2.3.1.

(a) The daily maximum air temperature is a single value which occurs
once in a day, therefore it is recorded as sample data.

(b) The dally precipitation is the sum of all rainfall occurring
within the day, so it is recorded as pulse data.

(¢) The dally wind speed 18 the average speed measured in the day, so
it s recorded as pulse data.

(d) The annual precipitation is the sum of all rainfall occurring in a
year, so it 1s recorded as pulse data.

(e) The annual maximum discharge in a river is the maximum of the
instantaneous flowrates occurring during the year, so it is recorded as
sample data.

2-3.2.

The precipitation input is recorded as a pulse data sequence as shown
in column (3) of Table 2.3.2, in which the precipitation shown is the
incremental depth which has occurred during the preceeding time interval.
The streamflow output is recorded as a sample data sequence in which the
value shown is the instantaneous flow rate occurring at that moment. To
apply the discrete-time continuity equation, the streamflow must be
converted to a pulse date sequence, For each 0.5 hr, interval, the volume
of streamflow which occurred is found by averaging the streamflow rates at
the ends of the interval and multiplying by At = 0,5 hr = 1800 8. The
equivalent depth over the watershed is then calculated by dividing the
streaflgw volume by the watershed area A = 7,03 mi? = 7,03 x 52802 ft? =
1.96 x 10° rt2,

The computations follow those in Example 2.3.1 in the textbook., For
exanple, during the first time interval, between 0 and 0.5 hrs, the
streamfiows are Q(0) = .25 ofs and Q(0.5) = 27 cfs, so0 the streamflow volume
in this interval 1is At x (25 + 27)/2 = 1800 x 26 ft? = ll6.Bgo ft®. The
quavalent depth over the watershed is Q, = 46,800 /7 1.96 x 10% ft « 2.38 x
10”7 r't = 0.003 in, as shown in Col. (5) of Table 2.3.2.

The precipitation depth for the first time interval is 0.18 in, s0 the
incremental change in storage i{s found as

ASJ - IJ - QJ (2.3.8-1)
giving for j = 1
4S; = I, = Q; = 0.180 - 0.003 = 0.177 in

as shown in Col. (6) of the table. The cumulative storage in the watershed
is found by adding the incremental changes {n storage {(Eq. 2.3.3 from the
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textbook) with initlial storage Sy = 0. Then, with j = 1
51 = SO + AS1 =0 + 0,177 = 0.177 in

as shown in Col. (7) of Table 2.3.2. The calculations [for successive time
intervals j = 2,3,...,16 follow similarly. The total amount of
precipitation was 0.97 in. The total amount of runoff in eight hours was
0.872 in, or 90 % of the total precipitation. The remaining 0.098 in.
remained stored in the watershed at the end of the eight hour period., The
maximum storage occurred 2 hours after the beginning of the storm and was
0.932 in. Fig. 2.3.2(a) shows the time distribution of precipitation
intensity (obtained by dividing the precipitation increments by At = 0.5 hr)
and streamflow (ln equivalent units of in/hr over the watershed). The
change in storage for 0.5 hr intervals and the total storage in the

watershed are plotted in Fig. 2.3.2(b).

(1) (2) (3) (8) (5) (6) (7
Time Time Precip. Stream- Stream~ Increm, Storage

Interval t Input, Ij flow @ flow Q) Stor. AS] S
3 (hrs) (in) (efrs) (in) (in) (in)

0 25 0

1 0.5 0.18 27 0.003 0.177 0.177

2 1 0.42 38 0.004 0.416 0.594

3 1.5 0.1 109 0.008 0.202 0.795

y 2 0.16 310 0.023 0.137 0.932

5 2.5 655 0.053 -0.053 0.879

6 3 949 0.088 -0.088 0.79

7 3.5 1060 0.111 =0.111 0.680

8 4y 968 0.112 -0.112 0.568

9 4.5 1030 0.110 =0.110 0.458

10 5 826 0.102 -0.102 0.356
1 5.5 655 0.082 -0.082 0.274
12 6 466 0.062 -0.062 0.213
13 6.5 321 0.043 =0.043 0.169
14 7 227 0.030 -0.030 0.139
15 7.5 175 0.022 =-0.022 0.117
16 8 160 0.018 -0.018 0.098

Total 0.97 0.872

Table 2.3.2. Time distribution of storage for the May 12,
1980 storm on the Shoal Creek watershed calculated using the
discrete~-time continuity equation.
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- so = 0,01 for uniform flow

v = (1.49/n) R?/3 s}/2 = (1.49/0.035) x 2.752/3 x 0.01'/2 rt/s
= 8.35 ft/s

The flow rate 12 Q=v A = B,35 x 327 ofs = 2,737 efs., The criterion for
fully turbulent flow is calculated from Eq. (2.5.9a) in the textbook

nb (RS;)'/2 = 0.035% (2.75 x 0.01)'/2 = 3.05 x 10710

which i{s larger than 1.9 x 10713 s0 the criterion is satisfied and Hanning 8
equation is applicable.

2.5.4,

The area of the channel i{s A = (30 + 3 x1)x 1 m? « 33 m2, The wetted
perimeter is

Pa30+2x1x(12+30)1/2 5 23316m
so the hydraulic radius is R = A/P = 33/33,16 = 0,995 n.

The flow velocity is given by Manning's equation with n = 0,035 and sf
= S5 = 0.01 for uniform flow

v « (1/n) R2/3 5}/2 = (1/0.035) x 0.9952/3 x 0.01'/2 m/s = 2.85 m/s

The flow rate is Q= v A « 2,85 x 33 m?'/s «» 94 m?*/s. The criterion for
fully turbulent flow is calculated from Eq. (2.5.90) in the textbook

n® (RS;)172 « 0.0355 (0.995 x 0.01)'/2 « 1.83 x 10710

which is larger than 1.1 x 10 “13 a0 the criterion i{s satisfied and Hannmg's
equation 1s applicable.

2.5.5.

Shallow flow over a parking lot is equivalent to flow in an infinite
width channel; in this case, the flow can be analyzed in a portion of
channel of unit width. For a flow depthof 1 in, the area of this channel
portion is A = 1/12 x 1 ft? « 0.083 ft?. The wetted perimeter corresponds
only to the channel bottom, P « 1 ft, s0 the hydraulic radius is R = A/P =
0.083/% ft = 0.083 r't, equal to the flow depth.

1e flow velocity is given by Manning's equation with n = 0.015 and S¢
= SC 2.5 § = 0,005 for uniform flow

. = (1.49/n) R%/3 5172 =« (1.49/0.015) x 0.0832/3 x 0.005'/2 rt/s =




« 1.34 ft/s

The flow rate per unit width of channel 1s Q=v A = 1,34 x 0.083 cfs/ft =
2,731 ofs/ft. The criterion for fully turbulent flow is calculated from Eq.
(2.5.9a) in the textbook

né (Rsp)'72 = 0.015% (0.083 x 0.005)172 = 2.32 x 107'3

whieh 1s larger than 1.9 x 10'13 so the criterion is satisfied and Manning's
equation is applicable.

P

For a flow depth or 1 cm, the area of a unit width channel portion is A
= 0.0t x 1 m? = 0,01 m2. The wetted perimeter corresponds only to the
channel bottom, P = 1 m, so the hydraulic radius is R = A/P = 0.01/1 m =

0.01 m, equal to the flow depth.

To check whether Manning's equation 18 applicable, the eriterion for
fully turbulent flow is calculated from Eg. (2.5.9b) in the textbook

nb (Rs;)1/2 = 0.015% (0.01 x 0.005)'/2 = 0.81 x 107"3

which 1s smaller than 1.1 x 10°'3 so the criterion i{s not satisfied
{although the flow is very close to fully turbulent); Manning's equation is
not applicable and the Darcy-Weisbach equaticn should be used instead.

The relative roughness ¢ 1s computed uaing Eq. (2.5.15) from the
textbook, as a function of the hydraulic radius R = 0.0t m and the Manning's
coefficient n =» 0.015, with the factor ¢ = 1 for SI units. Then

-eR' /6 /[ un(2g) 1723
e =3x 10 - 0.054

The fiow velocity v and the Darcy-Weilsbach friction factor f have to be
calculated in an iterative fashion, For a given value of v, the Reynolds
number Re can be computed using E‘;cg. (2.5.10) from the textbook. For a value
of the kinematic viscosity v = 10°° m?/s, we have

Re = 4vR/v = 4v x 0.01/1070 = 40,000 v (2.5.6-1)

The friction factor f can then be updated uaing the modified Moody
diagram in Fig. 2.5.1 of the textbook or the Colebrook~-White equation (Eq.
2.5.13 from the textbook). In this case the latter method will be preferred

since it is more accurate and easier to implement in a computer code. For
flow in the transition zone,

1//E = -2 logygle/3 + 2.5/Re x 1//T] =

= -2 10gy[0.054/3 + 2.5/Re x 1//F] (2.5.6-2)
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3.2.1.

The saturated vapor pressure at T = 25 °C {s given by Equation (3.2.9)
of the textbook

ey, = 611 exp[17.27T/(237.3+T)]) = 611 exp[17.27 x 25/(237.3 + 25)]

so e, = 2598 Pa. The actual vapor pressure, e, is calculated by the same
method substituting the dew point temperature T, = 20 °C for T

e = 611 exp[17.27T4/(237.3+T,4)] = 611 exp[17.27 x 20/(237.3 + 20)]

80 e = 1984 Pa.
The relative humidity, from Equation (3.2.1!1) of the textbook, is
R, = e/e, = 1984/2598 = 0.76

and the specific humidity is given by Equation (3.2.6) of the texbook, with
air pressure p = 101.1 x 10* Pa

q, = 0.622 e/p = 0.622 x 1984/(101.1 x 10%) = 0.012
The gas constant for air, R, is given by Equation (3.2.8) of the texbook
R, = 287 (1 + 0.608 q,) = 267 (1 + 0.608 x 0.012) ~ 289 J/(kg.%K)

and the air density is calculated from the ideal gas law (Equation 3.2.7 of
the textbook) with temperature T = 273 + 25 » 298 YK, so0 that

Pg = p/{RaT) = 101.1 x 10*/(289 x 298) =« 1.17 kg/m’

2.202.

The temperature T, at elevauon 2, = 1500 m is given by Equatlon
(3.2.16) of the textbook with T, = 25°C, 2, « 0, and lapse rate a = 9 °C/knm,
80 that

T,=T, ~a(z, -2,) =25=-9x 1073 (1500 - 0) = 11.5 °C =« 284.5 °k

'rhis ungerlture is below the dew point temperature for surface conditions,
e 20 “C, 80 the vapor pressure at 1500 m elevation corresponds to the
saturlted vapor pressure given by Equation (3.2.9) of the textbook

e, - 611 exp[17.27T/(237.3+T)] = 611 exp[17.27 x 11.5/(237.3 + 11.5)]

soe=e, = 1357 Pa.

The air pressure p, at 2, = 1500 n {s given by Equation (3.2.15) from
the textbook, with p, = 101.1 kPa, so that

Py * P, (T,/T,)"("nd) - 101.1 x (28“.5/298)9'81/(0'009 x 289) = 84.9 KkPa
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where the gas constant Ry = 289 J/kg®K has been taken for surface
conditions, since its variation with specific humidity is small (this
assumption can be checked later),

The specific humidity q, is given by Equation (3.2.6) of the textbook,
with air pressure p = 84,9 x Yo pa

q, = 0.622 e/p = 0.622 x 1357/(84.9 x 10%) =« 0.010

We can now check the value of the gas constant used before. For
specific humidity q, = 0.01

Rq = 287 (1 + 0.608 q,) = 287 (1 + 0.608 x 0.010) = 288.7 J/(kg.%K)

which is very close to Ry = 289 J/(kg.°K) assumed initially so no correction
is necessary.

The air density is given by the ideal gas law (Equation 3.2.7 of the
textbook)

py = P/(R,T) = BH.TT x 10°/(289 x 284.5) = 1.03 kg/m’

3.2.3.

The saturated vapor pressure at T = 15 °C is given by Equation (3.2.9)
of the textbdook

e = 611 exp[17.271/(237.3+T)] = 611 exp[17.27 x 15/(237.3 + 15)]

20 e, = 1706 Pa. The actual vapor pressure is, according to Equation
(3.2.11) from the textbook, with relative humidity Ry, = 0.35,

e = efR = 1706 x 0.35 = 597 Pa

The specific humidity is, with air pressure p = 101.3 kPa,
q, = 0.622 e/p = 0.622 x 597/(101.3 x 10?) = 0.0037

The gas constant for air, R,, is given by Equation (3.2.8) of the textbook
Ry = 287 (1 + 0.608 q,) = 287 (1 + 0.608 x 0.0037) = 287.6 J/(kg.°K)

and the air density is given by the ideal gas law (Equation 3.2.7 of the
textbook) with temperature T = 273 + 15 = 288 9K, so that

Pqa = P/(RT) = 101.3 x 107/(287.6 x 288) = 1.22 kg/m’

e

i

K
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Surface Temperature Precipitable Water

(°c) (rm)
0 9.95
10 20.77
20 41.01
30 T77.03
40 138.39

Table 3.2.6. Variation of precipitable
water depth with surface temperature,

3.3.2.

From Equation (3.3.%) of the textbook, the terminal velocity v, of a
falling raindrop of diameter D = 2 mm = 0.002 m, with C4; = 0.517 from Table
3.3.1 of the textbook, is

vy = [4gD/(3C4) (p,/py = 1172
- [4x 9.81 x 0.002/(3 x 0.517) (998/1.20 - 1)1'/2 = 6,48 m/s

this is the drop velocity relative to the surrounding air, If the air is
rising with velocity Vg " " 5 m/s, the absolute veloclty of the drop 1s

v -vt+va-6.48-5-1.ll8m/a

rel
and the drop is falling.

For drop diameter D = 0.2 mm = 0.0002 m, with C, = 4.2, the terminal
velocity can be calculated similarly, resulting v, = 0.72 @/s and

v -vt*va-'o-?z-s--u-zsm/s

rel

and the drop is rising.

3.3.3.

Three vertical forces act on a falling raindrop: a gravity force F,, due
to its weight, a buoyancy lorce Fb due to the air displaced by the drop and
a drag force F, caused by the fr'ction between the drop and the surrounding
air. If v is the vertical fal, veloecity of the drop of mass m, from

Newton's law

m dv/dt = Fw - Fb - Fd (3-3'3_1)



The maximum rainfall depth recorded in 10, 20 and 30 min. intervals (s
found by computing the running totals in Cols., (4), (5) and (6) of Table
3.4,3, respectively, through the storm, then selecting the maximum value of
the corresponding series, as shown in Table 3.4.3, For example, for a 30
minute time interval, the maximum 30 minute depth is 1.16 in, recorded
between 5 and 35 min. The rainfall intensity (depth divided by time)
corresponding to this depth is 1.16 in/0.,5 hr = 2,32 in/hr., This value is
leas than 60 % of the 30 min intensity experienced at gage 1-Bee for the
sapme storm (see Table 3.4.1 from the textbook).

3.4.4,

The computations follow those in Problem 3.4.3. and are summarized in
Table 3.4.4, The storm hyetograph {s shown in Fig. 3.4%.4(a). The
cumulative rainfall hyetograph, or rainfall mass curve, is obtained in Col,
(3) of Table 3.4.4, and plotted in Fig. 3.4.4(b).

The maximum rainfall depth or intensity (depth divided by time)
recorded in 10, 30, 60, 90 and 120 min. intervals is found by computing the
running totals in Cols., (4)-(8) of the table, through the storm, then
selecting the maximum value of the corresponding series, as shown in Table
3.4,4. These intensities are about 60-70 § of the intensities observed at
gage 1-Bee for the same storz (see Table 3.4.1 from the textbook), which
experisnced more severe rainfall,

3-".5-

{(a) Arithmetic mean method. Raingages numbers 1, 4, 6 and 8 sre
located outside the watershed and will not be considered in the computation
of the arithmetic mean. The areal average rainfall is, therefore,

-P-u (P' + P, + Py + P, *P,)/S
= (59 + 41 + 105 + 60 + 81)/5 = 69.2 mm

(b) Thiessen method. The Thiessen polygon network is shown in Fig.
3.4.5-1., The areas assigned to each station are shown in Col. (3) of Table
3.4.5-1, The watershed area is A = 125 kn? and the areal average rainfall
is given by Eq. (3.4.1) of the textbook

J
Pewisza ] APy = B746/125 = 70.0 mm
J=1

{e) 1Isohyetal method. The isohyetal map ts shown in Fig. 3.4.5-2.
The average rainfall is found by adding the weighted rainfall values in Col.
() of Table 3.4.5-2,

J

Pe=i/a APy = 8638/125 = 69.1 mm
J=1
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(1) (2) (3) (1) (5) (6) (7) (8)
Time Rainfall Cumulative Runing totals (in)
Rainfall
(min) (in) (in) 10 min., 30 min. 60 min. 90 min. 120 min.
0 = 0.000
5 0.009 0.009
10 0.000 0.009 0.009
15 0.030 0.039 0.030
20 0.130 0.169 0.160
25 0.100 0.269 0.230
30 0.130 0.399 0.230 0.399
35 0.210 0.609 0.340 0.600
40 0.370 0.979 0.580 0.970
45 0.220 1.199 0.590 1.160
50 0.300 1.499 0.520 1.330
55 0.200 1.699 0.500 1.430
60 0.100 1.799 0.300 1.400 1.799
65 0.130 1.929 0.230 1.320 1.920
70 0.140 2.069 0.270 1.090 2.060
75 0.120 2.189 0.260 0.990 2.150
80 0.160 2.349 0.280 0.850 2.180
85 0.140 2.489 0.300 0.790 2.220
90 0.180 2.669 0.320 0.870 2.270 2.669
95 0.250 2.919 0.430 0.990 2.310 2.910
100 0.480 3.399 0.730 1.330 2.420 3.390
105 0.400 3.799 0.880 1.610 2.600 3.760
110 0. 390 4.189 0.790 1.840 2.690 4,020
115 0.240 4,429 0.630 1.940 2.730 4,160
120 0.410 4.839 0.650 2.170 3.040 4,440 4.839
125 0.440 5.279 0.850 2.360 3.350 4,670 5.270
130 0.270 5.549 0.710 2.150 3,480 4,570 5.540
135 0.170 5.719 0.440 1.920 3.530 4,520 5.680
140 0.170 5.889 0.340 1.700 3.540 b, 390 5.720
145 0.140 6.029 0.310 1.600 3.540 4,330 5.760
150 0.100 6.129 0.240 1.290 3.460 4,330 5.730
Max. Depth 0,480 0.880 2.360 3.540 5,670 5.760 (in)
Max. Int. 5,760 5,280 4.720 3.540 3.113 2.880 (in/hr)

Table 3.4.4.

Computation of rainfall depth and intensity
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(a) Rainfall Hyetograph
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Fig. 3.4.4., Rainfall hyetograph (in 5 min. increments) and cumulative rainfall
hyetograph at gage 1-WLN for the storm of May 24-25, 1981 in Austin, Texas.
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CHAPTER 4. SUBSURFACE WATER

Equation (4.1,10) of the textbook may be written for the average
moisture flux q between measurement points ! and 2 as

Q = =K Sp = =K (H' =h,)/(z,-2,)

where 2z, = =80 cm, 2z, = -100 em and h,, h, can be measured from Fig.
4,1,.5.{b) of the textbook. The suction head ¢ at each depth may be found
from Eq. (4,1.9) of the textbook as y = h - z, For example, for week ! at
2, = 80 cm, h, = =145 cm 80 ¢; = h, - z, = =145 -(-80) =« -65 em, and,
similarly, ¢, = =160 =(-100) = -60 cm as shown in Cols. (&) and (5) of Table
b.1.1.

{1) (2) (3) (%) (5) (6) (7) (8) (%)
Hydraul. Hydraul., Moisture
Total head Suction head conduc. gradient flux
Week hl h. *; *g ¥ K Sr q
(cm) (em) (om) (em) (em) (cm/d) (em/d)
1 =145 =160 -65 =60 -62.5 0.0M 0.75 -0.030
2 =165 -180 -85 =80 -82.5 0.023 0.75 -0.017
3 =130 =150 =50 =50 -50.0 0.065 1.00 =-0.065
] =140 =170 =60 =70 -£5.0 0.037 1.50 -0.056
5 =125 =160 -45 =60 =52.5 0.059 1.7 =0.103
6 =105 =130 =25 =30 -27.5 0.230 1.25 =-0.287
7 =135 =150 =55 =50 -52.5 0.059 0.75 -0.044
8 ~-150 =170 =70 =70 =-70.0 0.032 1.00 =0.032
9 =165 =190 -85 =90 -87.5 0.020 1.25 =0.025
10 -190 =210 =110 =110 =110.0 0.012 1.00 =0.012
1 -220 =230 -140 =130 -135.0 0.008 0.50 ~0.004
12 =230 =250 =150 =150 -=150.0 0.006 1.00 =0.006
13 =255 =265 ~-175 ~-165 =-170.0 0.005 0.50 -0.002
1

-280 -285 =200 ~-185 -192.5 0.004 0.25 -0.001

Table 4.1.1. Soil moisture flux between 0.8 and 1.0 m at Deep Dean,
Sussex, England.

The hydraulic conductivity varies with v, so an approximate average
value may be found corresponding to the average of the ¢ values at z, = 80
em and 2, = 100 em, ¥ = [=65 + (~60}]/2 = -62.5 cm as shown jn Col. (6), and
Enﬁ‘corresponding hydraulic conductivity is K = 250(-&)'2' 1 w250 x 62.5°

' o 0.041 cm/d in Ceol. (7). In week 1, the hydraulic gradient in Col.
(8) is Sg = (h,~h3)/(2,-2,) = [~145 ~(-160)]/[~80 -(~100}] = 0.75, so the
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soil molsture flux in week 1 is
q = -K Sp = -0.041 x 0.75 = -0.030 em/d

as shown in Col. (9) of Table U4.1.,1. The flux q is negative because
moisture is flowing downwards in the soil.

n.}.zl

The molsture flux between 1.0 and 1.2 m depth may be computed following
the method outlined in Problem 4,1.1. For example, for week 1 and depth z,
= -100 cm, h, = =160 c¢m so ¥, = h, - z, = -160 -(~100) = =60 cm, and,
similarly, ¥, = =190 ={~120) = -70 cm as shown in Cols. (#) and (5) of Table
4.1.2. The hydraulic conductivity varies with y, so an approximate
average value may be found corresponding to the average of the ¥ values at
z, = 100 em and z, = 120 om, ¥ = [~60 + (~70)]/2 « =65 cm as shown in Col.
(6), and the corresponding hydraulic conductivity i1s K = 250(-¢) < T « 250
x 65211 w 0,037 em/d in Col. {7). In week 1, the hydraulic gradient in
Col. (8) of Table 4.1.2 is S¢p = (h;-h,)/(2,-%2,) = [-190 -(-160)1/[~-120 =(-
100)] = 1.5, 8¢ the soil moisture flux in week 1 is

q = =K Sg = =0.037 x 1.5 = =0.056 cm/d

as shown in Col. (9) of Table U4.1.2. The flux q is negative because
moisture is flowing downwards in the soil,

4.1.3.

The moisture fluxes may be computed between different depths following
the method outlined in Problems 4.1.1 and #,1.2, Table 4.1.3~1 shows the
hydraulic heads measured from Fig. 4.1.5(b) of the texbook at different
depths. The resulting fluxes are summarized in Table 4.1.3-2. The values
of the flux at 3m depth are very high because the soil is saturated most of
the time and the relationship between hydraulic conductivity and suction
head is no longer applicable; the flow is driven by gravity alone.

Fig. %.1.3 shows curves of moisture flux versus time between different
depths in the soil. It {s clear from the figure that rainfall drives the
infiltration proceas. The response of the soil to precipitation is very
rapid in the upper layers of the soil. For example, between 0.4 and 0.8m,
infiltration increases abruptly after storms followed by a decay later., As
we move deeper into the soil, the response 13 more damped and a single storm
is no longer influential to the same degree; longer rainy periods are
required to increase the moisture flux, as shown by the 1.5 to 1.8m profile,

~During the sumnmer months, suction heads are very high throughout the
301l profile. The effect of precipitation in moisture flux is negligible,
except in the upper sections of the soil, Between 0.4 and 0.8m, the
direction of flow is eventually reversed as moisture moves upwards to leave
the soil as evapotranspiration. The calculations shown here are approximate
83 they do not account for the varlation of soil properties with depth l.e.
the same relationship between K and ¢ is used for all depths In the soil.



(@) Infiltration vs. Time
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Fig, 4.3.2. Infiltration rate and cumulative infiltration depth computed
by the Green-Ampt method.
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4,3.2.

The infiltration rate r and the cumulative infiltration F at time t «
o, 0.5, 1, 1.5, 2, 2.5 and 3 hrs may be computed following the method
outlined in Problem 4.3.1. The cumulative infilltrationis first computed

using Eq. (#.3.8) of the textbook
F(t) = kt + JAe enl1 + F/(ypae)]
= 1,09 t + 2.72 n[1 + 3/2.72]

which may be solved by successlive approximation for each value of t. The
inflltration rate is then computed using Eq. (4.3.7) of the textbook

£(t) = k (YAB/F + 1) = 1.09 (2.72/F + 1)

The results are listed in Table 4.,3.2. Fig. 4.3.2(a) shows a plot of the
infiltration rate and cumulative infiltration versus time. Fig. 4.3.2(b)
shows the variation of the infiltration rate f with the infilltration depth

F.

Infiltration
Time Rate Depth
t f F

(hr) (om/hr) (em)

0.0 - 0.00
0.5 2.51 2.10
1.0 2.0 3.21
1.5 1.80 .16
2.0 1.68 5.03
2.5 1.60 5.85
3.0 1.54 6.63

Table 4.3.2, Infiltration
computedby theGreen-Ampt
method.

4-29




b.3.3.

From Table U4, 4,1 from the textbook, for a silty clay soil, 8o = 0.423,
$ = 29.22 ¢m and k = 0,05 cm/hr, The {njtial effective.saturationisS_=
0.2, 80 48 = (1 - 5408, = (1 - 0.20)0,423 = 0.338, and ¥28 » 29.22 x 0.33§ =
9,888 cm, Assuming continuous ponding, the cumulative infiltration F is
found by successive substitution in Eq. (4.3.8) from the textbook

F = kt + wa® Ln[1 + F/(yae)]
= 0.05t + 9.888 en[1 + F/9.888]
For example, at time t = 0.1 hr, the cumulative infliltration converges to a
final value F = 0,29, The infiltration rate f is then computed using Eq.
(4.3.7) of the textbook
f = k(1 + yAB/F) = 0.05(1 + 9.89/F)
For example, at time t= 0,1 hr, £ = 0,05(1 + 9.89/0.29) = 1.78 ecm/hr. The

infiltration rate and the cumulative infiltration are similarly computed
between 0 and 6 hours at 0.1 hr intervals; the results are shown in Table

4.3.3.

4.3.4,

The cumulative infilitration may be computed by the method outlined in
Problem 4,3.1, with 8, = 0.423, ¢ = 29.22 cm and k = 0.05 em/hr from Table
4,3.1 of the textbook. The cumulative infiltration F after t = 1 hr is
shown in Col. (4) of Table 4.3.4 and the variation of F with the initial
value of .S, is plotted in Fig. 4.3.4. For example, for .effective saturation
Se = 0, 20 = (1 ~ S}, = (1 ~ 0)0.423 = 0.423, and 948 = 29.22 x 0.423 =
15.36 em as shown in Ceol. (2) of Table 4.3.4, The infiltrated depth is
computed solving Eq. (#4.3.8) of the textbook by the method of successive
approximation. For example, for Se = 0 the cumulative infiltration after 1
hr converges to a final value F = 1.14 em, as shown in Col. (3) of the
table,
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time t = 1 hour

Infiitratien Depth (am)

Fig. 4.3.4. Cumulative infiltration depth, computed by the Green-Ampt method,
as a function of the initial effective saturation of the soil,



(1) (2) (3)

Effective Cumulative

Saturation Infiltration
Se $Ad F

(em) (em)
0.0 12.360 1.14
0.2 9.888 1.07
0.4 T.816 0.94
0.6 4,94y 0.78
0.8 -2.472 0.56
1.0 0.000 0.05

Table 8,3.4, Cumulative infiltration after 1 hr.

4.3.5.

~ The analyals follows the derivation in Chapter 4.3 of the textbook for
a single-layer Green-Ampt equation. A4 control volume is defined, as in Fig.
4.3.2 of the textbook, arocund a vertiocal column of soil with unit
crossectional area between the surface and depth L = H, + L,, where H, is
the upper layer thickness and L, is the depth of the wet front in the lower
layer. The continuity equation gives Eq. (4.3.13) of the textbook

L .. . .
F-! AedZ'Ael H;*AO,L,
0
and differentiating this equation gives
f = dF/dt = A8, dL,/dt (4.3.5-1)

The momentum equation (Darcy's law) applied between the soil surface
and the wetting front ylelds, with ponded depth h, on the surface,

f =K [h. = (-wg - Hl = Lg)}/("l + Lz)
where K - [H,/K, + I.../I(,]"1 i3 the equivalent hydraulic conductivity for
flow across two layers of thicknesses H, and L,, and conductivities K, and

Ky. Substituting K into *“e previous equation yields, neglecting h,, Eq.
(4.3.12) of the textbook.
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29,22 cm, while, for t = 1 hr, the term it - F is less than it = 1t ¢m, much
smaller than v. An approximate solution may then be obtained by assuming h,
is constant. 1In this case, Eq. (4.4.7-2) may be written as

dF/dt = K[ae(h, + v} + FI/F
80 that
dF F/[A8(h, + ) + F] = K dt

which can be integrated between t_ and t following the method outlined in
Section U.3 of the textbook to yield

FeF,+ 88(h, + ¥) n{[a8lh, + ¥) + F1/[a6(h, + ¥) *+ F] + K(t - ty)

The values of F and h, may be approximated using an iterative procedure
as follows, For h, = 0, F = 0.88 cm at time t = 1 hr, from Problem 4. 4.6,
Since all excess rainfall constitutes ponded water, this yields a new value
of hy =it~ F=1x1~- 0,88=0.12cm. Then, the previous equation may be
solved by.the method of successive substitution with t = 1 hr, K = 0.05
cm/hr, $48 = = 9.89 ¢m, t.p = 0.52 hr, Fp = 0.52 and h, = 0,12 cm. The new
value of F is F = 0.88 cm and hy » it = Fe 1 x 1t - 0.88 = 0,12 em. This
shows that the depth h, is in effect negligible at time t = thr,

4.4.8,

For a clay loam soil, 6, = 0,309, ¥ = 20.88 em and X = 0.1 em/hr, from
Table 4.3,1 of the textbook. The ponding time is, from Table 4.4.1 of the
textbook,

tp = Kuse/[1(1-K)] = Kv(1-S5)6,/[1(1-K)]
80 that the initial effective saturation is, with tp = § min = 0.083 hr and
rainfall intensity i = 2 cm/hr,

Sg =1 - tpiti-x)/(xvee)
=1 - 0.083 x 2 (2 - 0.1)/(0.1 x 20.88 x 0.309) = 0.509

Then, for a sandy loam scil, 8 = 0.412, vy = 11,01 cm and K = 1,09 em/hr, s0
the ponding time under rainfall intensity { = 2 em/hr is

tp = K¥(1-5,)6,/[1(1-K)] = 1.09 x 11.01 (1-0.509) 0.412/[2(2-1.09)]

= 1.33 hr

u-u.g.
The ponding time for the rpzilip's equation is gliven in Table 4,4.1 of

the textbook. For S = § cm hr K = 0.4 em/hr and rainfall intensity i =
6 cm/hr, this gives
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