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Abstract 

While significant emphasis has been placed in the technical literature on the interaction between soil 
backfill and geosynthetic reinforcement, companion phenomena that may develop in a reinforced 
soil mass due to reinforcement vertical spacing may have been overlooked. This paper integrates the 
results of experimental and field evaluations aimed at identifying such phenomena. Both 
evaluations were in turn complemented with numerical simulations. The experimental program, 
conducted on geosynthetic-reinforced soil (GRS) cells, indicated that the soil confined between 
subsequent reinforcement layers acts as a monolithic block. The field evaluation, which included 
assessment of the behavior of two GRS walls, showed responses consistent with those in the 
experimental component. Numerical simulation of these walls indicated that the effect of closely-
spaced reinforcement increases with increasing backfill shear strength. Overall, the effect of 
reinforcement vertical spacing may have a relevant impact on the behavior of GRS that is often 
not accounted for in design. 

INTRODUCTION 

The interaction between soil backfill and geosynthetic reinforcement may be affected by 
phenomena that are related to the reinforcement vertical spacing. Such phenomena developing in a 
reinforced soil mass may be related to soil arching, as described by Terzaghi’s classic trap-door 
theory (Terzaghi 1936). Soil arching develops during soil deformation and can take different 
arching shapes (e.g. Chen et al. 2008, Costa et al. 2009, Iglesias et al. 2013, Rui et al. 2016). This 
phenomenon may also take place in reinforced soil, especially in cases involving closely-spaced 
reinforcement. Such phenomenon is expected to depend on the soil density, grain size distribution, 
overburden pressure, and interface characteristics. Previous studies have been conducted on GRS 
to study the impact of closely-spaced reinforcement. Specifically, an experimental testing program 
was conducted by Leshchinsky et al. (1994) on GRS unit cells to study the impact of 
reinforcement vertical spacing with focus on the soil arching phenomenon. Specifically, a pullout 
testing device was developed to evaluate the displacement and strain fields within a reinforced soil 
unit cell. The testing program included pullout of single reinforcement layers and of two 
reinforcement layers connected to a rigid facing panel. This paper presents a reevaluation of the 
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experimental results obtained by Leshchinsky et al. (1994) and their integration to assess the 
performance of field monitoring and numerical results, which were also conducted to evaluate the 
effect of geosynthetic reinforcement vertical spacing. The field research component involves the 
evaluation of two GRS walls, and was complemented with numerical simulations conducted to 
extrapolate the findings of the field study with focus on the effect of reinforcement spacing. The 
integrated experimental, field, and numerical results aim at assessing the interaction of the 
various wall components that may affect wall performance with varying reinforcement vertical 
spacing.  
 
EXPERIMENTAL AND ASSOCIATED NUMERICAL COMPONENTS: 
REEVALUATION OF RESULTS 
 
Leshchinsky et al. (1994) conducted an experimental study to evaluate the effect of vertical 
reinforcement spacing on the failure mechanism in geosynthetic-reinforced structures. The 
motivation of their study was to assess failure mechanisms based on limit state analysis, which 
involve development of a failure slip surface extending from the toe to the crest of the structure. 
The reinforcement must extend beyond the slip surface to tie back the unstable zone to the stable 
zone. Limit equilibrium analysis does not account for the interaction occurring in soil and 
reinforcement layers considering spacing. For instance, the interaction among reinforcement 
layers may increase with decreasing vertical reinforcement spacing. In this case, the interaction 
between largely-spaced reinforcement layers would be comparatively minor, making the limit 
state a practical design approach. However, for closely-spaced reinforcement, the assumption 
may no longer be valid as the interaction (or load shedding) would increase with decreasing 
reinforcement spacing.  

Two testing series were performed: (1) pullout of single reinforcement layer embedded in 
a confined soil mass, which assessed the performance of a reinforcement layer in a soil mass in 
conventional testing conditions; and (2) pullout of two reinforcement layers embedded in a 
confined soil mass, which assessed the effect of interaction between reinforcement layers. Two 
devices were used to evaluate the behavior of single and double reinforcement layers embedded 
in soil mass, respectively. Figure 1a shows a schematic view of the device where a single 
reinforcement layer was employed. The device involved a steel frame that accommodates 
samples that were 60 cm long, 19 cm wide, and 30 cm high. The reinforcement layers were of 
the same width as the box. A normal confining pressure was applied to the top surface of the 
reinforced soil mass using a pressurized air bag. The second device was similar to the first one 
except that it was twice as high (i.e., 60 cm high), as shown in Figure 1b. The side walls of both 
devices were made of transparent Plexiglas to enable photogrammetric measurement of soil 
movements as the pullout load increases. This allowed evaluation of the interaction between the 
reinforcements and the soil mass. The transparent walls also allowed evaluation of the 
kinematics of the shear band that developed upon generation of shear stresses at the soil-
reinforcement interface. The second device allowed placement of two reinforcement layers, 
enabling assessment of the interaction between two contiguous reinforcement layers. The vertical 
spacing of the reinforcement layers was 20 cm. A horizontal force was applied to a panel 
connected to the reinforcement layers. Accordingly, the test was conducted by imposing lateral 
displacements to a facing unit located between two reinforcement layers (rather than by 
increasing the overburden pressure on the reinforced soil mass). The test results suggest that the 
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segmental concrete blocks; the walls are referred to herein as WALL 1 and WALL 2. The walls 
were 6.84 m-high (36 block rows) and were reinforced at vertical spacing values of 0.4 and 0.8 m 
(i.e., every two and four block courses), respectively. The walls were subjected to a surcharge 
corresponding to a 0.76-m thick soil layer. The geosynthetic reinforcement used in the walls 
involved uniaxial geogrids with an ultimate tensile strength of 70 and 114 kN/m for WALL 1 and 
WALL 2, respectively. The reinforced backfill material, which was the same as the retained soil, 
was a concrete sand characterized by an average grain size, D50, of 0.79 mm. The reinforcement 
length to wall height ratio, L/H, was approximately 0.3, which is significantly lower than the 
minimum ratio of 0.7 established by the American Association of State Highway and 
Transportation Officials (AASHTO) requirements and of 0.6 established by the National Concrete 
Masonry Association (NCMA) requirements. However, an L/H ratio of 0.3 had already been 
adopted by Tatsuoka (1994) while using rigid facing. Short reinforcement was deemed acceptable, 
particularly considering that planar reinforcements (i.e. geosynthetic sheets) are used. This 
reinforcement enhances the stability of the structures due to its large contact area with backfill, 
unlike strip reinforcements that should be longer in order to transfer similar loads in a smaller 
contact area (Tatsuoka 1994). The comparatively large contact area results in a comparatively large 
pullout resistance as long as the tensile capacity is comparatively high. The short reinforcement 
length adopted in these walls was defined based on external stability calculations assuming factors 
of safety of 1.5 for sliding and overturning. It should be noted that AASHTO requires a factor of 
safety of 2.0 for overturning. The foundation soil was competent, so bearing capacity was not a 
governing design issue. The premise was that the proximity of layers in the walls under 
investigation was deemed close for the particle size and the friction angle of the well-graded, 
angular sand in the walls. Consistent with the results of the previous experimental component of this 
study, a consistent performance of the full-scale walls would be expected to show no development 
of internal failure surfaces.  
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(υ). Soil compaction was not considered in the simulations. The behavior of the facing blocks 
was also simulated using a linear elastic hyperbolic model. Table 1 summarizes the hyperbolic 
model parameters assigned to the backfill and facing block materials.  

 
Table 1: Hyperbolic model parameters for backfill material and facing blocks. 

Parameter Backfill Material Facing Blocks 
Unit weight, γ (kN/m3) 18 20 
Young’s modulus number, K 542 2 x107 
Young’s modulus exponent, n 0.18 0 
Failure ratio, Rf 0.78 0 
Bulk modulus number, KB 4517 952380 
Bulk modulus exponent, m 0 0 
Cohesion, c (kN/m2) 0 0 
Friction angle at 1 atm, Φ (deg) 46.7 50 
Friction angle reduction, ΔΦ (deg) 11 0 
At-rest lateral earth pressure coefficient, Ko 0.5 0.1 
Unload-reload modulus number, Kur 542 2 x107 

 
Reinforcement properties: While a nonlinear model would be appropriate to simulate the behavior 
of the reinforcement layers, a linear model was adopted, as the finite element code used in this study 
could only simulate linear elastic bar elements. The stiffness at 2% axial strain was adopted in 
analysis to represent the linear stiffness of the reinforcement layers. The various geogrid 
reinforcement properties adopted in the simulations are summarized in Table 2. 

 
Table 2: Geogrid reinforcement properties. 

Parameter WALL 1 WALL 2
Young’s modulus, E (kN/m2) 11526 11205 
Cross-section area, A (m2/m) 0.0018 0.0028 
Axial stiffness, EA (kN/m) 20.7 31.4 

 
Interface and linkage elements properties: Generally, interface elements simulate potential 
slippage between two different materials. Interface elements were assigned at the possible slippage 
surfaces: (1) geogrid-backfill interfaces; (2) geogrid-facing block interfaces; and (3) facing block-
block interfaces. Standard values for the normal, shear spring, and unloading shear spring 
coefficients were employed (Boulanger et al. 1991). Interface friction angles adopted considered 
full-scale block-block and geogrid-facing block shear tests. The interface stress-displacement 
behaviors were simulated by nonlinear hyperbolic models. The interface element properties adopted 
in the simulations are summarized in Table 3. Linkage elements were assigned to reinforcement 
layers. Linkage elements are springs that allow pullout while enforcing compatible displacements of 
the bar elements nodes linked. The linkage elements are described by two parameters: (1) normal 
stiffness coefficient (Kn), which was assumed as 1 x108; and (2) shear stiffness coefficient (Ks), 
which has a standard value of 1 x105. 
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Table 3: Interface element properties. 
Parameter Geogrid-

Backfill 
Geogrid-Facing 

Block 
Facing Block-Block

Adhesion (kN/m2) 0 0 0 
Friction angle at 1 atm, Φ (deg) 35 45 45 
Friction angle reduction, ΔΦ (deg) 0 0 0 
Normal spring coefficient, Kn 1 x108 1 x108 1 x108 
Shear spring coefficient, Ks 5 x105 5 x105 5 x105 
Unloading shear spring coefficient, Ksu 5 x103 5 x103 5 x103 
Modulus exponent, n 0.2 0.2 0.2 
Failure ratio, Rf 0.7 0.7 0.7 

 
WALL 1 was represented by 988 nodes, 580 quadrilateral elements, 167 bar elements, 18 link 
elements, and 324 interface elements. On the other hand, WALL 2 was represented by 868 nodes, 
612 quadrilateral elements, 95 bar elements, 10 link elements, and 180 interface elements. It should 
be noted that the difference between the two walls is the reinforcement vertical spacing, which is 0.4 
and 0.8 m for WALL 1 and WALL 2, respectively. The outward facing displacement profiles, as 
measured in the field for WALL 1 and WALL 2, are presented in Figs. 5a and 5b, respectively. The 
maximum displacement for both walls was observed at one third of the wall height. The outward 
displacements for WALL 1 were found to be slightly smaller than those for WALL 2. Numerical 
predictions of the outward displacement profiles are also presented in Figs. 5a and 5b for WALL 1 
and WALL 2, respectively. While the predicted displacement values are lower than those measured 
in the field, the profile shapes are fairly similar. Accordingly, the measured and predicted 
displacement profiles are deemed consistent. Overall, the measured and predicted displacement in 
both walls were comparatively small (less than 1.5 cm at the facing’s mid-height). 
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was 0.26 mm, or approximately 3 times finer than in the field test. Also, the reinforcement vertical 
spacing in the experimental component was 20 cm, or approximately half the spacing in WALL 2 
and a fourth of the spacing in WALL 1. The effect of closely-spaced reinforcement is expected to be 
proportional to the D50 of the backfill material as shear band is also a function of the median grain 
size. In this case, it may be concluded that field and experimental observations related to composite 
behavior of GRS structures are in reasonable agreement.  The relationship between the 
reinforcement vertical spacing and particle size is supported by the work initially conducted in 
Cambridge in the 60’s showing that, generally, the thickness of a shear band is about 15 to 20 time 
D50. This response may be construed as the ‘arching’ influence zone being directly proportional to 
D50. It was noted that increased reinforcement vertical spacing led to larger lateral displacements as 
well as to larger loads being carried by the reinforcement.  Slight decrease in reinforcement stiffness 
may result in rapid increase of internal movements thus potentially invalidating the composite wall 
approach. 
 
CONCLUSIONS 
 
An experimental evaluation was conducted, which indicated that the interaction of reinforcement 
layers in a geosynthetic-reinforced structure may be significant and could render a composite 
material behavior. For the conditions evaluated in this experimental component, which used a sand 
backfill, a mobilization of a single geosynthetic reinforcement indicted that a spacing of 6 cm would 
render such behavior, although mobilization of a double geosynthetic reinforcement system 
indicated that 20 cm may also be adequate to render composite behavior. Results of the double 
geosynthetic reinforcement system indicated that the soil mass between reinforcements was 
mobilized as a monolithic system. 

A field evaluation, involving monitoring of two geosynthetic-reinforced walls with different 
vertical reinforcement spacing, was also conducted. The results showed that wall displacements, 
reinforcement strains, and lateral pressure on facing were comparatively small. This observation 
implied that the soil confined between reinforcement acted as a monolithic block, which is 
consistent with the observations gathered in the experimental program. Field results indicated that 
the composite behavior occurred but was limited to reinforcement spacings below 0.6 m for the 
geogrids used in this research component. 

Overall, results of the experimental and field components of this investigation, jointly point 
towards the beneficial impact of closely-spaced reinforcement on the performance of reinforced soil 
structures and, particularly, on the impact of closely-spaced reinforcement on the stresses acting 
against the wall facing components. While a value was not established for the reinforcement vertical 
spacing below which a composite behavior should be expected, the following practical 
recommendations can be drawn: (1) composite behavior is not expected for reinforcement vertical 
spacing values beyond 0.6 m, although this value is expected to correspond to a minimum value 
of geosynthetic reinforcement stiffness; (2) the length of geosynthetic reinforcement is expected 
to be governed by external stability considerations (e.g. direct sliding, overturning/eccentricity); 
and (3) the impact of closely-spaced reinforcement on decreasing the stresses acting against the 
wall facing components is significant. 
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