where L is the horizontal projection of the length of the
drainage layer in the direction of the flow (Figure 2), and

j is a dimensionless parameter called the ‘modifying
factor’ and defined as follows:

j ¼ 1� 0:12 exp � log 8l=5ð Þ
5=8

� �2n o
ð9Þ

Numerical values of the modifying factor, j, range
between 0.88 and 1.00, as shown in Table 1. Therefore
a conservative approximation of Equation 8 is the
following equation, which is known as the original
Giroud’s equation:

tmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4 qh=k

p
� tan b

2 cos b
L

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l

p
� 1

2

tan b
cos b

L ð10Þ

2.4. Limit case

When l is very small (e.g. l < 0:01), which occurs in
many practical situations, Equations 8 and 10 are

Liquid surfaceV

V′

Liner

tmax

tmax

tmax

l > 0.25

Toe drain

l# 0.25

l ≈ 0

b

b

b

(a)

(b)

(c)

Figure 3. Shape of the liquid surface in a drainage layer as a

function of the dimensionless parameter, l: (a) l > 0:25; (b)
l � 0:25; (c) l very small (reproduced from Giroud et al. 2000)

Note: The characteristic parameter l is defined by Equation 7. At
the toe of the drainage layer slope, the liquid thickness is very

small. At the scale of the figure, it appears to be zero. A very

small liquid thickness is possible at the toe of the slope because

the liquid surface is vertical at the toe of the slope and, as a result,

the hydraulic gradient is very high. In the case where l � 0, the

maximum liquid thickness is approximately equal to tlim and

occurs near the toe of the drainage layer slope.
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equivalent to the following equation, called the ‘limit
case equation’ (Giroud et al. 2000):

tmax � tlim ¼
qh

k sin b
L ¼

qh

k tan2 b
tan b
cos b

L ¼ l
tan b
cos b

L

ð11Þ

where tlim is the maximum liquid thickness in the limit
case where l approaches zero.

As indicated in Figure 3c, when l is very small, the
thickness of the liquid in the drainage layer varies
linearly from zero at the top to a maximum value near
the toe of the drainage layer slope. Therefore the
following relationship exists when l is very small:

t ¼
qh

k sin b
x ¼ l

tan b
cos b

x ð12Þ

where t is the liquid thickness at the distance x measured
horizontally from the top of the drainage layer in the
limit case where l is very small.

It is important to note that the liquid thickness at
distance x from the top of the slope is the same whether
the total length of the drainage layer is x or greater. This
means that it is not necessary to have a perfect drain at
the toe of the slope in the limit case where l is very small.
The only requirement is that the portion of the drainage
layer downstream of abscissa x be able to convey the
flow rate that exists at abscissa x. This is important for
the validity of the approach used in this paper.

Equation 11 is simpler than Equation 10, which in
turn is simpler than Equation 8. A detailed discussion of
the approximation made when Equation 11 is used is
presented by Giroud et al. (2000). The conclusion of the
discussion is that: (i) regardless of the value of l,
Equation 11 provides a conservative value of the
maximum liquid thickness (i.e. a value of the maximum
liquid thickness greater than the value calculated more
accurately using Equation 8 or Equation 10); and (ii)
Equation 11 provides an acceptable approximation of
tmax if the liquid thickness is less than one tenth of the
height of the drainage layer (i.e. the difference in

elevation between the top and the toe of the drainage
layer slope). As a result, from a practical standpoint,
Equation 11 is always valid in the case of geosynthetic
drainage layers (and is then preferred to Equations 8 and
10 because it is simpler), and rarely valid in the case of
granular drainage layers located on a slope that is not
steep. Accordingly, in this paper, Equation 11 will be
used systematically for geosynthetic drainage layers,
such as geocomposites, and Equation 8 will be used
systematically for granular drainage layers.

2.5. Maximum head

The equations presented in Sections 2.3 and 2.4 give the
maximum liquid thickness of liquid in a single drainage
layer. Equations that give the maximum head can be
derived from equations that give the maximum liquid
thickness. In the case of liquid flow parallel to a slope,
the following relationship exists between liquid thick-
ness, t, and head, h:

h � t cos b ð13Þ

As indicated by Giroud et al. (2000), Equation 13 is only
approximate in the general case. However, Giroud et al.
(2000) also indicated that Equation 13 provides a good
approximation in the case of the maximum liquid
thickness and the maximum head, which are the two
important design parameters. Hence:

hmax � tmax cos b ð14Þ

Equation 13 shows that the head is equal to the liquid
thickness if the slope angle is small (e.g. cos b � 1:00 for
slopes less than 10%) and is slightly smaller than the
liquid thickness if the slope is steep (e.g. cos b ¼ 0:95 for
a 1V :3H slope).

Combining Equations 8 and 14 gives the following
general equation for the head:

hmax ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k

p
� tan b

2
L ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l

p
� 1

2= tan b
L

ð15Þ

Table 1. Numerical values of j as a function of l

l j l j l j

0

0.0001

0.001

1.000

1.000

0.994

0.04

0.05

0.06

0.931

0.925

0.920

5

6

7

0.913

0.918

0.922

0.002

0.003

0.004

0.989

0.985

0.982

0.07

0.08

0.09

0.916

0.912

0.909

8

9

10

0.926

0.929

0.932

0.005

0.006

0.007

0.978

0.976

0.973

0.10

0.15

0.20

0.906

0.897

0.891

15

20

30

0.943

0.950

0.960

0.008

0.009

0.01

0.970

0.968

0.966

0.25

0.50

1

0.887

0.880

0.882

50

100

200

0.971

0.982

0.990

0.015

0.02

0.03

0.957

0.950

0.939

2

3

4

0.891

0.900

0.907

500

1000

5000

0.996

0.998

1.000

Note: The dimensionless parameter j was calculated using Equation 9. The dimensionless parameter l is defined by

Equation 7.
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Combining Equations 11 and 14 gives the following
equation for the head in the limit case defined in Section
2.4:

hmax �
qhL

k tan b
¼ lL tan b ð16Þ

3. ANALYSIS

3.1. Introduction to the analysis

3.1.1. Flow configurations
From the view point of flow configurations, two different
slope sections should be considered: the upstream section
and the downstream section (Figures 4 and 5). In the
upstream section, all of the liquid supplied percolates
vertically through the upper layer and is collected by the
lower layer, where it flows along the slope. The length of
the upstream section is such that the lower layer is full at
the toe of the upstream section. In the downstream
section, liquid flows both in the lower layer (which is full)
and in the upper layer.

The liquid in the upper layer has different configura-
tions in two cases depending on the value of the
characteristic parameter for the upper layer, l2. This
parameter is defined by the following equation, derived
from Equation 7 with k= k2:

l2 ¼
qh

k2 tan2 b
ð17Þ

In the first case, the liquid thickness is zero at the top
of the downstream section of the upper layer (Figure 4).
This occurs when l2 is equal to or less than 0.25 (Figures
3b and 3c).

In the second case, the liquid thickness is not zero at
the top of the downstream section of the upper layer
(Figure 5). This occurs when l2 is greater than 0.25
(Figure 3a). In this case, the flow can be described as
follows:

. As indicated in Section 2.2, there is no flow through
the vertical surface VV’ (Figures 3a and 5).

. As indicated in Section 2.2, a liquid profile must
develop on the upstream side of VV’ as there is no flow

through the vertical surface VV’. This leads to the
formation of the saturated zone BVV’ (Figure 5).

. When the steady state is reached (which is the case
considered in this paper), the rate of liquid flow
through BV (liquid surface) is equal to the rate of
liquid flow through BV’ (dripping surface). Therefore
the rate of liquid supply to the liquid surface A’V’ (i.e.
to the upstream section of the lower layer) remains
uniform, because it is not disturbed by the presence of
the saturated zone BVV’.

. The triangular zone AA’V’ is unsaturated, which is
possible because the hydraulic conductivity of the
upper layer is smaller than the hydraulic conductivity
of the lower layer.

Based on the foregoing discussion, even though the
flow configurations in the upper layer are different in the
two cases (l2 � 0:25 and l2 > 0:25), the rate of liquid
supply to the lower layer is the same. Also, as indicated in
Section 2.3, the same equation for calculating the liquid
maximum thickness is applicable regardless of the value
of l (i.e. the same equation can be used in the two cases).
Therefore the two cases (l2 � 0.25 and l2 > 0.25) will be
addressed together in the analysis presented hereafter.

3.1.2. Overview of the analysis
An analysis of flow in the lower layer will be presented
first (Section 3.2). This analysis will give the value of the
length of the upstream section, and will show that the
lower layer conveys all of the liquid supplied to the
upstream section and almost none of the liquid supplied
to the downstream section.

An analysis of flow in the upper layer will then be
presented (Section 3.3). The analysis will show that the
upper layer conveys no flow in the upstream section. The
analysis will also show that, in the downstream section,
the upper layer conveys no liquid supplied to the
upstream section and conveys virtually all of the liquid
supplied to the downstream section.

3.2. Flow in the lower layer

3.2.1. Flow in the upstream section of the lower layer
As indicated in Section 3.1.1, the rate of liquid supply to
the upstream section of the lower layer is uniform,

Upper
layer

Lu
Upstream

section

Downstream
section

b

tmax2

qh

t1

Lower
layer

Figure 4. Flow configuration in the upstream section and the

downstream section for the case where l2 � 0:25

t1

qh

Upper
layer

Lower
layer

Downstream
section

b
Lu

Upstream
section

V

V'

B

tmax2

A

A′
t1

V

V'

Figure 5. Flow configuration in the upstream section and the

downstream section for the case where l2 > 0:25
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regardless of the flow configuration in the upper layer.
Therefore the rate of liquid supply is equal to qh defined
in Section 1.2.2.

As indicated in Section 1.2.1, the lower layer is
assumed to be a geocomposite. Therefore the lower
layer satisfies the conditions of validity of the limit case
presented in Section 2.4. Consequently, in the upstream
section of the lower layer, the liquid thickness varies
linearly from zero at the top of the slope to t1 at the point
where the lower layer is full. Therefore the length of the
upstream section, Lu, can be calculated using the
following equation, derived from Equation 12 with
x ¼ Lu, k ¼ k1 and t ¼ t1:

Lu ¼
t1k1 sin b

qh
ð18Þ

Combining Equations 2 and 18 gives

Lu ¼
y1 sin b

qh
ð19Þ

It should be noted that, according to Section 2.4, the
presence of a toe drain is not required to ensure the
validity of Equations 18 and 19. The only requirement is
that the downstream section be able to convey the flow
rate that exists at the downstream end of the upstream
section. This requirement is met, as indicated in Section
3.2.2.

If Lu calculated using Equation 18 or 19 is greater
than L, the maximum liquid thickness is smaller than t1
and all the liquid flow is conveyed by the geocomposite.
In this case, the maximum liquid thickness is given by the
following equation derived from Equation 11 with
k ¼ k1:

tmax � tlim ¼
qh

k1 sin b
L ð20Þ

and the maximum head is then given by the following
equation, derived from Equation 16 with k ¼ k1:

hmax �
qhL

k1 tan b
ð21Þ

If Lu is greater than L, the equations presented in the
remainder of Section 3 are not needed and are not valid.
The equations presented in the remainder of Section 3
are based on the assumption that Lu is smaller than L.

3.2.2. Flow in the downstream section of the lower layer
The boundary conditions related to liquid flow in the
downstream section of the lower layer are not simple,
because liquid is supplied to the downstream section of
the lower layer from the upstream section of the same
layer and, possibly, from the downstream section of the
upper layer. However, one feature of the flow in the
lower layer is known: the downstream section of the
lower layer is full of liquid over its entire length (as
indicated in Section 3.1.1), except a very short length
near the toe of the slope due to the presence of a perfect
drain at the toe of the slope, as indicated at the end of
Section 1.2.2.

The liquid present in the downstream section of the
upper layer exerts a non-uniform pressure on the liquid

flowing in the downstream section of the lower layer. As
a result, the hydraulic gradient in the downstream
section of the lower layer may be slightly reduced
upstream of the location of tmax2 and slightly increased
downstream of the location of tmax2. Consequently, there
may be some small migration of liquid between the two
layers in the downstream section (toward the upper layer
upstream of the location of tmax2 and toward the lower
layer downstream of the location of tmax2). These small
migrations are neglected herein, which is equivalent to
assuming that the boundary between the upper and
lower layers in the downstream section is impermeable.
In conclusion, the downstream section of the lower layer
can be characterised as follows: (i) it can be assumed to
be overlain by an impermeable boundary (as shown
above); (ii) it is assumed to be underlain by an
impermeable boundary (as indicated in Section 1.2.1);
and (iii) it is full of liquid (as indicated in earlier in
Section 3.2.2). Therefore the flow in the downstream
section of the lower layer is confined.

Under confined, steady-state conditions, the hydraulic
gradient in the downstream section of the lower layer,
i1down, is constant over most of the length of the slope,
and increases only near the toe of the slope owing to the
presence of a perfect drain (Figure 6). The constant value
of i1down is given by the following classical equation:

i1down ¼
head loss

slope length
¼

L� Luð Þ tan b
L� Luð Þ= cos b

¼ sin b ð22Þ

The rate of confined flow in the downstream section of
the lower layer is then given by the following classical
equation:

Q1

B
¼ y1i1down ð23Þ

where Q1/B is the flow rate in the downstream section of
the lower layer (in the direction parallel to the slope) per
unit length in the horizontal direction perpendicular to
the direction of the flow, and Q1 is the flow rate in the
downstream section of the lower layer (in the direction
parallel to the slope).

Combining Equations 22 and 23 gives:

Q1

B
¼ y1 sin b ð24Þ

The flow rate in the downstream section of the lower
layer is then equal to the flow rate at the toe of the

(L − Lu) tan b
Liner

t1b

(L − L
u)/cos b

L − Lu

Figure 6. Confined flow in the downstream section of the lower

layer
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upstream section of the lower layer. This is logical, under
the assumptions presented above, because the only liquid
entering the downstream section of the lower layer is the
liquid flowing out of the toe of the upstream section of
the lower layer.

3.2.3. Conclusions for the lower layer
The conclusion of the above discussion is that it can be
assumed that the lower layer conveys all of the liquid
supplied to the upstream section and none of the liquid
supplied to the downstream section.

3.3. Flow in the upper layer

3.3.1. Flow in the upstream section of the upper layer
As indicated in Section 3.1, the liquid that is supplied to
the upstream section of the drainage system percolates
through the upper layer and reaches the upstream
section of the lower layer. This is true regardless of the
considered case: the case for l2� 0.25 (Figure 4) and the
case for l2>0.25 (Figure 5).

3.3.2. Flow in the downstream section of the upper layer
(general case)
As indicated in Section 3.2.2, it may be conservatively
assumed that the downstream section of the lower layer
does not receive any liquid from the downstream section
of the upper layer. Therefore the downstream section of
the upper layer must convey all the liquid supplied to the
downstream section, and equations presented in Section
2 for a drainage layer underlain by an impermeable liner
can be used. As the upper layer is generally a granular
layer, Equation 11 is generally not applicable and
Equation 8 must be used. It is important to note that
Equation 11 is valid regardless of the value of l:
therefore it is applicable to both cases (l2� 0.25 and
l2>0.25).

The maximum thickness of liquid in the upper layer,
tmax2, is given by the following equation derived from
Equation 8 for the length of the downstream section (i.e.
L� Lu):

tmax2 ¼ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2 cos b
ðL� LuÞ

¼ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

2

tan b
cos b

ðL� LuÞ ð25Þ

where l2 is given by Equation 17 and j2 is calculated
using the following equation, derived from Equation 9
with l ¼ l2:

j2 ¼ 1� 0:12 exp � log 8l2=5ð Þ
5=8

� �2n o
ð26Þ

Combining Equations 18 and 25 gives

tmax 2 ¼ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2 cos b
L�

t1k1 sin b
qh

� �

¼ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

2

tan b
cos b

L�
t1k1 sin b

qh

� �
ð27Þ

Combining Equations 2 and 27 or 19 and 25 gives

tmax 2 ¼ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2 cos b
L�

y1 sin b
qh

� �

¼ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

2

tan b
cos b

L�
y1 sin b

qh

� �
ð28Þ

3.3.3. Flow in the downstream section of the upper layer
(limit case)
As indicated in Section 3.2.1, in all cases considered in
this paper, the lower layer meets the conditions for the
limit case equation described in Section 2.4. If the upper
layer also meets the conditions for the limit case, the
following equation derived from Equation 11 can be
used for the upper layer:

tmax 2 ¼
qh L� Luð Þ

k2 sin b
ð29Þ

Combining Equations 18 and 29 gives

tmax 2 ¼
qhL

k2 sin b
�
t1k1

k2
ð30Þ

Combining Equations 2 and 30 gives

tmax 2 ¼
qhL

k2 sin b
�

y1
k2

ð31Þ

3.4. Maximum liquid thickness

3.4.1. General equation
The maximum liquid thickness occurs in the downstream
section (Figures 4 and 5). It is equal to the thickness of
the lower layer plus the maximum thickness of liquid in
the upper layer:

tmax ¼ t1 þ tmax 2 ð32Þ

3.4.2. Maximum liquid thickness in the general case
Combining Equations 27 and 32 gives

tmax ¼ t1 þ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2 cos b
L�

t1k1 sin b
qh

� �

¼ t1 þ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

2

tan b
cos b

L�
t1k1 sin b

qh

� �
ð33Þ

Equation 33 is equivalent to the following equation,
obtained by combining Equations 2 and 33 or 28 and 32:

tmax ¼ t1 þ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2 cos b
L�

y1 sin b
qh

� �

¼ t1 þ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

2

tan b
cos b

L�
y1 sin b

qh

� �
ð34Þ

In Equations 33 and 34, the dimensionless parameters
l2 and j2 are given by Equations 17 and 26 respectively.
It should be remembered that j2 varies between 0.88 and
1.00. Therefore using j2=1 gives a conservative value of
tmax (i.e. a value greater than the value that would be
calculated rigorously).

3.4.3. Maximum liquid thickness in the limit case
The following equations are valid for the limit case
where l2 is very small (e.g. l2<0.01). Combining
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Equations 30 and 32 gives the following approximate
equation:

tmax ¼ t1 þ
qhL

k2 sin b
�
t1k1

k2
ð35Þ

Hence:

tmax ¼
qhL

k2 sin b
�

k1

k2
� 1

� �
t1 ð36Þ

Equations 35 and 36 are equivalent to the following
equation, obtained by combining Equations 2 and 36 or
31 and 32:

tmax ¼
qhL

k2 sin b
�

y1
k2

� t1

� �
¼

qhL

k2 sin b
�

y1
k2

þ t1 ð37Þ

3.5. Maximum head

As indicated in Section 2.5, the maximum head is derived
from the maximum liquid thickness using Equation 14.

3.5.1. Maximum liquid head in the general case
Combining Equations 14 and 33 gives the following
equation for the maximum head in the general case:

hmax ¼ t1 cos bþ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2

� L�
t1k1 sin b

qh

� �

¼ t1 cos bþ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

� �
tan b

2

� L�
t1k1 sin b

qh

� �
ð38Þ

Equation 38 is equivalent to the following equation,
obtained by combining Equations 2 and 38 or 14 and 34:

hmax ¼ t1 cos bþ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=k2

p
� tan b

2

� L�
y1 sin b

qh

� �

¼ t1 cos bþ j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l2

p
� 1

� �
tan b

2
L�

y1 sin b
qh

� �

ð39Þ

In Equations 38 and 39, the dimensionless parameters
l2 and j2 are given by Equations 17 and 26 respectively.
It should be remembered that j2 varies between 0.88 and
1.00. Therefore using j2=1 gives a conservative value of
hmax (i.e. a value greater than the value that would be
calculated rigorously).

3.5.2. Maximum liquid head in the limit case
Combining Equations 14 and 36 gives the following
approximate equation for the limit case where l2 is very
small (e.g. l2<0.01):

hmax ¼
qhL

k2 tan b
�

k1

k2
� 1

� �
t1 cos b ð40Þ

Equation 40 is equivalent to the following approx-
imate equation, obtained by combining Equations 2 and
40 or 14 and 37:

hmax ¼
qhL

k2 tan b
�

y1
k2

� t1

� �
cos b

¼
qhL

k2 tan b
�
y1 cos b

k2
þ t1 cos b ð41Þ

4. NUMERICAL APPLICATIONS

4.1. Method

The method developed in Section 3 can be summarised
as follows:

. Step 1. Calculate Lu using Equation 18 or 19. If Lu is
greater than or equal to L, the drainage geocomposite
conveys all the liquid supplied. In this case, the
maximum liquid thickness is smaller than the thick-
ness of the geocomposite (i.e. tmax< t1). The maxi-
mum liquid thickness is then given by Equation 20 and
the maximum head by Equation 21. If Lu is smaller
than L, the drainage geocomposite conveys only a
portion of the liquid supplied, and the maximum
liquid thickness and the maximum head should be
calculated as indicated in Step 2 below.

. Step 2 (only if Lu<L). Calculate l2 using Equation
17. If l2 is smaller than 0.01, the approximate
equations for the limit case can be used (Equation
36 or 37 for the maximum liquid thickness, and
Equation 40 or 41 for the maximum head). If l2 is
greater than 0.01, the equations for the general case
must be used (Equation 33 or 34 for the maximum
liquid thickness, and Equation 38 or 39 for the
maximum head). The equations for the general case
can also be used when the approximate equations for
the limit case are valid.

Once the maximum liquid thickness and the maximum
head are calculated, it should be checked that: (i) the
maximum liquid thickness (tmax) is less than the total
thickness of the drainage system (t1 + t2), or that the
maximum liquid thickness in the upper layer (tmax2) is
less than the thickness of the upper layer (t2); and (ii) the
maximum head is less than the prescribed value, if any. If
these conditions are not met, the drainage system should
be redesigned. Possible options include a drainage
geocomposite with a greater hydraulic transmissivity, a
sand with a greater hydraulic conductivity, a shorter
drainage system, and a steeper slope.

4.2. Design examples

Three design examples are presented. The first example
illustrates the general case (Sections 3.3.2 and 3.4.2), the
second example illustrates the limit case (Sections 3.3.3
and 3.4.3), and the third example illustrates the case
where the method presented in this paper is not needed
(Section 3.2.1).
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Example 1
A leachate collection system consists of a drainage
geocomposite overlain by a sand layer. The drainage
geocomposite has a hydraulic transmissivity of
1.46 1075 m2/s and a thickness of 5 mm. The sand
layer has a hydraulic conductivity of 16 1075 m/s and a
thickness of 0.6 m. The horizontal length of the leachate
collection system is 15 m and its slope is 2%. The rate of
leachate supply considered in design is 25 mm in a week.
Calculate the maximum head of leachate over the liner
and compare it with the prescribed maximum leachate
head, which is 0.3 m.

First, the rate of liquid supply can be expressed in SI
units as follows:

qh ¼
25� 10�3

7ð Þ 86; 400ð Þ
¼ 4:134� 10�8 m=s

It should be noted that the rate of liquid supply is
smaller than the hydraulic conductivity of the sand layer.
Therefore the condition expressed by Equation 4 is
satisfied, and the equations presented in this paper can
be used.

Then, the length of the upstream section can be
calculated using Equation 19 as follows:

Lu ¼
1:4� 10�5
� �

sin tan�1 0:02
� �

4:134� 10�8
¼ 6:772m

The calculated length of the upstream section is
smaller than the length of the drainage layer. Therefore
the drainage geocomposite cannot convey all the
leachate supplied.

Next, l2 is calculated using Equation 17 as follows:

l2 ¼
4:134� 10�8

1� 10�5ð Þ 0:02ð Þ
2
¼ 10:335

Then, j2 is obtained from Table 1 or calculated using
Equation 26 as follows:

j2 ¼ 1� 0:12 exp � log 8� 10:335=5ð Þ
5=8

� �2n o
¼ 0:9328

Finally, the maximum head is calculated using
Equation 39 as follows:

hmax ¼ 5� 10�3
� �

cos tan�1 0:02
� �

þ 0:9328ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð Þ 10:335ð Þ

p
� 1

h i
0:02ð Þ

2

� 15�
1:4� 10�5
� �

sin tan�1 0:02
� �

4:134� 10�8

� 	

¼ 4:999� 10�3 þ 5:137� 10�2
� �

15� 6:772ð Þ

¼ 4:999� 10�3 þ 4:227� 10�1 ¼ 0:428m

The maximum head is greater than the prescribed value
of 0.3 m. Therefore the design should be changed.
Possible options include a drainage geocomposite with
a greater hydraulic transmissivity, a sand with a greater
hydraulic conductivity, a shorter leachate collection
system, and a steeper slope.

One could also have calculated the maximum liquid
thickness using Equation 34 to compare it with the
thickness of the drainage layer. Alternatively, the maxi-
mum liquid thickness can be derived from the above
value of the maximum head using Equation 14 as
follows:

tmax ¼
0:428

cos tan�1 0:02
� � ¼ 0:428m

The maximum liquid thickness thus calculated is smaller
than the thickness of the drainage system, which is:

t1 þ t2 ¼ 0:005þ 0:6 ¼ 0:605m

Of the two design criteria mentioned in Section 1.1,
one is met (the liquid thickness is smaller than the
thickness of the drainage system) and the other is not
met (the maximum head is not smaller than the
prescribed value). Therefore the considered drainage
system is not acceptable.

Example 2
A drainage layer in a landfill cover system consists of a
drainage geocomposite overlain by a sand layer. The
drainage geocomposite has a hydraulic transmissivity of
1:4� 10�5 m2/s and a thickness of 5 mm. The sand layer
has a hydraulic conductivity of 3� 10�4 m/s and a
thickness of 0.3 m. The horizontal length of the drainage
layer is 30 m and its slope is 1V :4H. The rate of liquid
supply considered in design is 1:5� 10�7 m/s. Calculate
the maximum head and compare it with the design
criterion for the maximum head, which is 25 mm.

It should be noted that the rate of liquid supply is
smaller than the hydraulic conductivity of the sand layer.
Therefore the condition expressed by Equation 4 is
satisfied, and the equations presented in this paper can
be used.

First, the length of the upstream section is calculated
using Equation 19 as follows:

Lu ¼
1:4� 10�5
� �

sin tan�1 0:25
� �

1:5� 10�7
¼ 22:637m

The length of the upstream section is smaller than the
length of the drainage layer, which indicates that the
drainage geocomposite does not convey all the liquid
supplied.

Then the value of l2 is calculated using Equation 17 as
follows:

l2 ¼
1:5� 10�7

3� 10�4ð Þ 0:25ð Þ
2
¼ 8:00� 10�3

As l2 is smaller than 0.01, the equation for the limit case,
Equation 40, can be used. To use Equation 40, k1 must
be calculated using Equation 2 as follows:

k1 ¼
1:4� 10�5

5� 10�3
¼ 2:8� 10�3 m=s
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Then, Equation 40 can be used as follows:

hmax ¼
ð1:5� 10�7Þ 30ð Þ

3� 10�4ð Þ 0:25ð Þ
�

2:8� 10�3

3� 10�4
� 1

� �

� ð5� 10�3Þ cosðtan�1 0:25Þ

¼ 6:000� 10�2 � 4:042� 10�2 ¼ 1:958� 10�2

¼ 0:0196m ¼ 19:6mm

In fact, it is more convenient to use Equation 41,
which does not require the calculation of k1. Equation 41
is used as follows:

hmax ¼
ð1:5� 10�7Þ 30ð Þ

ð3� 10�4Þ 0:25ð Þ
�

1:4� 10�5

3� 10�4
� 5� 10�3

� �

� cos tan�1 0:25
� �

¼ 6:000� 10�2 � 4:042� 10�2 ¼ 1:958� 10�2

¼ 0:0196m ¼ 19:6mm

The calculated maximum head is smaller than the
design criterion for the maximum head. Therefore the
considered drainage layer is acceptable from the view-
point of the maximum head criterion.

Alternatively, the equation for the general case,
Equation 39, can be used. To use Equation 39, j2 must
be obtained from Table 1 or calculated using Equation
26 as follows:

j2 ¼ 1� 0:12 exp � log 8� 0:008=5ð Þ
5=8

� �2n o
¼ 0:9704

Then, the maximum head can be calculated using
Equation 39 as follows:

hmax ¼ 5� 10�3
� �

cos tan�1 0:25
� �

þ 0:9704ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð Þ 8:00� 10�3ð Þ

p
� 1

h i
0:25ð Þ

2

� 30�
1:4� 10�5
� �

sin tan�1 0:25
� �

1:5� 10�7

� 	

¼ 4:851� 10�3 þ 1:926� 10�3
� �

30� 22:637ð Þ

¼ 4:851� 10�3 þ 1:418� 10�2 ¼ 0:0190 m

¼ 19:0mm

It appears that using the approximate equation for the
limit case, Equation 40 or 41, gave a very good
approximation (19.6 mm) of the maximum head calcu-
lated more accurately (19.0 mm) using the equation for
the general case, Equation 39.

One could also have calculated the maximum liquid
thickness using Equation 34 or 37 to compare it with the
thickness of the drainage layer. Alternatively, the maxi-
mum liquid thickness can be derived from the above
value of the maximum head using Equation 14 as
follows:

tmax ¼
19:0

cos tan�1 0:25
� � ¼ 19:6mm

The maximum liquid thickness thus calculated is
smaller than the thickness of the drainage system, which is

t1 þ t2 ¼ 5þ 300 ¼ 305mm

The two design criteria mentioned in Section 1.1 are
met: the liquid thickness is smaller than the thickness of
the drainage system, and the maximum head is smaller
than the design criterion for the maximum head.
Therefore the considered drainage system is acceptable.
However, it is interesting to redo the calculations with a
factor of safety of 2 on the rate of liquid supply to
illustrate the sensitivity of the solution to a change in the
liquid supply rate. With qh ¼ 3� 10�7 m/s, the length of
the upstream section, calculated using Equation 19,
becomes

Lu ¼
1:4� 105
� �

sin tan�1 0:25
� �

3� 10�7
¼ 11:318m

The length of the upstream section is smaller than the
length of the drainage layer, which indicates that the
drainage geocomposite does not convey all the liquid
supplied.

Then, the value of l2 is calculated using Equation 17
as follows:

l2 ¼
3� 10�7

3� 10�4ð Þ 0:25ð Þ
2
¼ 0:016

As l2 is greater than 0.01, Equation 39 must be used. To
use Equation 39, j2 must be obtained from Table 1 or
calculated using Equation 26 as follows:

j2 ¼ 1� 0:12 exp � log 8� 0:016=5ð Þ
5=8

� �2n o
¼ 0:9554

Then, the maximum head can be calculated using
Equation 39 as follows:

hmax ¼ 5� 10�3
� �

cos tan�1 0:25
� �

þ 0:9554ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð Þ 0:016ð Þ

p
� 1

h i
0:25ð Þ

2

� 30�
1:4� 10�5
� �

sin tan�1 0:25
� �

3� 10�7

� 	

¼ 4:851� 10�3 þ 3:762� 10�3
� �

30� 11:318ð Þ

¼ 4:851� 10�3 þ 7:028� 10�2

¼ 0:07513m ¼ 75mm

Comparing this value of the maximum head with the
value (19 mm) calculated in the case of a rate of liquid
supply of 1:5� 10�7 m/s shows that, in this particular
case, the head is multiplied by 4 when the liquid supply
rate is multiplied by 2. Therefore design engineers must
select the value of the liquid supply rate very carefully.

Example 3
This example is the same as Example 1, except that
the geocomposite has a hydraulic transmissivity of
5� 10�5 m2/s.
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The length of the upstream section can be calculated
using Equation 19 as follows:

Lu ¼
5� 10�5
� �

sin tan�1 0:02
� �

4:134� 10�8
¼ 24:185m

The calculated length of the upstream section is greater
than the length of the drainage layer. Therefore the
drainage geocomposite can convey all the leachate
supplied.

In this case, the maximum head is given by Equation
21. To use Equation 21, it is necessary to first calculate
the hydraulic conductivity of the geocomposite using
Equation 2 as follows:

k1 ¼
5� 10�5

5� 10�3
¼ 1:0� 10�2 m=s

Then, the maximum head is calculated using Equation
21 as follows:

hmax �
4:134� 10�8
� �

15ð Þ

ð1� 10�2Þ 0:02ð Þ
¼ 3:10� 10�3 m ¼ 3:1mm

The maximum liquid thickness can be calculated using
Equation 20. Alternatively, it can be derived from the
value of the maximum head calculated above using
Equation 14 as follows:

tmax ¼
3:1

cos tan�1 0:02
� � ¼ 3:1mm

It should be noted that, as Lu is greater than the length
of the drainage layer, it was obvious that tmax would be
less than the thickness of the geocomposite (5 mm).

5. DISCUSSION

5.1. Use of basic cases to check the equations

Two basic cases are used to check the validity of the
equations proposed in Section 3: the case where the two
layers consist of identical geocomposites, and the case
where Lu=L.

5.1.1. Case of two identical geocomposites
If the upper layer consists of a geocomposite identical to
the lower layer geocomposite, Equation 36 can be used
with k1= k2= k, which gives

tmax ¼
qh

k sin b
L ð42Þ

Equation 42 is identical to Equation 11, which confirms
the validity of Equation 36.

5.1.2. Case where Lu ¼ L
If Lu=L, the lower layer geocomposite is just sufficient
to convey all of the liquid supplied to the drainage layer.
Therefore tmax= t1. Indeed, Equation 25 with Lu=L
gives tmax2=0, and Equation 32 with tmax2=0 gives
tmax= t1, which confirms Equation 25. The same result
would be obtained by combining Equations 18 and 20
with Lu=L, which further confirms Equation 25.

5.2. Evaluation of the average hydraulic conductivity

approach

In the past, an approach different from that used in this
paper has been used to address flow in a drainage system
composed of two layers. This approach consists in
calculating an average hydraulic conductivity for the
two-layer system.

This type of approach is used, for example, in the
HELP model. The HELP model is a computer program
based on a water balance method that accounts for
precipitation, runoff and evapotranspiration to deter-
mine the rate of infiltration of precipitation water into a
landfill, the rate of percolation of water through the
cover soil, the rate of leachate generation, and the
impingement rate of leachate onto the leachate collection
layer. Then the HELP model calculates the head of
leachate in the leachate collection layer using McEnroe’s
equations (McEnroe 1993). As shown by Giroud et al.
(2000), Equation 15 and McEnroe’s equations give
almost exactly the same values for the maximum head,
but Equation 15 is much simpler and less prone to
mathematical errors. In the case of a drainage system
composed of two layers, the HELP model replaces the
two layers by a single layer having an average hydraulic
conductivity calculated using the average head. For the
sake of simplicity, this approach is described below using
the maximum liquid thickness.

The average hydraulic conductivity of the two-layer
system can be defined as follows:

kavg ¼
k1 t1 þ k2 tmax � t1ð Þ

tmax
ð43Þ

As Equation 43 includes tmax, which is unknown,
iterations are necessary to calculate kavg and tmax.
These iterations are tedious. Furthermore, they are
useless because an explicit solution for tmax can be
obtained by eliminating kavg between Equation 43 and
the following equation derived from Equation 8:

tmax ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 bþ 4qh=kavg

p
� tan b

2 cos b
L ð44Þ

This elimination of kavg between Equation 43 and
Equation 44 would require lengthy (but simple) calcula-
tions involving a quadratic equation. The value of tmax

that would be thus obtained would be different from
Equation 33, which is the solution developed in this
paper.

In the limit case, the following equation derived from
Equation 11 would be used instead of Equation 44:

tmax ¼
qh

kavg sin b
L ð45Þ

Eliminating kavg between Equations 43 and 45 gives an
equation identical to Equation 35, which is the solution
developed in this paper for the limit case. Clearly, the
average hydraulic conductivity approach happens to give
a correct result only in the limit case and is not valid for
the general case, which is the relevant case for the typical
situation of a geocomposite overlain by sand (Figure 1).
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From a physical standpoint, it should be noted that,
while the approach proposed in this paper corresponds
to plausible flow configurations (Figures 4 and 5), the
average hydraulic conductivity approach does not
correspond to any identified flow configuration.

In conclusion, for all of the above reasons, the hy-
draulic conductivity average approach (i.e. the approach
used in the HELP model) cannot be recommended.

5.3. Evaluation of the liquid supply fraction approach

While the senior author was developing the equations
presented in Section 3, a different approach was
suggested. This approach is not consistent with the
flow configurations shown in Figures 4 and 5. However,
as this approach was considered at some point, it is
appropriate to discuss it in this paper. This approach
consists of assuming that the geocomposite (i.e. the
lower layer) conveys the fraction of the liquid supply
that it can convey, and the upper layer conveys the rest.
This approach is called herein the ‘liquid supply fraction
approach’. The principle of the liquid supply fraction
approach is similar to the principle of the approach used
in this paper. However, the implementation is different:

. In this paper, the lower layer conveys all the liquid
supplied to the upstream section, whereas the upper
layer conveys all the liquid supplied to the down-
stream section. The upper layer conveys no flow in the
upstream section, whereas the lower layer conveys in
the downstream section only the liquid collected in the
upstream section.

. With the liquid supply fraction approach, both layers
somehow convey two complementary fractions of the
liquid from the top to the bottom of the slope.

Numerical examples and an analysis presented in
Appendix A show that the liquid supply fraction
approach overestimates the maximum liquid thickness
and maximum head, in particular when the characteristic
parameter l is large.

From a physical standpoint, it should be noted that,
whereas the solution proposed in this paper corresponds
to plausible flow configurations (Figures 4 and 5), the
liquid supply fraction approach does not correspond to
any identified flow configuration. In fact, it is unclear
how the liquid supply could be split between the two
layers from the top of the slope.

In conclusion, for all of the above reasons, the liquid
supply fraction approach cannot be recommended.

5.4. Equation proposed in the literature

The authors of this paper found in the literature one
publication (Masada 1998) that addresses the case of
drainage systems composed of two layers including a
geosynthetic drainage material. In that publication, it is
indicated that the maximum depth of liquid can be
derived from two equations numbered 25 and 26 in that
publication, but referred to herein as M-25 and M-26 to
avoid confusion with equations presented herein. In the
publication by Masada, it is indicated that ‘no attempt is
made to combine Equations M-25 and M-26 to arrive at

an explicit expression for the maximum depth because
the form of Equation M-26 is complicated’. Therefore, in
the publication by Masada (1998), no explicit solution is
proposed for the maximum liquid depth, thickness or
head in the case of drainage systems composed of two
layers including a geosynthetic drainage material.
Furthermore, Equation M-25 by Masada (1998) is an
extension of equations developed by the same author for
drainage systems that consist of a single layer. Giroud
et al. (2000, p. 377) have shown that these equations give
results that can be ‘very inaccurate’. Therefore it may be
concluded that no adequate solution has been proposed
by Masada for drainage systems composed of two layers
including a geosynthetic drainage material.

5.5. Slope stability considerations

Liquid flowing parallel to a slope generates seepage
forces that are detrimental to the stability of the drainage
layer and the associated layers of soils and geosynthetics.
The seepage forces are independent of flow velocity and
independent of the hydraulic conductivity of the medium
in which liquid is flowing; the impact of flowing liquid on
stability is proportional to the thickness of liquid
(Giroud et al. 1995). As illustrated by the examples
presented in Section 4.2, the liquid thickness in sand is
much greater than in the geocomposite. Therefore
allowing liquid to flow parallel to the slope in a sand
layer overlying a geocomposite significantly impairs the
stability of the slope. Even though a method is presented
herein to design drainage systems composed of two
layers, this paper should not be construed as an
encouragement to allow liquid to flow in sand layers
overlying geosynthetics. On the contrary, the authors
recommend the use of geocomposites with a high
hydraulic transmissivity in order to convey all the
collected liquid within the geocomposite. When all of
the liquid flows in the geocomposite, the impact of flow
on stability is negligible because the liquid thickness is
then very small. Another benefit is that the rate of
leakage through the liner underlying the geocomposite is
very small because the head is small.

When stability is a concern, precautions must be
taken. One of them consists in using a textured
geomembrane and a geocomposite including two geo-
textiles heat-bonded to the geosynthetic drainage med-
ium. The upper geotextile functions as a filter, whereas
the lower geotextile functions as a friction layer that
ensures high interface shear strength between the
geocomposite and the textured geomembrane. (See the
first paragraph of Section 1.1.)

5.6. Limitations

The method of analysis presented in this paper has the
following limitations: (i) the hydraulic conductivity of
the upper layer of the drainage system must be smaller
than that of the lower layer; and (ii) the lower layer must
be such that the equations for the limit case (defined in
Section 2.4) must be applicable to the lower layer. To
that end, the characteristic parameter l1 must be small

Liquid flow equations for drainage systems composed of two layers including a geocomposite 55

Geosynthetics International, 2004, 11, No. 1



(e.g. l1 <0.01), with l1 given by the following equation
derived from Equation 7 with k= k1:

l1 ¼
qh

k1 tan2 b
ð46Þ

This is always the case with currently available
geocomposites, and it is generally the case with gravel.
In contrast, it is not the case with sand, unless the slope
is steep. This theoretical limitation does not significantly
limit the use of the method because the lower layer is
generally a geocomposite (i.e. a material for which l1 is
always small). However, it is clear that the method
presented in this paper is not applicable to the case of
two sand layers on top of each other.

6. CONCLUSIONS

This paper provides a rational approach to the design of
drainage layers composed of two layers: a geocomposite
overlain by another material, typically sand. The
equations presented in this paper are simple and can
be used by hand. They provide the maximum liquid
thickness and the maximum head as a function of the
rate of liquid supply, the hydraulic conductivities of the
two layers, the length of the drainage system, and the
slope. Design examples are also provided. The proposed
method was compared with other methods, and it was
shown that the other methods provide incorrect results
except in the limit case.

It is important to note that, even though this paper
provides a method for designing drainage systems
composed of two layers, the authors of this paper do
not encourage the use of drainage systems where a
significant amount of liquid flows in a sand layer
overlying a geocomposite.
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NOTATIONS

Basic SI units are given in parentheses.

B unit length in horizontal direction perpendicular
to direction of flow (m)

h head above liner (m)
hmax maximum head above liner, simply called ‘head’

(m)
i1down hydraulic gradient in downstream section of

lower layer (dimensionless)
j parameter, called ‘modifying factor’, defined by

Equation 9 (dimensionless)
j2 value of j for l= l2 (dimensionless)
k hydraulic conductivity of drainage material in

direction of flow (m/s)
kavg average hydraulic conductivity of two layers

used in HELP model approach (m/s)

k1 hydraulic conductivity of drainage material
used in lower layer (m/s)

k2 hydraulic conductivity of drainage material
used in upper layer (m/s)

L horizontal projection of length of drainage layer
in direction of flow (m)

Lu length of upstream section of drainage layer (m)
Q flow rate in a drainage system (in direction

parallel to slope) (m3/s)
Q/B flow rate in a drainage system (in direction

parallel to slope) per unit length in horizontal
direction perpendicular to direction of flow
(m2/s)

Q1 flow rate in downstream section of lower layer
(in direction parallel to slope) (m3/s)

Q1/B flow rate in downstream section of lower layer
(in direction parallel to slope) per unit length in
horizontal direction perpendicular to direction
of flow (m2/s)

qh liquid impingement rate (i.e. rate of liquid
supply per unit horizontal area) (m/s)

t liquid thickness (m)
t1 thickness of lower layer (m)
t2 thickness of upper layer (m)

tlim maximum liquid thickness in limit case where qh
is small and b and k are large (i.e. case where l is
very small, e.g. l < 0.01) (m)

tmax maximum liquid thickness (m)
tmax2 maximum liquid thickness in upper layer (m)

x distance measured horizontally from top of
slope (m)

b slope angle of drainage system (8)
y1 hydraulic transmissivity of lower layer (m2/s)
y2 hydraulic transmissivity of upper layer (m2/s)
l parameter defined by Equation 7 (dimension-

less)
l2 value of l for k= k2 (dimensionless)
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APPENDIX A. EVALUATION OF THE

LIQUID SUPPLY FRACTION

APPROACH

The liquid supply fraction approach evaluated in
Appendix A consists of assuming that the geocomposite
(i.e. the lower layer) conveys the fraction of the liquid
supply that it can convey, and the upper layer conveys
the rest. This approach is illustrated by two examples:
Example 4 is identical to Example 1, and Example 5 is
identical to Example 2. (Examples 1 and 2 are presented
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in the main text of this paper.) Whereas Examples 1 and
2 are solved with the recommended method, Examples 4
and 5 are addressed with the liquid supply fraction
approach.

Example 4
Considering the conditions given for Example 1, the
maximum flow rate per unit width that the lower layer
(i.e. the geocomposite) can convey is given as follows by
Equation 24:

Q1=B ¼ y1 sin b ¼ 1:4� 10�5
� �

sin tan�1 0:02
� �

¼ 2:7994� 10�7m2=s

This flow rate per unit width corresponds to a liquid
supply rate of

qh1 ¼
2:7994� 10�7

L
¼

2:7994� 10�7

15

¼ 1:8663� 10�8 m=s

This is less than the rate of liquid supply, which is
4:134� 10�8 m/s according to Example 1. Therefore it is
assumed that the remainder of the liquid supply is
conveyed by the upper layer (i.e. the sand). The
remainder of the liquid supply is

qh2 ¼ 4:134� 10�8 � 1:866� 10�8 ¼ 2:268� 10�8 m=s

Then, l2 is calculated using Equation 17 as follows:

l2 ¼
2:268� 10�8

1� 10�5ð Þ 0:02ð Þ
2
¼ 5:669

Then, j2 is obtained from Table 1 or calculated using
Equation 26 as follows:

j2 ¼ 1� 0:12 exp � log 8� 5:669=5ð Þ
5=8

� �2n o
¼ 0:9161

Then, tmax2 is calculated using Equation 8 as follows:

tmax 2 ¼ 0:9161ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð Þ 5:669ð Þ

p
� 1

2

�
0:02

cos tan�1 0:02
� �

" #
15ð Þ ¼ 0:531m

This calculated value of tmax2 is to be added to the
thickness of the geocomposite. Hence:

tmax ¼ 0:005þ 0:531 ¼ 0:536m

The maximum head is derived from the maximum
liquid thickness using Equation 14 as follows:

hmax ¼ 0:536� cos tan�1 0:02
� �

¼ 0:536m

This value is significantly greater than the value obtained
in Example 1 (0.428 m). The error resulting from the
liquid supply fraction approach is 25%.

Example 5
Considering the conditions given for Example 2, the
maximum flow rate per unit width that the lower layer
(i.e. the geocomposite) can convey is given as follows by
Equation 24:

Q1=B ¼ y1 sin b ¼ 1:4� 10�5
� �

sin tan�1 0:25
� �

¼ 3:3955� 10�6m2=s

This flow rate per unit width corresponds to a liquid
supply rate of

qh1 ¼
3:3955� 10�6

L
¼

3:3955� 10�6

30

¼ 1:1318� 10�7 m=s

This is less than the rate of liquid supply, which is
1:5� 10�7 m/s. Therefore it is assumed that the remain-
der of the liquid supply is conveyed by the upper layer
(i.e. the sand). The remainder of the liquid supply is

qh2 ¼ 1:5� 10�7 � 1:1318� 10�7 ¼ 3:682� 10�8 m=s

Then, l2 is calculated using Equation 17 as follows:

l2 ¼
3:682� 10�8

3� 10�4ð Þ 0:25ð Þ
2
¼ 1:964� 10�3

This value of l2 is very small: therefore the equation for
the limit case, Equation 11, can be used. Hence:

tmax 2 ¼
qh2L

k2 sin b
¼

3:682� 10�8
� �

30ð Þ

3� 10�4ð Þ sin tan�1 0:25
� �

¼ 0:0152m

This calculated value of tmax2 is to be added to the
thickness of the geocomposite. Hence:

tmax ¼ 0:005þ 0:0152 ¼ 0:0202m

The maximum head is then derived from the maxi-
mum liquid thickness using Equation 14 as follows:

hmax ¼ 0:0202� cos tan�1 0:25
� �

¼ 0:0196m

¼ 19:6mm

Table 2. Values of the ratio between tmax=k and qh=L (with values of l in parentheses)

qh/k tanb

0.02 1/3 1.0

1� 10�9 50.0 (l ¼ 2:5� 10�6) 3.16 (l ¼ 9� 10�9) 1.41 (l ¼ 1� 10�9)

1� 10�8 50.0 (l ¼ 2:5� 10�5) 3.16 (l ¼ 9� 10�8) 1.41 (l ¼ 1� 10�8)

1� 10�7 49.9 (l ¼ 2:5� 10�4) 3.16 (l ¼ 9� 10�7) 1.41 (l ¼ 1� 10�7)

1� 10�5 46.1 (l ¼ 2:5� 10�2) 3.16 (l ¼ 9� 10�5) 1.41 (l ¼ 1� 10�5)

1� 10�3 20.8 (l ¼ 2:5) 3.03 (l ¼ 9� 10�3) 1.40 (l ¼ 1� 10�3)

1� 10�1 3.0 (l ¼ 250) 1.77 (l ¼ 9� 10�1) 1.17 (l ¼ 1� 10�1)
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This value is the same as the approximate value obtained
in Example 2 using the limit case equation.

From the above examples, it appears that the liquid
supply fraction approach overestimates the maximum
head in the general case, but gives a good approximation
of the maximum head in the limit case. This is confirmed
by the following analysis.

With the liquid supply fraction approach discussed
above, tmax2 is calculated with an underestimated value
of the liquid supply (i.e. qh2 instead of qh) and an
overestimated value of the flow path (i.e. L instead of
L� Lu). To evaluate the liquid supply fraction ap-

proach, the sensitivity of tmax2 to qh/L should be
evaluated. To that end, Table 2, derived from table 2
of the paper by Giroud et al. (2000, p. 305) was
developed. Table 2 shows that, for small values of l (i.e.
when the limit case equations are valid), the ratio
(tmax/k)/(qh/L) is constant (i.e. tmax is not sensitive
to qh/L), whereas, for large values of l (i.e. when the
limit case equations are not valid), decreasing qh
(i.e. using underestimated values of qh) leads to an
increase of tmax/(qh/L). This is consistent with the results
of the above examples and shows that the con-
clusions drawn from the above examples can be
generalized.
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