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Abstract 

This paper presents the effect of aperture size on the low displacement stiffness 
response of geogrids subjected to pullout loading. The aperture size of geogrid was 
varied by cutting ribs of geogrids in the pullout tests. Two types of geogrids were 
tested at two normal pressures (21 kPa and 35 kPa). The Soil-Geosynthetic 
Composite (SGC) model was used to compute the low displacement interface 
stiffness (KSGC) of the geogrids. Based on the analysis of laboratory tests using SGC 
model, the results showed response of geogrids was highly dependent on the aperture 
size. The geogrid with original aperture size showed the highest KSGC value.  As the 
size of the aperture increased, the KSGC decreased possibly due to reduction in the 
passive resistance of transverse members and the loss of confinement at the junctions 
of the geogrid.  

INTRODUCTION 

Geogrids have been widely used in stabilization of pavements for several decades. 
The performance of reinforced flexible pavements is governed by the interaction 
mechanisms between soil and geosynthetic. The interaction of the geogrid with 
surrounding soils consists of the passive resistance due to the thickness of rib, the 
friction of the surface of rib and the confinement of soil in the aperture due to the rib. 
Generally, the interaction developed between the soil and the reinforcement is a 
function of soil type, reinforcement type and how they are linked with each other 
(Teixeira et al. 2007). Actually, these factors are interrelated, and the combined effect 
of these factors results in complex interactions. Hence, appropriate laboratory test 
incorporating these variables should be to quantify the interaction mechanisms 
between the soil and the reinforcement. 

Previous studies have focused on investigating the performance of geogrid 
reinforcement in flexible pavements using laboratory confined tests (Sugimoto et al. 
2001, Palmeira 2004, Bergado et al. 2008), because they can provide: (a) the ability 
to capture the mechanism of lateral restraint; (b) parameters for mechanistic-
empirical design; (c) repeatability of test results; (d) a parameter that distinguishes 
between the performance of various geosynthetics; (e) sensitivity to low displacement 
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magnitudes; and (f) convenience to conduct in the laboratory. Based on these 
advantages, a pullout test in a confined soil with monotonic loading has been used to 
reduce the variability in test results and to allow for the realistic measurement of the 
interface mechanisms. 
  The geogrid geometry is a significant factor influencing pullout behavior of 
geogrid embedded in soils. Geogrid with comparatively large apertures, unlike other 
reinforcements (e.g. geotextiles) can sustain outer loading by providing both passive 
and frictional resistance components by transverse and longitudinal members 
(Teixeira et al. 2007, and Palmeira et al. 2004, 2008). Stress distribution between 
transverse and longitudinal members of the geogrid is affected by the geogrid 
geometry. However, there is much uncertainty about the complex influence of 
geogrid geometry.  
  This research evaluated the effect of the geogrid geometry associated with 
various factors on the pullout behavior by using pullout stiffness at the interface 
between the geogrid and soil. The Soil-Geosynthetic Composite (SGC) model was 
used to illustrate analytically the interfacial mechanism governing reinforced soil 
with geogrid. The interface stiffness (KSGC) obtained from the model was evaluated to 
quantify the effect of the geogrid. A series of pullout tests was conducted to examine 
the pullout behavior of the geogrid in a confined soil and to determine the stiffness. 
Based on the results, the combined effects of the geogrid geometry associated with 
the type of the reinforcement, the confining pressure on the specimen, and the 
orientation of the specimen on the pullout behavior were investigated.  
 
SOIL-GEOSYNTHETIC COMPOSITE (SGC) MODEL 
 
Geosynthetic load-strain relationship.  A load-transfer mechanism of geosynthetic 
in a confined soil demands to properly simulate the shear stress generated at the 
interface between the geosynthetic and the soil. To model the mechanism, an 
infinitesimal geosynthetic element subjected to force (F) in the pullout direction and 
to the shear stresses (τ) along both surfaces of the geosynthetic element of length (dx) 
surrounded soil mass can be assumed (Figure 1). Then, the force equilibrium can be 
given in differential form as follows:  
 
(ݔ)ܨ                                    − ሼ		(ݔ)ܨ − ሽ(ݔ)ܨ݀ =  (1)                        ݔ݀(ݔ)2߬

                                 

(ݔ)߬         = ଵଶ ௗி(௫)ௗ௫                                          (2) 

 
On the other hand, assuming that strain ε(x) develops in the dx due to the 

change in confined force between two points in the element, the confined force and 
strain are related through confined stiffness (Jc) of the geosynthetic and is given as: 

 

(ݔ)ܨ                        = ௖ܬ ∙ (ݔ)ߝ = ௖ܬ ௗ௪(௫)ௗ௫                                                     (3) 

 
Because the strain developed in the dx can then be related, the F can be 

described as a differential form.  
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used to determine the response of geosynthetic for given displacement increment. 
This can then be translated to quantify the soil-geosynthetic response to obtaining a 
measurement for a lateral restraint mechanism developed in the reinforced flexible 
pavements by using pullout test data. Thus, the equations were solved to obtain the 
relation between confined force and displacement in terms of model parameters as 
shown below.  
ଶ(ݔ)ܨ  = ൫4߬௬ ∙ ௖൯ܬ ∙ (ݔ)ݓ = ௌீூܭ	 ∙ (ݔ)ݓ              (8) 
    

The force and displacement at any given point x throughout the geosynthetic 
can be related by model parameters i.e., the yield shear stress (τy) and confined 
stiffness (Jc) of the soil-geosynthetic system. A coefficient of interface stiffness (KSGI) 
enables to evaluate soil-geosynthetic interaction (Gupta 2009, Zornberg et al. 2009).  
 
MATERIALS AND METHODS 

Geogrid. Two different geogrid products, GG1 and GG2 were used as a 
reinforcement for the pullout test series (Figure 2). GG1 is comprised of knitted 
polypropylene (PP) yarns, crafted into a stable, interlocking pattern, and then coated 
for protection from installation damage. On the other hand, GG2 is an integrally 
formed, punched-and-drawn polypropylene (PP) grid featuring raised protrusions at 
each rib intersection to provide a structural abutment when placed between soil layers. 
The properties of GG1 and GG2 were listed in Table 1. The geogrids were prepared 
with dimensions of 0.6 m length and 0.45 m width for pullout test (ASTM D6706). 
Four different geometries―the original geogrid, the geogrid with only half of the 
transverse members, the geogrid with a doubled opening size and the geogrid with 
only longitudinal members―were used in this study. The designated specimen was 
prepared by cutting transverse members using pliers. The GG2 with half transverse 
members was not tested due to its large aperture size. 
 
LVDT. Five LVDTs were used to measure displacements at locations with a 
horizontal spacing of 100, 200, 300, 450, and 600 mm from the front end of the 
specimen, named LVDT 1 to 5. The displacement profile throughout the length of the 
geogrid could be monitored by installing LVDTs at various locations. The 
displacement rate of testing was set to 1mm/min, (ASTM D6706). The displacement 
of the specimen occurred as the specimen started to move due to pullout force.  
 
Soil. Monterey No. 30 sand was used as the backfill material for pullout testing. 
Monterey No. 30 sand is a clean and poorly graded, which was classified as SP 
according to the Unified Soil Classification System (USCS) (Zornberg et al. 1998). 
The test was conducted at the relative density of 50%. 
 

Pullout test. The pullout test equipment consisted of a steel box (1.5 m × 0.6 m × 0.3 
m), reaction frame, and applying pullout system (Figure 3a). The front end of the box 
had an opening of 50 mm and had two sleeves of 75 mm length to minimize the 
influence of the frontal box wall on pullout test results. In the front of the pullout box, 
the roller grips and its support trolley were designed to avoid stress concentration at 
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the geosynthetic reinforcement. In the pullout box, the steel plates were used as the 
reaction frame system with wooden boards (Figure 3b). Six air cylinders were used 
for applying normal pressure on the surface of soils. The reaction frame system is a 
reliable way to apply a constant confining pressure on top of the geosynthetic 
specimen. Two hydraulic pistons were attached to the both side of the pullout box to 
apply pullout force on the specimen. The electric pump enabled better control over 
the rate of testing, since it could be independently controlled using the flow valve 
attached to it. The displacement transducers were attached to the system enabling 
faster data acquisition.  

 

Table 1. Properties of geogrids used in the study. 

Property Test method Units GG1 GG2 

Rib shape Observation  - Rectangular Rectangular

Rib Thickness Calipers mm 0.5 0.76 

Norminal Apeture 
size 

Calipers mm 15 × 15 25 × 33 

Junction efficiency GRI-GG2-87 % - 93 

Flexural Rigidity 
ASTM D1388-

96 
mg-cm 100,000 250,000 

Aperture Stability 
modulus 

Kinney (2001) m-N/deg 0.44 0.32 

Minimum true 
initial modulus ASTM D6637-

01 

kN/m 250 250 

MD 
kN/m 350 400 

XD 
Tensile strength at 

2% strain ASTM D6637-
01  

kN/m 5 4.1 

MD 
kN/m 7 6.6 

XD 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Geogrid used for a pullout test: (a) GG1; and (b) GG2. 

(b)(a)
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confining pressure. The area of transverse ribs in the original case without altering the 
aperture was increased if the specimen was tested in the MD instead of the XD. 
However, as the number of transverse member decreases and the area of aperture 
increases in other cases to control the geometry, the values of KSGC are reduced 
rapidly in the MD, because the confinement due to transverse members for passive 
resistance is less than in the XD. As in the previous case, the confinement due to ribs 
was found to strongly influence the KSGC. 
 
CONCLUSIONS 
 
This paper presents the effect of geogrid geometry, geogrid type, confining pressure, 
and geogrid orientation on the pullout behavior of geogrid reinforced soil. Based on 
results of a series of pullout tests, the interface stiffness (KSGC) was evaluated at small 
displacement range (< 2.5 mm). The value of KSGC was found to decrease with 
increasing aperture size of the geogrid specimen. This was to the reduction in the 
passive resistance of transverse members of the geogrid and loss of confinement at 
the junctions. The difference of KSGC between high and low confining pressure was 
much larger in the case of the original geogrid than that in the case of the geogrid 
with only longitudinal member. The values of KSGC are reduced rapidly in the MD 
because the confinement due to transverse members for passive resistance is less than 
in the XD Based on the results obtained in this study, it was found that geogrid 
geometry strongly influences the pullout behavior of geogrids under small 
displacements.  
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