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Purpose & Outline

Purpose: Provide a update of multi-scale water cycle modeling
capabilities using the community WRF-Hydro system and
description of recent prediction applications

Outline:

1. Background — complete water cycle predictions
2. Brief WRF-Hydro System Update

3. Applications to flood simulation and prediction
4

. CONUS-NFIE Implementations for National Streamflow
Prediction
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Water Cycle Modeling and Prediction within the
WRF-Hydro System:

Great Colorado Flood of 11-15 Sept. 2013
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Overarching WRF-Hydro System Objectives

A community-based, supported coupling architecture designed to provide:

15

An extensible multi-scale & multi-physics land-atmosphere modeling capability for
conservative, coupled and uncoupled assimilation & prediction of major water
cycle components such as precipitation, soil moisture, snowpack, groundwater,
streamflow, inundation

‘Accurate’ and ‘reliable’ streamflow prediction across scales (from O-order
headwater catchments to continental river basins & minutes to seasons)

A robust framework for land-atmosphere coupling studies

1_1015 krﬁ - 100’s m - 1’s km



Gridded .
Meteorological Analyses/Re-analyses/ weath?r f’md Climate
Nowcasts/Forecasts Prediction Models

One-way coupling Two-way coupling

WRF-Hydro Driver and
Data Assimilation Components

Conservative regridding and downscaling tools

Overland & Water

Column Subsurface
Channel Management

SLE::d RFIO‘:V Flow Modules
urface outing Routing

Modules Modules Modules

System

Integrated Hydrological Models
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WRF-Hydro




Version 2.2 physics components:

* physics-based runoff processes

Surface Exfiltration from
Saturated Soil Columns

Lateral Flow from
Saturated Soil Layers
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WRF-Hydro v2.2 Physics Components:

e Optional conceptual ‘catchment” modeling support:

— Benchmarking simple versus complex model structures
— Enable very rapid ‘first-guess’ forecasts with reduced runtime/computational demand
— Bucket discharge gets distributed to channel network channel routing (e.g. RAPID coupling)
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WRF-Hydro v2.2 Physics Components: =

Subsurface routing:

— 2d groundwater model

— Coupled to bottom of LSM
soil column through Darcy-
flux parameterization

— Independent hydraulic
characteristics vs. soil
column

— Full coupling to gridded
channel model through
assumed channel depth and
channel head

— Detailed representation of
wetlands
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Surface ponded water from coupled groundwater in
WRF-Hydro B. Fersch, KIT, Germany



Hydro-system Dynamics

Improving representation of
landscape dynamics essential to
flood risks:

* Geomorphological:
— Bank stability
— Sediment transport/deposition
— Debris flows

e Land cover change due fire,
urbanization, ag/silvaculture
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* Needs improved channel, soils and
land cover geospatial data
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Data Assimilation with WRF Hydro

Current capabilities

Ensemble DA:

e Offline WRF Hydro + DART =
“HydroDART”

Ensemble generation:

* |nitial state & parameter perturbation,
ensemble runs

Future capabilities

Variational DA and/or nudging:

* Faster & computationally cheaper for large-
scale applications.

e Variational DA not rank-deficient
Other kinds of DA (hybrid, MLEEF, ...)

Bias-aware filtering / Two-stage bias estimation
(Friedland, 1969; Dee and de Silva, 1998; De Lannoy et
al., 2007)

Open loop

7.5

5.04

N
3y
L

o
o
I

— Obs 95% uncert
Open loop

— Open loop mean
Ens. mean

— Ens. spread

Streamflow (cubic meters per second)
=
2
2

05- |

0.0+

May 15 Jun 0l Jun15 Jul01 Jul15 Aug Ol
2012



—_
—
(g~]
5
p=\-}
oz
(==
—
&
(@)
(g~
—
—
(g~
—
>
'~
>
—
=
(—
wn
=
| — =
(g~
=
(o)
=
(g~
wn
(g~]
oo
—
(o]
—-

‘WRF-Hydro’ Process Permutations and
System Features:

~180 possible ‘physics’ component configurations

for streamflow prediction:

— 3 up-to-date column physics land models (Noah,
NoahMP, CLM)

— 3 overland flow schemes (Diffusive Wave,
Kinematic Wave, Direct basin aggregation)

— 4 |ateral/baseflow groundwater schemes
(Boussinesq shallow-saturated flow, 2d aquifer
model, Direct Aggregation Storage-Release: pass-
through or exponential model

— 5 channel flow schemes: Diffusive wave, Kinematic
Wave, RAPID-Muskingam for NHDPlus, Custom
Network Muskingam/Muskingam Cunge

Simple level-pool reservoir with management
DART, filter-based hydrologic data assimilation

Ensemble Flood Forecasting in the Southeast U.S.
with WRF-Hydro

2014 WRF User’s Workshop, K. Mahoney (NOAA-
ESRL)
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‘WRF-Hydro’ Software Features:

Modularized F90/95 (and later)
Coupling options are specified at compilation and WRF-Hydro is

compiled as a new library in WRF when run in coupled mode

Physics options are switch-activated though a
namelist/configuration file

Options to output sub-grid state and flux fields to standards-based
netcdf point and grid files

Fully-parallelized to HPC systems (e.g. NCAR supercomputer) and
‘sood’ scaling performance

Ported to Intel, IBM and MacOS systems and a variety of compilers
(pg, gfort, ifort)

Wei Yu (RAL) - lead engineer



WRF-Hydro Setup and Parameterization:
Python PrE'ProceSSing Toolkit: «. Sampson - developer

* Python-based scripts
e ESRI ArcGIS geospatial processing functions

— Support of multiple terrain datasets
 NHDPIus, Hydrosheds, EuroDEM

#.., ProcessGeogrid | =pE e S |
= [l GIS Servers , , o
a = ndd ArcGIS S Input Geogrid File - Input Geogrid File : - L, MLy -4 S =
:J re Enser D:ksampson'Desktoplgeo_em.d03_upp_Delaware_R.nc |[.£L| 3
== Add ArcIMS Server MNumber of pixels to define stream Input WRF Geogrid file
+ 200 (MetCDF format).
A7 Add WCS Server
* COVROUGHRTFAC Value
47| Add WMS Server 1.0
TU Add WMTS Server RETDEPRTFAC Value

1
«|z| ArcGI5 on services.nati

= &7 arcgis on STRUCTURE
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+ B UtllItIES. 0K | | Cancel | |Environments... | | << Hide Help | | Tool Help ; 3 ‘ > ,’ : : ; R 7/ re :
19 Buffer_Service L J 15 7T il S R v - PRy
7 9 FixedModel3 Outputs: topography, flowdirection,

o S ProcessGeogridFile

# ProcessGeogrid watersheds, gridded channels, river

reaches, lakes, various parameters
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Forcing data supported:

NLDAS, NARR analyses

QPE products: MPE, StglV,
NCDC-served, dual-pal,
Q3/MRMS, gauge analyses

NOAA QPF products: GFS,
NAM, RAP, HRRR, ExREF

Nowcast (NCAR
Trident/TITAN)

NOHRSC SNODAS

ESMF/ncl regridding tools

'
‘ " Boulder

"1—:-

Regridded MPE precipitation during the 2013 Colorado Floods
Unidata IDV display



Input Forcing Data Requirements:

* Data Requirements:
— Forcing Input: Forecast Example...

Met. Forcing Met. Forcing Met. Forcing

LV GV VG
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)V GV VG W
LV VW G
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WRF-Hydro output products: Forecasts of water
CVCle Com pone ntS Maps of precipitation, soil moisture, ET, snowpack,

inundation depth, groundwater depth, streamflow
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Flow Duration Curve: Observed Fourmile Creek
Obs: Observed Fourmile Creek, 2011-2014, n=3527 (0% missing)

Model 1: All Routing (hourly), 2012-2013, n=3527 Model 2: Channel Routing Only (hourly), 2012-2013, n=3527

2UO01)¢

Observed Fourmile Creek

Observed Fourmile Creek - Curve Fit

All Routing (hourly)

All Routing (hourly) - Curve Fit

Channel Routing Only (hourly)

Channel Routing Only (hourly) - Curve Fit
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Plotting and Analyzing Data in R:

Water Budget

Transpiration
123.4%

Canopy Evap

Surface Evap - 8 49
- . o

29.9%

Surface &
Subsurface Runoff
0.8%
Deep GW OQutflow’

14.2%

Change in Storage
23.5%

The ‘Rwrfhydro’ package

Water Budget
Analyses

Statistical
Evaluation Metrics



Plotting and Analyzing Data in R: The ‘Rwrfhydro’ package

MODEL 1:
nse nselog cor rmse rmsenorm bias mae errcom errmaxt errfdc
ts 0.86 0.81 0.95 0.17 6.52 18.7 0.1 NA NA 0.06
daily 0.87 0.81 0.96 0.16 7.08 19 0.1 -0.07 -0.64 0.06
monthly 0.95 0.87 1 0.08 8.01 18.8 0.06 0 0 NA Water Budget
yearly NA NA NA 0.07 NA 18.7 0.07 1 2 NA Analyses
max10 0.09 0.07 0.57 0.43 25.56 15.3 0.05 NA NA NA
min10 -34.59 -7.31 0.51 0.05 181.74 186.9 NA NA NA NA
Statistical
MODEL 2:
nse nselog cor rmse  rmsenorm bias mae errcom errmaxt errfdc Evaluation MEtriCS
ts 0.68 0.72 0.88 0.26 Q77 22.2 0.13 NA NA 0.07
daily 0.79 0.71 0.92 0.21 9.03 235 0.12 0.2 -0.41 0.08
monthly 0.92 0.85 0.98 0.1 9.7 24 0.08 -0.5 0.4 NA
yearly NA NA NA 0.08 NA 222 0.08 -2 -2 NA
max10 -0.82 0.05 0.39 0.6 36.19 101 0.05 NA NA NA
min10 -108.28 -8.11 0.24 0.08 318.47 2249 NA NA NA NA
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WRF-Hydro Support Services

 Web Page:

— Code distribution (GIT
repository)

— Documentation (v2, 120 pages

— Test cases (coupled and
uncoupled)

— Script Library (file prep,
reformatting, viz

— ArcGIS preparation tools

— Email help support (staff limited)

— Next Training is May 4-7, 2015 in
Boulder (sponsored by CUAHSI)

&

UCAR NCAR

File Edit View History Bookmarks

] Stream point filtering - goc... %
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Home

Terms of Use
Overview
Downloads

Support &
Documentation

Related Links
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Welcome

Welcome to the users page for the WRF-Hydro modeling system.
The WRF-Hydro modeling
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hydrological modeling architecture
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Current WRF-Hydro Applications around the world:

1.

B.

Operational Streamflow, Forecasting:
— U.S. National-Weather Service, National Water Center
— Israeli Hydrological Service
— State of Colorado-Upper Rio Grande River Basin (CWCB, NSSL)
— NCAR-STEP Hydrometeorological Prediction Group
- U. of Calabria reservoir inflow forecasting

Streamflow prediction research (U. Ankara, Arizona State U., Karlsruhe Inst. Tech.)

Diagnosing climate change impacts on water resources
— Himalayan Mountain Front (Bierknes Inst.)

— Colorado Headwaters (U. Colorado)
— Bureau of Reclamation Dam Safety Group (USBR,NOAA/CIRES)

Diagnosing land-atmosphere-coupling behavior in mountain-front regions of the U.S. and Mexico
(Arizona State U., U. Arizona)

Diagnosing the impacts of disturbed landscapes on coupled hydrometeorlogical predictions
— Western U.S. Fires (USGS)
— West African Monsoon (Karlsruhe Inst. Tech)
— S. America Parana river (U. Arizona)
— Texas Dust Emissions (Texas A&M U.)
— Landslide Hazard Modeling (USGS)

Hydrologic Data Assimilation, WRF-Hydro/DART coupling



Recent Water Prediction Activities

The National Center for Atmospheric Research



WRF-Hydro Within an Operational Forecasting Workflow:

Land/Hydro Data

Assimilation |
/// Past Data Assim. Cycles

Met. Data Assimilation &
Prediction

Land/Hydro
Data Assimilation
Model

Hydro
Model(s)

— o — oy

! I - WRF-Hydro operations
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1. Real-time High-Resolution, Spatially-Distributed
Streamflow Prediction: NCAR STEP Program

2014-08-14_13:45:00 (Current-10dayAverage)
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40°40'N | 4geag'y Meters
- Real-time 24/7 cycling of radar, »
nowcast and weather model 40720\ - a2 rﬁﬁﬁ
forecasts into hydro model ke
- Spatial depiction of streamflow o (Y B
conditions at over 220k locations o | o B2
in the Front Range area o
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4. Impacts from the
September 2013
Colorado Floods

8 fatalities

Flooding less than 1.0% probability
widespread across several counties

Communities completely evacuated
18 Counties declared fed. disasters
> 450 mi road destroyed

Water/wastewater infrastructure
destroyed

Measurement infrastructure
destroyed

> S2B damages
No flood watch was issues on 9/11
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Simulated and Estimated Peak Flow versus Contributing Area
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5. CONUS Domain Continuous Water Prediction
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NFIE Default Set-up, Spin-up and
Retrospective Ana

 NHDPIlusV2-Encompassing Domain

%

 3km NoahMP land model only:

— No routing (to be done offline by
RAPID)

— No reservoirs

— USGS land cover type

— NRCS STATSGO soils

— Climatological vegetation structure

* |n progress: 5 year 2010-2014
continuous run

— NLDAS2 forcing only with GFS
background
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* Goal: Quantify background model
and forcing bias
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- Problems:
MRMS, HRRR (and
NLDAS2) do not
provide complete
tributary coverage

HRRR missing LW
radiation

- Solutions:
Mosaic HRRR onto
GFS (0.25 deg)

LW radiation will be
added to HRRR
output
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Computational Benchmark of 3km
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NFIE Preparation Activities:

1. Thinning NoahMP model output (IN PROGRESS):
— Reduce output to key water budget (state and flux) terms
— Markedly improves runtime (up to 50%) and overall parallelization efficiency

2. Parallelizing WRF-Hydro forcing data regridding and re-formatting scripts (DONE)
—  Written in ncl
— Utilizes ESMF regridders
— Fully parallelized for fast performance (minimal contribution to total forecast execution time)
— Processing all grids takes a few minutes depending on # of cores

3. Developing alternate ‘RESEARCH’ model configurations (IN PROGRESS):
- w/ and w/out terrain routing
— alternate land model specification (SAC-HTET if ready)
— alternate land cover type and vegetation structure specification
— alternate channel routing schemes (single executable w/ RAPID)
— regional nest(s) with water management (mid-Atlantic/Northeast?)
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4. Final Benchmarking
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NFIE WRF-Hydro/RAPID Workflow

e Model Execution:

1. Collect Forcings:
MRMS
GFS&HRRR (anal. and frxsts)

2. Regridding forcings to WRF-
Hydro Grid (ESMF regridders)

3a. Create output analysis
products

4a. Create output forecast
products




NFIE Research Objectives and Opportunities:

Basic Research Questions:

1. How do various sources of error in CONUS domain hydrologic
simulations scale with river basin size?

2. What are the fundamental land-surface controls on flood
generation and how do those controls vary regionally? What
roles do river management play?

3. How does the predictability of flood events scale with river basin
size and forecast lead time?

4. Are predicted streamflow values sufficient for national domain
inundation mapping inputs?

5. What is the role of seasonal vegetation dynamics in runoff
production?
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NFIE Research Objectives and Opportunities:

Prediction Research Questions:

1. How accurate are model forcings across the nation and
what level of accuracy is need for flood prediction?

2. What are the computational requirements of various
national domain configured models?

3. What are the most efficient/feasible way to implement a
probabilistic flood prediction framework over CONUS
domains?

4. What opportunities exist for improving flood forecasts
through incorporation of hydrologic data assimilation?
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Continental Domain Water Prediction
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CONUS+ 250m channel
flow (thinned to 5t order
and higher channels)
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WRF-Hydro: http://www.ral.ucar.edu/projects/wrf hydro/

Contributions:

NCAR Internal:

D. Gochis (Project Lead)

W. Yu (Lead Software Engineer)
D. Yates (Water Resources Lead)
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J. McCreight (Post-doc)

A. Dugger (Post-doc)

M. Barlage (NoahMP Developer)
A. Wood (Advising Scientist)

M. Clark (Advising Scientist)

K. Ikeda (Data Analyst)

R. Rasmussen (Sr. Advising Scientist)
F. Chen (Sr. Advising Scientist)
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