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Abstract 

While there are significant economic reasons for relaxing the currently stringent 
specifications for backfill material in reinforced soil structures, it is also true that 
failure of these structures have often involved inadequate drainage and use of low 
quality, fine-grained soils. However, geosynthetic inclusions can be used within fine-
grained soils if they can provide not only reinforcement, but also lateral drainage. 
While using reinforcement with in-plane drainage capability is conceptually enticing, 
transmissivity requirements for such application have not been properly quantified. 
This study presents preliminary results of an ongoing experimental testing program 
involving geogrid pullout tests conducted in wet, fine-grained soils. Pairs of tests 
were conducted using geogrids with the same tensile strength but with and without 
in-plane drainage channels. The beneficial effect of lateral drainage is being 
quantified. 
 
Introduction 

The gradation requirements of the backfill used in reinforced soil structures are often 
very restrictive, as most agencies in the U.S. preclude the use of fine-grained backfill 
soils. While such stringent requirements have significant economic implications, 
there are concerns in relaxing these requirements since most failures in reinforced soil 
structures have involved the use of poorly draining backfills (Zornberg and Mitchell, 
1994; Mitchell and Zornberg, 1995; Helwany, 1999). The Federal Highway 
Administration (FHWA) requires a maximum percent fines of 15% for mechanically 
stabilized earth (MSE) walls. The use of granular fill has been reported to be the most 
expensive component of a reinforced soil retaining system, typically corresponding to 
40% of the total construction costs (Zeynep, 1992).  
 
Concerns regarding the use of poorly draining soils as backfill materials include: (1) 
the lower shear strength that poorly draining soils (e.g. clays) have when compared 
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with free draining soils (e.g. gravels), (2) the comparatively lower hydraulic 
conductivity of poorly draining soils, which may lead to infiltration and subsequent 
generation of pore water pressures, (3) soil freezing problems associated with poorly 
draining soils in cold regions, (4) corrosion of reinforcements when using metallic 
inclusions with poorly draining backfill materials, and (5) the comparatively high 
creep potential of poorly draining backfill materials. However, most of these 
concerns can be addressed if good internal drainage is provided by using geosynthetic 
reinforcements with in-plane drainage capabilities. Accordingly, the selected 
geosynthetic should have not only adequate tensile strength to satisfy external and 
internal stability requirements, but also adequate transmissivity to dissipate possible 
positive pore water pressure. The objective of this project is to generate experimental 
data suitable for quantifying the in-plane drainage requirements. 
 
Materials and Methods 

Geosynthetics with in-plane drainage capabilities considered to reinforce poorly 
draining soils specifically include reinforced nonwoven geotextiles [Figure 1(a)] and 
geogrids with in-plane drainage channels [Figure 1(b)]. The first product is a 
continuous polypropylene filament nonwoven geotextile reinforced by a biaxial grid 
network of polyester yarns, while the second is a geogrid with polyester filament core 
with polyethylene sheath and drainage channels involving a polypropylene and 
polyethylene nonwoven geotextile. It should be noted that there are other available 
products that serve both reinforcement and drainage functions simultaneously. 
 

                                 
(a) (b) 

Figure 1. Geosynthetic reinforcements with in-plane drainage capabilities :  (a) 
high strength nonwoven geotextile, (b) geogrid with in-plane drainage channel. 
                             
Pullout tests are being conducted at the University of Texas at Austin to compare the 
behavior of geosynthetic reinforcement embedded in wet, poorly draining soils. Two 
types of geosynthetics are being used in the testing program. Specifically, geogrids 
manufactured using materials of similar tensile strength, but with and without in-
plane drainage channels, are being used in a pullout testing program. The geogrids 
are manufactured by Terram and commercialized as Paragrid 100/15 and Paradrain 
100/15. Table 1 summarizes the properties of these geosynthetic materials.   
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A silty soil is used as backfill material in the pullout testing program. The soil has a 
comparatively low hydraulic conductivity of 2.7×10-5 cm/sec and classifies as CL 
according to the Unified Soil Classification System (USCS). Table 2 summarizes the 
properties of the silty soil and Figure 2 shows the gradation curve for the soil. 
 
Table 1. Properties of the Geosynthetic Materials 

Property  Geogrid by 
itself 

Geogrid with 
in-plane 
drainage 
layer 

Machine direction 100 100 Ultimate 
Tensile strength 
(kN/m) Cross-machine direction 15 15 

Strain at rupture (Machine direction) (%) 12 12 
Transmissivity under 100 kPa 
(Hydraulic Gradient = 1.0) (m2/s) - 1.06 × 10-6 

Unit mass (g/m2) 490 525 

Thickness (mm) 1.3 2.5 

 
Table 2. Soil Oroperties 

Specific gravity 2.71 
Liquid limit (%) 29 
Plastic limit (%) 12 

Plasticity index (%) 17 
Optimum moisture content (%)* 12.9 

Maximum dry unit weight (kN/m3)* 18.67 
* According to Standard proctor test 
 

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1 1 10

Grain size (mm)

Pe
rc

en
t f

in
er

 b
y 

w
ei

gh
t

 
Figure 2. Granulometric Curve of silty soil used in the testing program. 
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The pullout tests are performed using a large-scale pullout box (Figure 3) with 
dimensions of 1520 mm (length) × 610 mm (width) × 280 mm (height). The box is 
equipped with hydraulic jacks for application of the pullout force. The normal 
pressure is applied using an inflatable air bag placed between the soil surface and a 
heavy steel box cover. A slit on the front side of the box is used to grip the 
geosynthetic, while a slit on the back side is used for displacement measurement 
using tell-tales attached to linear variable displacement transformers (LVDTs). Four 
LVDTs and a load cell are used to monitor the displacements along the geosynthetic 
and the pullout force, respectively. In addition, pore water pressure transducers are 
being used to measure pore pressures generated within the soil mass, in the vicinity of 
the geosynthetic. Figure 4 shows a plan view and a schematic diagram of the pullout 
test. 
 
Soil placement procedures involve conditioning to a water content of 20%, which is 
well above the optimum water content of the soil (12.9%), and compacting the soil to 
a dry unit weight of 17.92 kN/m3, which corresponds to a relative compaction of 80%. 
After placing the soil in the lower half the box, the geosynthetic, tell-tales, LVDTs, 
and pore water pressure transducers are installed. The soil above the geosynthetic is 
subsequently placed in the upper box. Finally, the rubber air bag, placed between soil 
surface and a heavy steel plate is pressurized to the target normal pressure. Pore water 
pressures are allowed to dissipate during twenty minutes before the pullout load is 
applied using a standard displacement rate of 2 mm/min. An automated data 
acquisition system is used to measure displacements, pore water pressures and the 
pullout load. 
 

 
Figure 3. Large scale pullout box. 

 
Preliminary Results 

Preliminary pullout test results obtained using geogrids with and without in-plane 
drainage layers are presented in this paper. The data collected in these tests include 
pore water pressures, displacements along the geosynthetic reinforcement and pullout 
force. Backfill soil prepared using the same compaction procedures (w = 20%; γd = 
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17.92 kN/m3) and a normal pressure of 41 kPa (6psi) was used in both tests. Figure 5 
shows the displacements measured using LVDT 1 (frontal displacement) as a 
function of pullout force. 
 

 
Figure 4. Pullout test: a) plan view; b) schematic cross-section. 
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Figure 5. Pullout test results obtained using geogrids with and without drainage 
layers. 
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As shown in the figure, the geogrid with in-plane drainage layers provides a higher 
resistance than the geogrid without drainage. Specifically, most of the pullout 
resistance (measured at break in the pullout force – displacement curve) is mobilized 
at approximately 0.2 in of displacement. This corresponds to a pullout resistance of 
approximately 10.5 kN/m for the geogrid and to a resistance of approximately 14.2 
lb/in for the geogrid with in-plane drainage. Consequently, the use of in-plane 
drainage leads to an increase of approximately 30% in the pullout resistance for the 
soil placement and loading conditions used in this test. The results show a continued 
increase in pullout resistance for longer displacements, which may be attributed to 
time-dependent increase in resistance due to continued dissipation of pore water 
pressure through the soil mass.   
 
Expected Findings 

The preliminary results obtained in this study confirm that geosynthetic products with 
in-plane drainage capacity provide an increased pullout resistance as they can 
dissipate shear-induced pore water pressures. Research is in progress to quantify the 
transmissivity requirements as a function of the soil properties and initial moisture 
conditions. To this effect, additional pullout tests are planned using a wide range of 
normal pressures, initial soil placement conditions and loading sequences.  
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