
THE UNIVERSITY OF TEXAS AT AUSTIN

NHD cross-section feature extraction

Richard Carothers

8 May 2015

CE 397 – Flood Forecasting

Carothers Page 1 of 20

Contents
Contents .. 1

Figures and tables ... 2

1 Introduction .. 3

2 Objectives.. 3

2.1 Inputs .. 4

2.2 Outputs ... 4

3 Toolbox, models, and processes ... 4

3.1 Preprocessing .. 5

3.1.1 Inputs and parameters .. 5

3.1.2 Processing and Outputs .. 6

3.2 GeoNet MATLAB code... 6

3.2.1 Inputs and parameters .. 6

3.2.2 Processing and outputs ... 7

3.3 Post-processing ... 8

3.3.1 Inputs and parameters .. 9

3.3.2 Subroutine processing .. 10

3.3.3 Outputs ... 10

4 Travis County test case results .. 11

4.1 Preprocessing results .. 11

4.2 GeoNet processing results .. 12

4.3 Post-processing results ... 12

5 Discussion and recommendations .. 15

5.1 Current results and process structure .. 15

5.2 Approach redefinition ... 16

6 Conclusions ... 17

7 Appendix A: Post-processing subroutine workflows .. 18

Carothers Page 2 of 20

Figures and tables
Figure 1.1 NFIE component framework (figure adapted from Dr. David Maidment) 3

Figure 1.2 Reach curvilinear coordinate system (figure from Kim et al,

http://www.sciencedirect.com/science/article/pii/S1364815214003570) ... 3

Figure 3.1 ArcGIS cross-section processing toolbox ... 4

Figure 3.2 Preprocessing tool filepath and parameter menu ... 5

Figure 3.3 ArcGIS workflow model of data preprocessing ... 5

Figure 3.4 Filepath and filename inputs in the executable file ... 6

Figure 3.5 Executable file parameters .. 7

Figure 3.6 Executable file output switches ... 7

Figure 3.7 Endpoint csv output file from GeoNet processing ... 8

Figure 3.8 Post-processing tool filepath and parameter menu .. 8

Figure 3.9 ArcGIS workflow model of combined post-processing .. 9

Figure 3.10 Cross-section line feature class attribute table ... 10

Figure 3.11 Cross-section points feature class attribute table ... 11

Figure 4.1 Preprocessing output flow points and flow lines in S Central Austin, TX 12

Figure 4.2 Post-processing subroutine 1 results, cross-section endpoint feature class 13

Figure 4.3 Post-processing results, cross-section line feature class ... 14

Figure 4.4 Post-processing results, cross-section point feature class .. 14

Figure 4.5 Complete cross-section point feature class results for Travis County DEM 15

Figure 5.1 Cross-section extraction approach developed by Chris Franklin and Brian Chastain of UT Dallas

(Figure adapted from their slideshow) ... 16

Figure 7.1 Subroutine 1 workflow: Converts the csv to an endpoint feature class 18

Figure 7.2 Subroutine 2 workflow: Converts the endpoints to cross-section lines and points 18

Figure 7.3 Subroutine 3 workflow: Determines the point stations along each cross-section 19

Figure 7.4 Subroutine 4 workflow: Determines the reach stations for each cross-section 19

Figure 7.5 Subroutine 5 workflow: Condenses information and cleans up feature class attributes 20

Figure 7.6 Subroutine 6 workflow: Adds Cartesian coordinates (x,y,z) to the point feature class 20

Table 3.1 Post-processing subroutine overview ... 10

file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846430
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846431
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846431
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846432
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846433
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846434
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846435
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846436
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846437
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846438
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846439
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846440
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846441
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846442
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846443
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846444
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846445
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846446
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846447
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846448
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846448
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846449
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846450
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846451
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846452
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846453
file:///C:/Users/Richard/Documents/classes/CE%20397%20-%20Flood%20Forecasting/termProject/projReport/projectReportDraft.docx%23_Toc418846454

Carothers Page 3 of 20

1 Introduction
The driving goal of the National

Flood Interoperability

Experiment (NFIE) is to connect

national flood hydrology with

local emergency response in an

understandable and actionable

way. The five components of

the NFIE serve as a roadmap to

achieve this outcome and a

structure for data storage and

transmission, Figure 1.1.

Of the components that directly inform the NFIE-Response component and thus the emergency services

community, both the NFIE-Geo and NFIE-Hydro have the required data in place such that they can be

processed into actionable information (an exception to this is the limited national reach of the National

Flood Hazard Layer). However, the detailed local channel information required for river modeling and

inundation mapping is sparse and disparate in source when available. Local governments have models

for select reaches, but major information gaps are present.

The most basic data shortfall is a lack of river channel geometry in the form of channel cross-sections for

modeling input. Conventionally, curvilinear coordinate systems are required for these cross-sections.

This address consists of a location of the cross-section within the reach (the reach station), a specific

location along the cross-section itself (the cross-section station), and an elevation. These coordinates

are shown as “s”, “n”, and “z”, in Figure 1.2, respectively. Generally not explicitly included in river

models are the cross-section Cartesian coordinates, helpful for modeling and more general application.

2 Objectives
In order to address the need within the

NFIE-River component for high resolution

river cross-section data in local reaches, the

goal of this project is to create a suite of

tools that facilitate the creation of two

cross-section feature classes within the

ArcGIS framework based on river flow lines

and a digital elevation model (DEM) and

containing both curvilinear and Cartesian

coordinates. The tools should be simple to

operate and minimally parameterized.

Figure 1.1 NFIE component framework (figure adapted from Dr. David Maidment)

Figure 1.2 Reach curvilinear coordinate system (figure from Kim et al,
http://www.sciencedirect.com/science/article/pii/S13648152140035
70)

Carothers Page 4 of 20

Furthermore, the required inputs should be intuitive and

readily available while the outputs should be easily

understandable and deliver the required information.

2.1 Inputs
The first input data are the NHD Plus dataset 100k

resolution flow lines for the given area. This data is easily

acquirable online and carries pertinent information about

individual reaches such as the common identifier (COMID)

and the reach connectivity. Also necessary as an input are

digital elevation data for the desired region of analysis.

This may come in the form of a high resolution Lidar

based DEM when available or may be selected from the coarser National Elevation Dataset (NED).

Regardless, topographic information is required in order to determine the z-component of the cross-

sections.

2.2 Outputs
The primary feature class required is a point feature class that represents the cross-sections as a series

of points. The necessary data contained within are at minimum the reach COMID and the curvilinear and

Cartesian coordinates for each given point. Furthermore, the curvilinear coordinates need to maintain

accepted convention for proper modeling as described before. In addition to this information, a unique

cross-section ID (xSecID) will provide a more intuitive label of the cross-section within the context of the

output dataset and likewise help with processing.

In addition to this point feature class, a line feature class representing the cross-sections as cut lines is

helpful for visualization. The line feature class contains the COMID, xSecID, and reach station of each

cross-section line.

3 Toolbox, models, and processes
The general methodology for developing cross-sections involves three steps: preprocessing to prepare

the data, striking of the cross-sections, and post-processing the cross-sections to assign the required

attribute information and clean up the output feature classes. The preprocessing and post-processing

steps are completed in ArcGIS using the xSectionProcessingSuite toolbox, Figure 3.1. The striking of the

cross-section is done using an external MATLAB code heavily modified from a subroutine in the

GeoNet2.0 feature extraction toolbox1. The overall inputs and outputs are those described in the

Objectives. The user inputs the NHD flow lines in conjunction with a DEM and the process outputs the

line and point cross-section feature classes.

1
 https://sites.google.com/site/geonethome/home

Figure 3.1 ArcGIS cross section processing toolbox

Carothers Page 5 of 20

3.1 Preprocessing
As the general procedure was initially designed

around the adapted GeoNet code, the

preprocessing tool within the ArcGIS toolbox

prepares the data be processed within that code.

Figure 3.2 shows the parameter menu for running

this tool. A page view of the ArcGIS model builder

model is provided in Figure 3.3.

Both preprocessing and post-processing tools are

dependent on the conversion of lines to

consecutive points. To accomplish this, a script for

ArcGIS was found online2. The script utilizes ArcGIS

features that derived from toolbars and thus

unable to be plugged directly into the model

builder as normal tools are. Currently, it is a

requirement to download this script and add this tool in order for the processing suite to function.

3.1.1 Inputs and parameters

As the initial step of processing, the inputs for the preprocessing tool are the overall inputs for the

toolbox. Processing requires a raster DEM covering the area and the regional NHD flow lines feature

class for the area to be processed. In order to run the tool, both the flow lines and the DEM need to be

in the same file geodatabase (gdb) and in the same projection. Furthermore, the projection should be in

the units desired for output. UTM projections are recommended.

The only parameter required for the preprocessing run is a point interval. The flow lines are converted

into a series of consecutive flow points at this specified interval. In the case of Figure 3.2, 100 m was

2
 http://www.arcgis.com/home/item.html?id=a2a41c8345e24ab6a9dd2ae215710b39

Figure 3.2 Preprocessing tool filepath and parameter menu

Figure 3.3 ArcGIS workflow model of data preprocessing

Carothers Page 6 of 20

chosen. In this way, cross-sections can be struck at every 10 flow points (in the following GeoNet

processing) allowing for a cross-section at every 1 km.

3.1.2 Processing and Outputs

In the current version of the tool, a polygon mask of the DEM is temporarily created. The mask is

buffered down 100 m, and the flow lines completely within that mask are selected based on their

location. The buffer down is required to prevent processing errors when determining cross-section

elevations along the edge of the DEM. The selected flow lines are copied over again for later use, ideally

in the same gdb. They are also converted to points at the desired interval. These flow point features are

spatially joined with the flow lines so that each point shares all attributes with the flow lines. Finally, the

flow point feature class is written in the gdb for later use and also as a shapefile in the selected GeoNet

folder for continued processing.

3.2 GeoNet MATLAB code
Currently, cross-sections are actually struck within an external MATLAB code using a heavily modified

version of a subroutine in the GeoNet2.0 feature extraction toolbox. The code comes in the form of an

executable file and a run file (currently titled xSectionExecTest.m and xSectionRunTest.m, respectively).

The executable file calls the run file, and, therefore, only it needs user modification. Using the shapefile

prepared by the preprocessing tool, the cross-sections are drawn at specific intervals for and lengths

based on user inputs. The resulting cross-section endpoints are printed out in csv format.

3.2.1 Inputs and

parameters

In order to read shapefiles

directly using MATLAB, the

MATLAB mapping toolbox or

some variant is required3.

However, as the toolbox has a

non-trivial cost associated

with it, the processing code

the shapefile reading features

of the free M_Map package4. Download and installation of this package is required to run the code.

Slight syntactical changes can be applied to the code if the mapping toolbox is already owned.

With the M_Map package installed, the code can correctly import the shapefile from the location

specified in the preprocessing phase. This input filepath and filename for the flow point shapefile are

specified in the executable file seen in Figure 3.4. Likewise, there is a filepath for the output csv that

needs to be entered. In the current manifestation of this code, there are also filepaths and filenames

associated with the DEM. These are not used, but cannot be left blank as processing errors will occur. In

future variants of the code, these will be removed and the executable file streamlined.

3
 http://www.mathworks.com/products/mapping/

4
 http://www.eos.ubc.ca/~rich/map.html

Figure 3.4 Filepath and filename inputs in the executable file

Carothers Page 7 of 20

The four user input parameters are also

identified in the executable file, Figure 3.5.

The first parameter, Parameters.skipPixels,

indicates how many flow points to skip

before the process of striking cross-sections

begins. This is important depending on the

value of the third parameter,

Parameters.reultantVector. The resultant

vector parameter indicates how the angle of the cross-section will be struck. The orthogonal angle to

the line formed by the flow points on each side of the flow point where the cross-section will be struck is

used as the path of the cross-section, assuming a value of one as indicated in the figure. Were the value

of resultant vector increased to two, the flow point two points away from the cross-section flow point

on either side would be used instead. Considering again the pixels skipped, the resultant vector cannot

be calculated unless there are more pixels skipped than used for the resultant, or processing errors will

occur.

Regarding the second and fourth parameters, Parameters.crosssectiongap and

Parameters.crosssectionLength, these are more straight-forward than the others. The gap simply

indicates how many flow points will be in between each cross-section. As discussed in the parameters of

the preprocessing method (Section 3.1.1), 10 has been chosen as the skip pixel value in this situation so

that a cross-section is struck every 1 km. The cross-section length actually indicates half of the length of

the cross-section. The units are those of the projection used. The code actually counts the desired length

along the orthogonal out in each direction from the cross-section flow point.

A final feature of the executable file is the ability of to write several different output files based on a

series of output switches, Figure 3.6. There are currently three binary switches indicating the desired

program csv output. Parameters.printXSections will produce a csv with all points along (at each meter or

projected unit) each cross-section, Parameters.printMidpointX will print the points along the cross-

section only at the middle of each reach (reaches are determined by COMID), and

Parameters.printEndpoints will print just the endpoints of each cross-section. If .printMidpointX and

.printEndpoints are turned on, a separate file of the endpoints for the mid reach cross-sections will be

generated. Activating the .printXSections switch will significantly increase processing time due to the

increased number of points that are required to be written (from about 30 seconds for endpoints only

to 7 minutes for the Travis County dataset with these parameters). Furthermore, the post-processing

tool currently uses only the endpoint csv file (reach midpoints or all cross-sections) to produce the final

outputs.

3.2.2 Processing and outputs

The general processing has basically

been described in the description of

the parameters. The code reads the

flow point shapefile input from the

preprocessing output and marches

Figure 3.5 Executable file parameters

Figure 3.6 Executable file output switches

Carothers Page 8 of 20

along each individual reach using the

rules put forth by the user prescribed

parameters. Csv files are written based on

the user identified switches.

There are, however, two protocols that

are worth mentioning. Part of the

processing procedure is to run through

each reach and calculate how many cross-sections will be required based on the number of flow points

and a calculation based on the .skipPixels and .crosssectiongap parameters. If the number of cross-

sections is calculated as zero or negative, no cross-sections will be drawn, and the reach will effectively

be skipped. If that value is one, the cross-section will automatically be drawn at the middle of the reach

instead of two points above the reach discharge.

The output csv file resulting from processing the data with this code is seen in Figure 3.7. The FID and

COMID both refer to the specific reach, while the xSECT NUM and xSECT PT refer to locations of the

cross-section within the reach and individual point within the cross-section. As this version of the output

csv refers to an endpoint output file, the xSECT PT locations are the first and last points within the cross-

section. Output coordinates refer to the projected coordinate system of the input flow points. The

presence of POINT_Z is an artifact of when DEM processing occurred within this code as opposed to the

post-processing as it is currently handled. Finally, HydroID is a separate identifier that, in this case at

least, is the same as the COMID. More generally, the presence of the HydroID in the output file

represents a place holder for any other information from the input shapefile that the user may want to

maintain through the cross-section striking process.

3.3 Post-processing
The post-processing represents an ArcGIS

model combining the outputs of both the

pre and GeoNet processing phases. This

includes three inputs from the preprocessing

and the csv generated in the GeoNet

processing. With two parameters, the model

produces the desired two feature classes as

outputs, Figure 3.8.

Figure 3.7 Endpoint csv output file from GeoNet processing

Figure 3.8 Post-processing tool filepath and parameter menu

Carothers Page 9 of 20

As seen in the model workflow, Figure 3.9, it is actually composed of six individual subroutines. In this

workflow, external inputs or parameters are represented in shades of blue and placed above the yellow

subroutines while the subroutine generated inputs and outputs are shown in green below. The two

feature classes farthest to the right are the primary model outputs if the cross-section lines and points.

Individual subroutine models can be seen in Appendix A in the order in which they are processed.

3.3.1 Inputs and parameters

The primary input for the combined post-processing model is the csv generated during the GeoNet

processing phase. This file identifies the endpoints of all cross-sections in the selected system. This is

combined with three of the preprocessing outputs: the DEM (actually not a preprocessing output in the

current version, but still within the gdb from initial processing), the selected flow lines from within the

DEM mask, and the flow points generated at intervals along the flow lines (see Section 3.1.2 for

reference).

Two parameters are required at this point: the projection used for the flow lines to be reapplied to the

cross-section endpoints, and the interval at which cross-section points are to be generated. The second

of these is an important consideration as it will heavily influence the required processing time and the

resolution of the cross-sections.

Figure 3.9 ArcGIS workflow model of combined post-processing

Carothers Page 10 of 20

3.3.2 Subroutine processing

Table 3.1 Post-processing subroutine overview

Post-processing Subroutine General Process Description

1 Converts the csv to an endpoint feature class
2 Converts the endpoints to cross-section lines and points
3 Determines the point stations along each cross-section
4 Determines the reach stations for each cross-section
5 Condenses information and cleans up feature class attributes
6 Adds Cartesian coordinates (x,y,z) to the point feature class

The six post-processing subroutines are generally expansive in workflow (again, see Appendix A for

workflows). The specifics of each process can be complex, but the general ideas of each are summarized

in Table 3.1. A more detailed analysis of each subroutine is not especially beneficial in this synopsis.

3.3.3 Outputs

The combined post-

processing model

creates the cross-

section point and line

feature classes

described in the

Objectives. The line

feature class, “Output:

xSections” in the

workflow Figure 3.9,

represents the actual

cross-section lines as they are struck along each reach. As seen in Figure 3.10, the attributes used to

define each cross-section are the xSecID, COMID, and the Station_in_Reach (along with several general

and mandatory ArcGIS feature descriptors). Again, the xSecID is a unique cross-section ID that describes

the reach within the feature class (the integer part) and the cross-section within that reach (the

decimal). The COMID refers to the reach as it is identified in the NHDPlus. Finally, the Station_in_Reach

represents half of the curvilinear coordinates and, in accordance with convention, identifies how far

upstream the cross-section is from the reach discharge in the units of the projection being used.

The point feature class, “Output: xSectionsPoints” in the workflow Figure 3.9, details the Cartesian

location of every point in each cross-section as well as the entire curvilinear location of the cross-section

point within the specific reach. Figure 3.11 shows the attribute table for this feature class. The xSecID,

COMID, and Station_in_Reach are as they were described previously. Additionally, the

Station_in_xSection identifies the remaining curvilinear coordinate, the station of each point along the

individual cross-section. Likewise following convention, this station refers to the distance along the

cross-section from the left hand side while looking downstream with the flow. The units are those of the

Figure 3.10 Cross section line feature class attribute table

Carothers Page 11 of 20

projection. Finally, the Cartesian coordinates. POINT_X, POINT_Y, and POINT_Z, are in units of the

projection.

4 Travis County test case results
The suite of tools described previously was applied to Travis County, Texas. The Basin 12 NHD flow lines

were taken from the NHDPlusV2 website5. The DEM was developed by Cassandra Fagan based on a

conglomeration of CAPCOG LAS datasets from throughout the county and has a resolution of roughly 3

m (10 ft). Both datasets were loaded into a default gdb and projected in as UTM 14N. Before running the

processing tools, the DEM elevation value was also converted from feet to meters.

4.1 Preprocessing results
Running the preprocessing results using these two input datasets and a flow point interval of 100 m (see

Figure 3.2 for preprocessing input menu). Figure 4.1 shows a map of the resulting flow points and flow

lines enlarged in S Central Austin. The inset shows greater Travis County with the DEM and flow lines

selected accordingly.

Total preprocessing time for the Travis County dataset was 4 minutes and 33 seconds. The longest step

sin the process was the DEM masking and buffering. This length of time resulted in part from the sheer

size of the DEM (23,067 by 22,114 pixels), but likely the greatest delay came from masking and buffering

the irregular borders.

5
 http://www.horizon-systems.com/NHDPlus/NHDPlusV2_data.php

Figure 3.11 Cross section points feature class attribute table

Carothers Page 12 of 20

4.2 GeoNet processing results
The flow points mapped in Figure 4.1 were also written as a shapefile for GeoNet inputting. Figure 3.7

shows an excerpt of the actual GeoNet endpoint csv output for the Travis County dataset run. Total run

time was 32.6 seconds, with the loading of the 17,300 flow points accounting for the majority of this

time. Were other output files such as the entire cross-section flow points written, the processing time

would take significantly longer. Likewise, altering the flow point spacing would increase or decrease the

processing time depending on the resulting number of flow points.

4.3 Post-processing results
Post-processing was performed on the GeoNet csv results combined with the selected flow lines, flow

points, and DEM output from preprocessing (see Figure 3.8 for post-processing run window). Cross-

section point intervals were chosen to be 10 meters. Total processing time was 3 minutes and 33

seconds. No specific process was a limiting factor in the overall processing time.

The results of the first post-processing step, subroutine 1, can be seen in Figure 4.2. This really

represents a feature class of the GeoNet output csv, the cross-section endpoints. Subsequent

subroutines connect the endpoints resulting in the cross-section line feature class, Figure 4.3, and the

cross-section point feature class, Figure 4.4, and they pass and calculate necessary attributes for each

feature class. The real significance of the line and point cross-section feature classes lies in these

attributes, tables of which were seen previously in Figure 3.10 and Figure 3.11, respectively. The

attributes provide accessible addresses for each point in Cartesian coordinates for mapping and for each

Figure 4.1 Preprocessing output flow points and flow lines in S Central Austin, TX

Carothers Page 13 of 20

point and line in curvilinearly referenced coordinates for conventional modeling applications. The entire

suite of processes was completed county-wide with less than 9 minutes of computational time, Figure

4.5.

Figure 4.2 Post-processing subroutine 1 results, cross section endpoint feature class

Carothers Page 14 of 20

Figure 4.3 Post-processing results, cross section line feature class

Figure 4.4 Post-processing results, cross section point feature class

Carothers Page 15 of 20

5 Discussion and recommendations

5.1 Current results and process structure
As a combined process and methodology, the suite of cross-section processing tools represented by the

ArcGIS processing toolbox and the GeoNet code work well as a first attempt at automated cross-section

feature extraction. The desired feature classes are made in fairly efficient time, and these features are

located in the landscape in both practical Cartesian coordinates and technically applicable curvilinear

coordinates of reach and cross-section station, all according to appropriate conventions. Furthermore,

the processing inputs and outputs are few, easy to understand, and, as far as the inputs, readily

available. Given that the code and the toolbox need significant clean up in the form of proper parameter

labels, parameter descriptions, and tool descriptions, the objectives set forth are accomplished in this

test scenario.

Previous versions of the pre, GeoNet, and post-processing steps have been tested on several datasets

with varying cross-section intervals and widths across a range of DEM sizes and resolutions. At this

point, the current suite version has only been tested with the Travis County dataset presented here.

The most glaring shortcoming and stumbling block is the current need for the processing external to

ArcGIS, the modified GeoNet code. In itself, this produces two issues. In the current form, the code is

still bound within the larger GeoNet processing context. That is, an extensive number of unused GeoNet

parameters and processes are present in both the executable and run files making them cumbersome

Figure 4.5 Complete cross section point feature class results for Travis County DEM

Carothers Page 16 of 20

and more confusing than need be. Because the two codes are heavily modified and rely on no

proprietary GeoNet processes, they should be removed from this context entirely and combined into a

single run file.

The extrication of the code from the GeoNet context and combination of the files into a single script

would go a long way to facilitating a solution to the second major issue, that there is an external process

at all. Having to break up the overall cross-section feature extraction into three steps is convenient for

troubleshooting, but the requirement of additional software and operational knowledge is cumbersome

and unnecessary. With a single script developed from the union of the executable and run files, the code

can be rewritten in similar python code and brought into ArcGIS as an arcpy script. Were this to be

accomplished, the entire cross-section feature extraction could be combined into one process with two

inputs, the NHD flow lines and a DEM, and two outputs, the cross-section line and point feature classes.

5.2 Approach redefinition
It is worth considering this solution as a general

experiment in the larger framework cross-section

feature extraction. Many techniques utilized in

this process may not work well when expanded to

a more applicable scale. For example, accurate

modeling around complex features such as

bridges and culverts require many cross-sections

in close proximity. This raises two particular

concerns with regards to the cross-section

extraction process proposed here.

The increased cross-section density required in

proximity of complex features would, using this

tool, increase the number of total cross-sections

dramatically. As cross-sections are created with

this tool set at a uniform interval, the required

spacing at complex features would set the standard for the entire analyzed area. Because of this, the

processing time and sheer size of the features classes would become overly cumbersome. A potential

solution to this would be to incorporate complex features into the cross-section extraction process. The

presence of a complex feature along a reach could change the reach cross-section interval or trigger a

more dynamic cross-section extraction process that places extra cross-sections directly in proximity to

those features.

The other concern involves a combination of the complex features and large floodplain areas. In such

areas where the overbanks are wide and flat, the cross-sections may need to be much wider than the

100 m used in this example. However, when expanding the cross-section width when cross-sections are

in close proximity increases the likelihood that cross-sections will overlap. This is one of the prohibitions

of cross-section construction for modeling. A solution to this would be an approach such as that taken

by Chris Franklin and Bryan Chastain of UT Dallas, Figure 5.1. Their cross-section extraction method uses

Figure 5.1 Cross section extraction approach developed by
Chris Franklin and Brian Chastain of UT Dallas (Figure adapted
from their slideshow)

Carothers Page 17 of 20

available ArcGIS tools to develop cross-sections that are not simply straight. By following their method,

wide cross-sections can be developed without the cross-sections overlapping.

6 Conclusions
The initial solution to cross-section feature extraction represented by the suite of tools presented here

works well. Given a DEM and river flow lines, both readily available online, cross-sections of user defined

width at user defined intervals can be struck and addressed with curvilinear and Cartesian coordinates in

relatively little time. However, there is much room for improvement. The process can be streamlined

and unified within ArcGIS by rewriting the GeoNet derived code in python. Furthermore, were the

process to be applied in real modeling situations, cross-sections would need to be densified around

complex features such as bridges, and processing troubles may arise. A more dynamic cross-section

striking solution is likely achievable. Regardless, this experiment shows that GIS processing of a DEM

with NHD flow lines allows for a solution to some data gaps within the NFIE-River component.

Carothers Page 18 of 20

7 Appendix A: Post-processing subroutine workflows

Figure 7.1 Subroutine 1 workflow: Converts the csv to an endpoint feature class

Figure 7.2 Subroutine 2 workflow: Converts the endpoints to cross section lines and points

Carothers Page 19 of 20

Figure 7.3 Subroutine 3 workflow: Determines the point stations along each cross section

Figure 7.4 Subroutine 4 workflow: Determines the reach stations for each cross section

Carothers Page 20 of 20

Figure 7.5 Subroutine 5 workflow: Condenses information and cleans up feature class attributes

Figure 7.6 Subroutine 6 workflow: Adds Cartesian coordinates (x,y,z) to the point feature class

