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Abstract 

Geosynthetics have been extensively used to reinforce soil structures, such as embankments, 
slopes, walls, foundations and roads. Proper evaluation of the interaction between geosynthetic 
reinforcement and backfill is important to understand the mechanisms of geosynthetic-reinforced 
soil (GRS) structures. Pullout tests have proven to be an effective way to study such interaction. 
In a pullout test, a geosynthetic reinforcement layer is buried in backfill within a test box. 
Vertical pressure is applied on top of the backfill to simulate the normal stress on top of the 
geosynthetic reinforcement in a GRS structure. The geosynthetic reinforcement is then pulled out 
from the backfill through an opening in the front wall of the box. The pullout test results are 
influenced by boundary conditions due to the thickness of the backfill, as well as the roughness 
of the interface between the backfill and the walls of the pullout box. This paper discusses the 
results of a numerical study performed to investigate the boundary effect on pullout test results. 
A two-dimensional numerical simulation was conducted using a finite differential method 
program, FLAC, using the Mohr-Coulomb model to describe the behavior of the backfill. The 
geosynthetic reinforcement was modeled as a linearly elastic and perfectly plastic material. The 
numerical model was calibrated and verified against pullout tests of geogrids. Boundary 
conditions, such as backfill thickness, and the roughness between the bottom of the backfill and 
the wall of the pullout box, and how these affect pullout test results are analyzed and discussed. 
The numerical results show that the pullout forces at the large pullout displacement calculated 
from the numerical simulation with the fixed bottom were closer to the measured pullout forces 
than those with the free bottom. 

INTRODUCTION 

Geosynthetics have been extensively used to reinforce soil structures such as embankments, 
slopes, walls, foundations and roads. The behavior of the interaction between geosynthetic 
reinforcement and backfill is important to understand the mechanisms of geosynthetic-reinforced 
soil (GRS) structures. Pullout tests have been reported to provide an effective way to study the 
interaction between geosynthetic reinforcement and backfill (e.g., Palmeira and Milligan 1989, 
Sugimoto et al. 2001, Moraci and Recalcati 2006, Abdi and Zandieh 2014, Wang et al. 2016). 
Although the pullout boxes used in these studies have generally met the boundary requirements 
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The backfill was modeled as a linearly elastic and perfectly plastic material with the 
Mohr-Coulomb failure criterion. This soil constitutive model has already been successfully 
employed to simulate the behavior of backfill in pullout tests (e.g., Abdi and Zandieh 2014). The 
parameters for the backfill used in the numerical simulation are summarized in Table 1. Figure 2 
shows the comparison between measured and numerically calculated results of the triaxial tests. 
As seen in Figure 2, results from the numerical simulation using the MC model showed a 
reasonable agreement with those from the triaxial tests. It should be pointed out that the friction 
angle in the plane strain condition was used in the numerical simulation of pullout tests since the 
numerical simulation involves a plane strain condition. The following correlation recommended 
by Kulhawy and Mayne (1990) for cohesionless soils was used to convert the friction angle from 
triaxial compression tests to the friction angle in the plane strain condition: 

°=°×== 524712.112.1 tcs φφ , where sφ = the friction angle in the plane strain condition and tcφ
= the friction angle from triaxial compression tests.  
 

Table 1. Parameters for backfill 

Material 
Constitutive 

model 
Unit weight 

(kN/m3) 
Young's 

modulus (MPa) 
Poisson's 

ratio 
Cohesion 

(kPa) 
Friction 
angle (°) 

Dilation 
angle (°) 

Backfill Mohr-Coulomb 17.2 20 0.2 0 52 8 

 
The numerical simulation involved applying a load to the front of the geogrid to simulate 

the pullout force during testing. The geogrid layer was modeled as a linearly elastic and perfectly 
plastic strip element. The properties of the geogrid are summarized in Table 2. The interface 
properties between the geogrid layer and the backfill were incorporated in the strip element. 
Table 2 also provides the interface properties between the geogrid layer and the backfill. Among 
these properties is the interface cohesion, which was assumed to be zero because the backfill was 
an angular granular material. An interface friction angle of 40° was used, which results from 
using the equation tan φφ tanint ⋅=′ rc , where 0.67=rc = reduction factor, and °= 52φ = friction 
angle of the backfill in a plane strain condition. The shear stiffness between the geogrid and the 
aggregate was calibrated by matching the curve from the numerical simulation with that from the 
pullout test under a normal pressure of 43.4 kPa, as shown in Figure 3.  The numerical model 
was also verified by comparing the results calculated from the numerical simulation with those 
measured by the pullout tests at two other confining stresses.     
 
NUMERICAL RESULTS 
 
Figure 3 shows a comparison between the experimental results from the pullout tests and the 
numerical calculations. The numerical calculations showed good agreement with those measured 
from the pullout tests. Both the measured and calculated results show that the pullout force 
increases when the geogrid layer is pulled out, but the rate of this increase gradually decreases. 
Eventually, the pullout force becomes constant, indicating that the geogrid-backfill interface has 
yielded. In addition, an increase in the confining stress results in an increase in the pullout force. 
Overall, the curves between the pullout force and the displacement of the geogrid layer showed a 
hyperbolic trend.  
 

Geotechnical Frontiers 2017 GSP 280 301

© ASCE



 
(a) 

 
(b) 

Figure 2. Comparison between measured and numerically calculated triaxial test results: (a) 
stress-strain relationship; (b) volumetric strain-axial strain relationship 

 
Table 2. Parameters for geogrid and geogrid-backfill interface 

Parameters unit Values 
Secant stiffness, J kN/m 820 

Yield strength kN/m 144 
Tensile failure strain % 20 

Interface cohesion, cinter kN/m 0 
Friction angle of interface, ϕ ° 40 

Shear stiffness, ks kN/m/m 6500 
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11.9 kPa. Also in this case, the pullout forces calculated numerically with the fixed bottom were 
larger than those with the free bottom. In addition, when the backfill was 0.6-m thick with a 
fixed bottom, the numerical simulation calculated essentially the same pullout forces as when the 
backfill was 0.3-m thick with a free bottom. This result indicates that the influence of the 
interface roughness between the backfill and the wall of the pullout box became minimal when 
the backfill thickness was increased up to 0.6 m.   
 

 
Figure 4. Influence of backfill thickness 

 

CONCLUSIONS 
 

This study used a two-dimensional finite difference method program, FLAC, to simulate the 
results of pullout tests performed in the laboratory. The numerical model was calibrated and 
verified against pullout tests of geogrids. Boundary conditions, such as the thickness of the 
backfill, and the interface roughness at the bottom of the backfill and the wall of pullout box, and 
their influence on the behavior of the interaction between geosynthetic reinforcement and 
backfill, were investigated. The following conclusions can be drawn: 

(1) The pullout forces calculated numerically using a fixed bottom were found to be higher 
than those calculated using a free bottom. The influence of the interface roughness 
between the backfill and the wall of the pullout box became minimal when the confining 
stress was reduced to 11.9 kPa. 

(2) The pullout forces at the large pullout displacement calculated from the numerical 
simulation with the fixed bottom were closer to the measured pullout forces than those 
with the free bottom 

(3) The pullout forces calculated numerically using a 0.6-m thick backfill were found to be 
lower than those obtained with a 0.3-m thick backfill. However, the influence of the 
backfill thickness became minimal when the confining stress was reduced to 11.9 kPa. 

(4) When the backfill was 0.6-m thick with a fixed bottom, the numerical simulation 
calculated almost the same pullout forces as when the backfill was 0.3-m thick with a free 
bottom. This result indicates that the influence of the interface roughness between the 
backfill and the wall of the pullout box became minimal when the thickness of the 
backfill increases up to 0.6 m.   
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