Instructor: Spyros A. Kinnas
Office: ECJ 8.604
Phone: 475-7969
Email: kinnas@mail.utexas.edu

Course web site: http://cavity.ce.utexas.edu/kinnas/COURSES/bem.html

Course time: Wednesday and Friday, 12:30-2:00 pm

Unique Number: 16077
Place: ECJ 5.418

Office hours: Tuesday 2-3 pm; Thursday 2-3 pm

Missed classes (due to travel/conflicts with meetings); to be re-scheduled: Wednesday, September 10 and Wednesday, November 5

Objectives: Understand the fundamentals of boundary element methods and their application to problems in fluid mechanics, structural analysis, and solid mechanics.

Philosophy: Understand the basics through theory, examples, and hands-on experience by coding a method from scratch, rather than using an off-the-shelf BEM code.

Prerequisites: Graduate standing or consent of instructor.

Computer: Knowledge of any programming language (Fortran, C, Matlab, etc.) is expected. Most homework assignments and the term project will require considerable computer programming.

Required Textbook: None. Class-notes to be posted in the class web-site regularly.

At CHL-ECJ 8.502:
1. Theoretical and Computational Aerodynamics by Moran.
2. Boundary Elements - An Introductory Course by Brebbia and Dominguez.

Class format: Lectures supplemented with outside reading, homework, term project, and exams.

Class outline: See attached.

Grading: Homework: 40%; Mid-term Test: 30%; Term Project: 30%. Any problems, personal or otherwise, affecting grades should be brought to the instructor’s attention.
Homework policy: Original assignments must be submitted by each student. Students must submit their solutions at the beginning of class on the assigned due date. Late assignments will not be accepted. Some of the problems will require moderate amounts of computer programming. Graphs in the students’ homework solutions should be computer generated. The homework has to be neat and orderly.

Term Project policy: Each student should provide, after consultation with the lecturer and their advisor, a 2 page proposal (including the governing equations with the boundary conditions, and the numerical approach to be utilized) for their term project by Friday, October 17, 2014. This project should address an application of BEM on a realistic problem in the areas of fluid mechanics, structural analysis, solid mechanics, or other. It can be an integral part of the student’s thesis or research. Considerable effort must be devoted in the formulation of the problem, numerical implementation, programming, interpretation of the results, convergence studies of the results of the proposed method, and comparisons with analytical solutions, results of other methods, or data from existing experiments (if available). Each of the students must submit a comprehensive report (typed) on his or her project. In addition, all students must make a presentation on their project during the last week of the course.

Examinations: (tentative dates)

- Mid-term Test: Wednesday, October 29 (tentative), in class
- NO Final Exam (pending approval by the Dean’s office)

Failure to attend an exam will lead to a mark of zero. The only exception will be for documented medical emergencies.

Evaluation: An evaluation of the course and instructor will be conducted at the end of the semester using the approved UT Course/Instructor evaluation forms. A student within the class will be asked to distribute and collect the evaluation forms, and to return them to the Department of Civil, Architectural & Environmental Engineering main office on the 4th-floor of ECJ Hall.

Dishonesty: Students who violate University rules on academic dishonesty are subject to disciplinary penalties, including the possibility of failure in the course and/or dismissal from the University. Since such dishonesty harms the individual, all students, and the integrity of the University, policies on academic dishonesty will be strictly enforced. For additional information on these items, see the Dean of students website and University General Information Catalog at: http://deanofstudents.utexas.edu/sjs/ and http://catalog.utexas.edu/general-information/the-university/

Attendance: Highly recommended

Drop policy:

- Undergraduate students: From the 1st through the 12th class day, an undergraduate student can drop a course via the web and receive a refund, if eligible. From the 13th through the universitys academic drop deadline, a student may Q drop a course with approval from the Dean, and departmental advisor.
• Graduate students: From the 1st through the 4th class day, graduate students can drop a course via the web and receive a refund. During the 5th through 12th class day, graduate students must initiate drops in the department that offers the course and receive a refund. After the 12th class day, no refund is given. No class can be added after the 12th class day. From the 13th through the 20th class day, an automatic Q is assigned with approval from the Graduate Advisor and the Graduate Dean. From the 21st class day through the last class day, graduate students can drop a class with permission from the instructor, Graduate Advisor, and the Graduate Dean. Students with 20-hr/week GRA/TA appointment or a fellowship may not drop below 9 hours.

IMPORTANT NOTE:
The University of Texas at Austin provides, upon request, appropriate academic accommodations for qualified students with disabilities. For more information, contact the Division of Diversity and Community Engagement, Services for Students with Disabilities, 512-471-6259 (Videophone: 512-410-6644) or http://www.utexas.edu/diversity/ddce/ssd

COURSE OUTLINE

1. Introduction
 • What are the boundary element methods?
 • Where do they apply?
 • Some of their advantages

2. Review of fundamentals
 a Mechanics of solids
 • The stress and strain tensors
 • Equilibrium of stress equations
 • Constitutive relations - Elasticity equations
 • Elasticity equations in terms of displacements
 • Natural and essential boundary conditions
 b Fluid mechanics
 • Velocity, pressure and shear stresses of fluid flow
 • Conservation of momentum equations
 • Constitutive relations - Navier-Stokes equations
 • Inviscid/irrotational flow - Velocity potential - Bernoulli’s equation
 • Kinematic boundary condition
 • Lifting flows - Kutta condition
3. Formulation of boundary element methods - Fluids

- Green’s theorem
- The Green’s “source” function
- Green’s identity - Integral equation for the potential on the boundary
- The Neumann and Dirichlet boundary conditions
- Velocity vs. potential formulations
- Equivalence of the dipole and vorticity distributions

4. Formulation of boundary element methods - Solids

- Green’s theorem - The Galerkin vector/"concentrated load” function
- Somigliana’s identity
- The displacement and the traction boundary conditions
- Direct vs. indirect formulations

5. Numerical implementation

- Discretization of boundary into panels
- Approximation of singularity distributions on the boundary
- Galerkin vs. collocation approach
- Matrix of influence coefficients
- Evaluation of influence coefficients - The self-influence coefficient
- Low-order (constant) vs. high-order (linear, quadratic) methods
- Boundary shape discontinuities (corners)
- Hydrofoil trailing edge - Morino Kutta condition
- Error vs. number of panels and vs. computing time

6. Applications

- Flow about a 2-D non-lifting body
- Torsion of a prismatic beam
- Flow about a 2-D lifting hydrofoil
- Rectangular thin beam problem

7. Free-surfaces - Cavities
• The dynamic boundary condition
• Implementation of the dynamic boundary condition
• Linear vs. non-linear approach

8. Cracks - Wake sheets
• Branch cuts
• The Hilbert problem
• Singular integral equations - Cauchy principal value
• Hyper-singular integrals
• Vortex roll-up - Numerical stability
• Unsteady flow problems - Convection of vorticity

9. Other topics
• Viscous/inviscid flow coupling
• Other fields of application
• Hybrid BEM/FEM’s methods
• Dual reciprocity
• Stokes flows
• Limitations