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Exercise 4 Solution
Modeling moisture content in a soil column

11 April 2007
Prepared by,

 Ernest To
Modifying the program

Modify the program so that you can examine the effect of different options for the parameters

(1) Change the value of o (the moisture content at the head of the column) from 0.2 to 0.5 in increments of 0.1 and examine the effect on f and F for t = 0 hours and t =1 day.

The following two tables show the effects of increasing the initial moisture content at the head of the column on the infiltration rate, f, and cumulative infiltration, F, from t = 0 to 24 hours.

Table 1.  Effect of increasing moisture content at head of column on infiltration rate

	
	θ0=0.2
	θ0=0.3
	θ0=0.4
	θ0=0.5

	Hour
	f (mm/hr)
	f (mm/hr)
	f (mm/hr)
	f (mm/hr)

	0
	2.844
	5.688
	8.532
	11.376

	6
	0.12279
	0.24558
	0.36837
	0.49116

	12
	0.086841
	0.17368
	0.26052
	0.34736

	18
	0.070909
	0.14182
	0.21273
	0.28364

	24 (or 1 day)
	0.061411
	0.12282
	0.18423
	0.24564


At t = 0, the infiltration rate increases by 2.84 mm/hr for every increment of Δθ0 = 0.1.  At t=24hrs (or 1 day), the infiltration rate increases by 0.61 mm/hr for every increment of Δθ0 = 0.1.  This makes sense because as Δθ0 increases, the moisture gradient in the soil increases and therefore infiltration rate increases.  As time progresses, more water enters the column, which increases the moisture content in the column.  As a result, the moisture gradient at the head of the column decreases and the infiltration rate decreases.
Table 2.  Effect of increasing moisture content at head of column on cumulative infiltration
	
	θ0=0.2
	θ0=0.3
	θ0=0.4
	θ0=0.5

	hour
	F (mm)
	F (mm)
	F (mm)
	F (mm)

	0
	0
	0
	0
	0

	6
	1.4244
	2.8488
	4.2733
	5.6977

	12
	2.0348
	4.0697
	6.1045
	8.1394

	18
	2.5033
	5.0066
	7.5098
	10.0131

	24
	2.8982
	5.7964
	8.6946
	11.5928


Graphs of the moisture content, infiltration rate and cumulative infiltration are plotted in Figures 1, 2 and 3.
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Figure 1.  Graphs of moisture content profile along the soil column for different times and moisture content at head of column.
	
	Infiltration at head of column vs time
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	o = 0.3
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Figure 2.  Temporal plots of infiltration rate at head of soil column for different moisture content at head of column.

	
	Cumulative infiltration at head of column vs time
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Figure 3.  Temporal plots of cumulative infiltration at head of soil column for different moisture content at head of column.

(2) Change the value of D from 7.9 x 10-9 m2/s to 7.9 x 10-8 m2/s and 7.9 x 10-10 m2/s and examine the effect on f and F for t = 0 hours and t =1 day.
The tables below show the effect of changing the moisture diffusion coefficient on the infiltration rate, f (in mm/hr), and cumulative infiltration, F (in mm) at the head of the column (x = 0).
Table 4.  Infiltration rate and cumulative infiltration at the head of the column for moisture diffusivity of 7.9 e -9 m^2/s.
	D=7.9e-009
	m^2/s
	

	hour
	f (mm/hr)
	F (mm)

	0
	5.688
	0

	6
	0.24558
	2.8488

	12
	0.17368
	4.0697

	18
	0.14182
	5.0066

	24 (1 day)
	0.12282
	5.7964


Table 5.  Infiltration rate and cumulative infiltration at the head of the column for moisture diffusivity of 7.9 e -8 m^2/s.
	D=7.9e-008
	m^2/s
	

	hour
	f (mm/hr)
	F (mm)

	0
	56.88
	0

	6
	0.78182
	9.2262

	12
	0.61151
	13.2651

	18
	0.58117
	16.8183

	24 (1 day)
	0.57573
	20.2846


Table 6.  Infiltration rate and cumulative infiltration at the head of the column for moisture diffusivity of 7.9 e -10 m^2/s.
	D=7.9e-010
	m^2/s
	

	hour
	f (mm/hr)
	F (mm)

	0
	0.5688
	0

	6
	0.077402
	0.83559

	12
	0.054832
	1.2207

	18
	0.044798
	1.5166

	24 (1 day)
	0.038808
	1.7661


As expected, infiltration rate and cumulative infiltration increases with moisture diffusivity.

(3)  Do some creative!  A part of the purpose of this exercise is to give you some exposure to the use of Matlab.   Do something interesting with the program that it does not already do now and present the results of your modification.

I have modified the program to solve for the moisture content, θ(x,t), using the implicit scheme.  The implicit scheme is explained as follows:
Recall that the governing equation for unsaturated flow in a vertical soil column is the simplified Richard’s equation:
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In the explicit scheme used by the moisture_diffusion.m, Richard’s Equation is linearized into the following form:
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Where, 
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= moisture content at the ith distance interval and jth time interval
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D = soil water diffusivity
In the implicit scheme, Richard’s Equation is linearized into the following form:
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Notice that the differentiation along the x-axis is performed at the jth time step in the implicit scheme instead of the j-1th time step as in the explicit scheme.
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Figure 4.  Calculation of θij using the implicit scheme.
By rearranging terms, the following form can be obtained:
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By substituting 
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 into the above equation, we get:
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Re-arranging we get:
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                        Eqn(1)
Because values  θi-1,j and θi+1,j, are unknown at the time of the calculation, θi,j cannot be computed directly.  Instead, all the θi,j’s from the current time step have to be computed together by solving a set of simultaneous equations.

On the right hand side of the equation, we have the term
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which is a known quantity based on calculations on the previous time step or from initial conditions.

On the left hand side we have three unknowns,
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which can be solved by using simultaneous equations.

Rewriting Eqn(1) in matrix form, we get:
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(Eqn 2)

Notice that the matrix is set up for the unknown 
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 values only.  Because 
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are already known from boundary conditions, the 2D matrix on the left has dimensions of (I-2) x (I-2) and the two vectors in the equation have the dimensions (I-2) x 1.  The known values of 
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 are lumped into the right-hand-side vector of known values.  Figure 5 provides an illustration of the finite differencing scheme for 
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The advantage of the implicit scheme is that the stability of the solution no longer depends on the value of
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. This means that the solution will converge as 
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.  For a more detailed explanation on stability requirements for implicit and explicit finite differencing schemes, please refer to the pp 431-442 of the book, Applied Numerical Methods, by Carnahan, Luther and Wilkes (1962).
The matrix equation, Eqn 2, can be solving by multiplying the inverse of the 2D matrix to both sides of the equation, thus:
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(Eqn 3).

After solving for 
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, the value of j is advanced by 1 to the next time step and the process is repeated again.
The code snippet for solving Theta(x,t) using the implicit scheme is shown below.  Please see the code comments for explanation of the code.

The code is available in zipped form at: implicit.zit
%----------------------------------------------
%- Calculate Theta(x,t) using implicit scheme -
%----------------------------------------------
% Loop through each time step between 2 and J

for j=2:J   
    % Declare an (I-2) x (I-2) matrix to store the set of simulataneous equations 
    % that are solved in the implicit scheme.
    % The matrix is essentially a tridiagonal matrix that has (1+2*lambda)
    % along the main diagonal and (-lambda) in the two lesser diagonals adjacent to the main diagonal.All other elements are zero.  For example:
    %             +   -      -      -       -       -   +
    %             | 1+2L     -L     0       0       0   |
    %             | -L      1+2L    -L      0       0   |
    %             | 0        -L     1+2L    -L      0   |
    %             | 0        0      -L     1+2L    -L   |
    %             | 0        0      0       -L     1+2L |
    %             +   -      -      -       -       -   +
    IMP=zeros(I-2,I-2);

    %  Populate the matrix
    for i=1:I-2
        %Populate the main diagonal with 1+2L
        IMP(i,i)=1+2*Lambda;
        %Populate the diagonal to the left with L
        if i>1
            IMP(i,i-1)=-Lambda;
        end
        %Populate the diagonal to the right with L
        if i<I-2
            IMP(i,i+1)=-Lambda;
        end
    end
    % Setup vector of I elements that stores the known values of Theta calculated from
    % the previous time step.
    KNOWN=Theta(2:I-1,j-1);
    % Lump the known boundary conditions of the current time step to the
    % first and last elements of the KNOWN vector
    KNOWN(1)=KNOWN(1)+Lambda*Theta(1,j);
    KNOWN(I-2)=KNOWN(I-2)+Lambda*Theta(I,j);
    % Solve the unknown theta values at the current step by performing
    % matrix inversion
    UNKNOWNS=inv(IMP)*KNOWN;
    % Insert the solved unknown theta values at the current step into the
    % Theta(x,t) matrix
    Theta(2:I-1,j)=UNKNOWNS;
end
The graphs produced from running the implicit scheme for the default parameters of Θ0 = 0.3, Θ1 = 0.1, and D = 7.9 x 10-9 m2/s are similar to those from the explicit scheme.  They are shown below:
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A printout of the source code for the modified MATLAB code, implicit.m is included in zipped from in implicit.zit.  Using the implicit scheme removes the complexity of adjusting 
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when different soil moisture diffusivities (D) are tested because the numerical solution is no longer sensitive to λ.  The The main tradeoff for the implicit scheme is the increase in computing time.  Matrix inversion can be computationally intensive and in this program I was essentially inverting a 100 x 100 matrix at each of the 10000 time steps that make up the duration of simulation.  Running the code for default moisture conditions in the implicit scheme takes about 15 seconds while for the explicit scheme the execution is almost instantaneous.   
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