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COURSE: Hydrologic Statistics

LESSON A: INTRODUCTION

This course concerns a generalized overview of statistical analysis
associated with hydrology. This course is an experiment of sorts for me
and for you. I am intentionally avoiding heavy math and considerable
theory. I aim to use our collective education, experience, and intuition
to explore solutions to hydrologic problems. As a rule of thumb, I state

that statistics generally tells us what a reasonable mind already knows.

(Well some problems truly are too big to get the mind around.)

In this context, we are brought to the use of the R environment for
statistical computing as a statistics teaching aid. Whereas I am not
striving (necessarily) to teach R itself, as you will see in the next few
hours, the command line oriented nature of R permits very detailed
demonstration of numerous statistical concepts in a fashion that should
prove beneficial to all and is portable. The R environment has become
the standard language for teaching and research within the broader
statistics community. The R environment is open-source and runs on
a myriad of platforms and is fun to use. I am hopeful that the many
examples in this course can be cut and pasted from the PDF version
of this handout into R so you can proceed with your own followup as
you see fit.

I also intend this course to be an opportunity to tell stories and
share experiences related to my nearly 15 years of statistical practice.
DISCLAIMER: I am trained twice over in civil engineering and my Ph.D.
is in geosciences. I work primarily in surfacewater hydrology with
a focus on hydrologic statistics and development of procedures for
end users such as transportation engineers. My interests reside in the
realm of computational methods and tricks to accomplish investigation
and research goals. Although I have had several courses myself and
have a robust statistics library, I am largely self/colleague taught in the
statistical discipline. Therefore, there are statistical topics that some
of you could be much more knowledgeable. For this course, I will to
emphasize those areas that I am most adept, and use as part of my
hydrologic research.

A.1 Getting Started

We will start by assuming that you have R installed and operational
on your machine, but I do not assume that you have a machine with
you today—I want you to grasp the statistical concepts and contribute
to discussion. However, presentation of some R functionality is needed.
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Let us begin by an introduction and discussion of basic operations
of a small number of R commands. R generally is (and is recommended
to be) deployed via a command line interface; you will shortly see
the reasons that I find this attractive. I work primarily on MacOSX
and Linux because they are my production platforms; however, I am
hopeful that demonstration of some statistics under Windows will
occur.

R is built around the concept of vectorized arithmetic. For example,
to add vectors a and b (or “columns” in spreadsheet parlance), one sim-
ply says a+b. You will find that after the initial hurdle of basic syntax
that the ability to document, communicate, and archive your statistical
operations is greatly enhanced by vectorized arithmetic.

Lets begin—the following figure contains approximately six com-
mands to give you a feel for an R session. We generate some fake data,
compute the mean, and print the value to the screen. The printing step
can be shortened by simply saying mean(some. fake.Data).

some.fake.Data <- rnorm(30) # 30 samples from standard normal
# distribution

the.mean <- mean(some.fake.Data) # compute it

print(the.mean) # print it

help(mean) # to learn more about the function
help.search("mean") # fuzzy matching of the term

q() # exit R, you are rolling!

Figure A.1. Example of a simple R session to compute the mean of some data,
demonstrate built-in help features, and exit R

The code illustrates several important details of the presentation
for this course. Note that the code listing, and further code listings in
this handout, are in a monospaced font and have syntax highlighting.
Common commands built-in to R are shown in bold type as in the
mean, comments are shown in oblique type # comment, and all other
code is in regular type. The algorithm that performs the highlighting
only recognizes patterns and not meaning as you can see the mean high-
lighted in the variable name the.mean. This is a minor inconvenience
at the benefit of a markup system that should make material easier to
follow. Finally, spaces within strings are shown with the " _" character
for clarity.

For the introductory code above, we generate some fake data, which
by definition should have a mean of zero using the rnorm() (random
normal distribution). However, because we are simulating the normal
distribution by a finite sample, the mean will deviate slightly from zero.

The figure continues with a demonstration of the help system on
your platform by the help(mean), which provides the help content
related to the mean function. The example in figure A.2 ends by the
quit function q(). You will see time and time again the use of paired ()
even for simple operations—this represents the idea of “function” and
is not optional. The q() will largely become optional for the remainder
of examples in this course, and thus will not typically be shown.
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some.fake.Data <- rnorm(30)
n <- length(some.fake.Data) # hope n == 30
if(n == 30) {
cat(c("GREAT!", "xxxx_IT_DOES\n"))
}
q() # type this in separately

plot(some.fakeX, some.fakeY, pch=14, col=2,
xlab="X data", ylim=c(-15,5))

Figure A.2. Example of a simple R session to demonstrate that R is a bonafide
programming language. The example computes the mean of some data and
tests the length of the vector

A.2 A Graphical Example

Graphics are a fundamental part of statistical analysis. In fact, I
argue that they are the most critical tool. Good graphics are powerful,
but good graphics do take some effort, and the effort is difficult to
fake. Out-of-the-box R provides generally ok graphics, but natively are
insufficient for reports and papers requiring high-quality typesetting.
I'will scatter (pun intended) throughout the course my thoughts and
techniques for good graphics style and generation. But first, let us
continue with what R can do.

some.fakeX <- rnorm(30)
some.fakeY <- some.fakeX - 10 + rnorm(30)
plot(some.fakeX, some.fakeY)

Figure A.3. Example of a simple R session demonstrating generation of a plot

The first plot () operation should largely be self evident. The sec-

ond plot () operation includes the alteration of the plotting character
to a solid circle (pch=14) with color red (col=2). We add an X label by
xlab="X_data" and specify both limits of the Y axis by ylim=c(-15,5).
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Figure A.4. Plot from R code in figure A.3

The use of the c() operator is introduced. It combines values into a
vector or list structure that is fundamental to the vectorized operations

of R. You will see c() used time and time again. In the context here, it
combines the values -15 and 5 into a single value passed to the ylim
argument of the plot () function. There are dozens of plotting functions
and operations as well as numerous add-on packages deploying the
capability of R in the graphics realm. Others will be seen throughout

this course.
Often it is desirable to produce graphics, not to the screen, but as a

stand alone file for inclusion in other documents. The following code
example adds the pdf () and dev.off() functions. The pdf () function
switches the graphics device from the screen to a subsystem that gen-
erates PDF files. The function takes several arguments, but the most
important is the file name. The example uses yourfirst.pdf as the file
name. The plot() call was shown earlier. The dev.off() command
closes the device and reopens the screen and is not optional for this
process to work.

some. fakeX <- rnorm(30)
some.fakeY <- some.fakeX - 10 + rnorm(30)
pdf("yourfirst.pdf")
plot(some.fakeX, some.fakeY, pch=16, col=2,
xlab="X_data", ylim=c(-15,5))
dev.off()

Figure A.5. Example of a simple R session demonstrating generation of a plot
as a PDF to the operating system

For high-quality typesetting, a PDF file such as that produced would
be imported or otherwise opened in a drawing application and addi-
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tional adjustments would be made. That processing is outside the scope
of this course.

A.3 Dataframes

A data frame is a fundamental unit of information in R. It can be
thought of as a simple spreadsheet with columns, rows, and headings.
Data read from external files is automatically loaded into data frames.
R provides many tools for advanced data frame manipulation that are
beyond the scope of this course. R ships with many built-in datasets,
let us use one to demonstrate a data frame. The following code has
additional embedded comments to aid to our discussion.

print(a.product)

# Now extract the 10th value of the product.
a.product[10]

# Print the 10th value of the Wind data
airquality$Wind[10]

data(airquality) # airquality is builtin, load it into your
# workspace
print(airquality) # wow, that is a lot of data

# What are the columns in this data?
names (airquality) # 6 names will be shown

# Lets look at the wind data
airquality$Wind # the data is shown now in a horizontal multi-row
# matrix

# Let us multiply the wind data by the temperature data.
# Do not know why one would do this, but .
a.product <- airquality$Wind=airquality$Temp

Figure A.6. R code demonstrating simple operations on a built-in data frame

The example shows two techniques of variable referencing. First,
airquality$Wind shows that the Wind is a named subset of the
airquality data frame. Second the use of numeric or element lookup
of the data vector a.product[10]. The example ends with a variation
on each of these two methods.

Entire rows or columns of a data frame also are readily extracted:

data(airquality)
names (airquality)
airquality[10, ] # extract tenth row of the frame

airquality[, 3] # alternative way to extract the Wind data

airquality[10,3] # extract 10th Wind value

Figure A.7. R code demonstrating row and column operations on a built-in data
frame
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For this example, note the use of the commas in the square brackets
and how to define the rows or columns. It is burdensome to type the
name of the data frame, thus R offers the ability to attach the names of
the data frame into your workspace.

data(airquality)
names(airquality) # it is a habit of mine to peak at the names
# after a data frame is loaded.

attach(airquality)
plot(Wind, Temp)
detach(airquality) # in some settings detachment is needed if other
# data frames will be attached as necessary. I am a little
# vague on when this is mandatory.

# The plot call above is more curt than
plot(airquality$Wind,airquality$0zone)

Figure A.8. R code demonstrating attachment and detachment of a built-in
data frame

Data frames are easy to build by hand. Suppose we have four data
vectors and desire to make a data frame out of them:

# First some random values
A <- c(123, 546, 345.2, 12,
875, 321, 90, 800)

# Second multiple each value of A by unique random standard normal
# values
B <- Axrnorm(length(A))

# Third generate a linear adjustment of A
C <- A%10 - 100 # note that negative 100 offset is cycled for all
# values of vector A

# Finally build the data frame, demonstrating how names are made
# and how c() can be used inline.
X <- data.frame(dataA=A, dataB=B, moredata=C,
Ddata=c(12, 46, 32, 2, 85,
31, 0, 51))
print(X)

Figure A.9. R code demonstrating how a data frame is constructed by hand
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LESSON B: BASIC SUMMARY STATISTICS

B.1 The Mean, Standard Deviation, Coefficient of
Variation

The mean u and standard deviation ¢ are well known and the most
popular statistics of a data set. The ratio o/ is known as the coeffi-
cient of variation CV. The yu measures the location of the data on the
real-number line and is further discussed in class. The ¢ measures the
variation of the data about y. The CV can be useful in some applica-
tions as it is an expression of relative variability. These two statistics
also are further discussed in class.

1 n
H:ﬁi;xi

where 1 is the sample size, x; is the ith observation. The —1 term in the

o definition corrects for bias.
The following code demonstrates the computation of , o, and CV

for hand made data set.

madeupdata <- c(123, 546, 345.2, 12,
875, 321, 90, 800)

mu <- mean(madeupdata)

sigma <- sd(madeupdata)

cvV <- sigma/mu

cat(c(mu,sigma,cv,"\n"))

Figure B.1. R code demonstrating computation of mean, standard deviation,
and coefficient of variation

This example reports all three values in the indicated order. A new
function is used cat (). The function concatenates and prints a list of
values—see how the c() is used to build this list. The "\n" value is a
universal symbol used to denote a newline or return and enter keys on
the keyboard.

B.1.1 Hodges-Lehmann Estimator of the Mean

A statistic is said to be robust if its sampling properties are resistant
to the influence of extreme values. In particular if a data stream has
the potential for erroneous data or the distribution of the phenomena
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understudy is heavy-tailed, then robust statistics are useful. If one is
uncertain whether a distribution is symmetric, in which the arithmetic
mean should perform well, then the best choice is the Hodges-Lehmann
estimator (Good and Hardin, 2003). The estimator is defined as the
median of the pairwise averages:

A = median;<;(X; + X;) /2

The following code demonstrates the performance of A. I define a func-
tion DELTA to compute the Hodges-Lehmann estimator. We simulate
a sample of size 40 with mean=1500 and sd=2400. We subsequently
contaminate the sample if a very large number—imagine that a decimal
got off by accident. We compute the mean by mean() and then compute
A.

return(DELTA)
}

# Begin the meat of the example. . .
# Run this portion again and again to see the performance of DELTA
# . You will see again and again that DELTA is closer to 1500
# than mu.
X <- rnorm(40,mean=1500,sd=2400)
X[length(X)+1] <- 14000 # fake a hideously bad data value
mu <- mean(X)
DELTA <- DELTA(X)
cat(c("Arithmetic_Mean=",mu,"\n",
"Hodges-Lehmann,_Estimator =",
DELTA, "\n"),sep="")

# The Hodges-Lehmann Estimator
DELTA <- function(x) {
tmp <- vector(mode="numeric")
n <- length(x)
count <- 0
for(i in seq(1,n-1)) {
for(j in seq(i,n)) {
count <- count + 1
tmp[count] <- (x[i]+x[j])/2
}
}
DELTA <- median(tmp)

Figure B.2. R code demonstrating the Hodges-Lehmann estimator of the mean
for a contaminated data set

B.1.2 Bias in the Standard Deviation

The standard deviation ¢ that all of us should be very familiar with
is computationally simple as shown in the previous section. The divi-
sion by 7 in the mean seems reasonable enought, but why do we have
the (n — 1) term? Does this mean that we do not compute the average
square deviation? Yes, it does. Years ago I was simple told in class that
well you give up a degree of freedom because the mean itself requires
estimation. Ok—but what does that mean? I was never quite satisfied
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until many years later when I was studying L-moments and the idea of
bias in a statistic that the true meaning of the (n — 1) term was made
manifest. With a simple 7 term in the denominator, we under estimate
0. The following R code concretely demonstrates this idea. The code
involves the idea of statistical simulation, sampling error, and statistics

of statistics. We will discuss each element in detail in the classroom.

Sulffice to say that if you run the following code, you will confirm that
the (n — 1) definition of standard deviation that is built-in to the sd()
function provides a closer estimate to sd=10000.

}

# compute the summary of each vector of simulated standard
# deviations

summary (bias.tmp)

summary (unbias.tmp)

# two vector to hold sample estimates of standard deviation
bias.tmp <- vector(mode="numeric")
unbias.tmp <- vector(mode="numeric")
count <- 1 # a counter for the vectors
sample.size <- 30 # a modest sample size
for(sim in seq(1,1000)) {
X <- rnorm(sample.size,mean=0,sd=10000) # a large standard
# deviation?
mu <- mean(X) # compute the sample mean of the count-th
# simulation

bias.sigma <- sqrt(sum((X-mu)A2)/sample.size) # theoretical
# definition
unbias.sigma <- sd(X) # the unbiased estimate

bias.tmp[count] <- bias.sigma
unbias.tmp[count] <- unbias.sigma
count <- count + 1

Figure B.3. R code demonstrating bias in estimates of standard deviation

B.1.3 Confidence and Prediction Intervals

The sample mean is known as a point estimate. Alternatively, in-
terval estimates posses a declared probability of containing the true
population value (Helsel and Hirsch, 1992). Interval estimates can
provide two bits of information that points estimates can not:

1. Declaration of probability that the interval contains to true popu-
lation value—CONFIDENCE INTERVALS

2. Declaration of the probability that an individual value comes
from the population under study—PREDICTION INTERVALS

The above concepts and terms are interrelated, they are not the
same and can not be interchanged. Consult good statistical textbooks
for clarity on the matter. Some of these books are listed in the Selected
References of this course. We will briefly consider prediction intervals
in the context of linear regression later in this course.
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B.1.4 Confidence Intervals for the Mean

Interval estimates for the true mean y are easy to compute. The
symmetric intervals around the sample mean X are common. Samples
with large n the symmetric intervals described here are adequate re-
gardless of the distribution of the data. For small samples this is not
true unless the distribution of the data is in fact normal.

The confidence intervals for the 1 — & interval require tables of the
t-distribution or the R function qt (). For highly skewed data or data
with outliers the classical statistics assumptions of the t-distribution are
invalid, but for this course the following will suffice.

The confidence interval for the mean are:

X —tajom )V S p S X —typp 1) Vs?/n

where s is the sample standard deviation and f, 5 ,_1) is the quan-
tile function of the t-distribution. The computation of the intervals is
shown in the following code.

# notice how the semicolon permits more than one command per line

# need left and right tails of the distribution
the.t.LEFT <- qt(a2,n-1)

the.t.RIGHT <- qt(1-a2,n-1)

tmp <- (sbar#x2/n)#*0.5

# the sign is explicitly attached to the.t.LEFT and the.t.RIGHT
# values thus the use of + in both lower and upper intervals

lower <- Xbar + the.t.LEFT#tmp

upper <- Xbar + the.t.RIGHT=tmp

cat(c(" o ",Xbar,"

-

cat(c("LOWER_=_",lower," and ",

— )

"UPPER_=_",upper, "\n"))

—

~\n"))

madeupdata <- c(123, 546, 345.2, 12,

875, 321, 90, 800)
n <- length(madeupdata) # sample size
Xbar <- mean(madeupdata) # sample mean
sbar <- sd(madeupdata) # sample stand. dev.

# we want the 90-percent interval
alpha <- 1 - 0.90; a2 <- alpha/2

Figure B.4. R code demonstrating computation of confidence intervals of the
mean

The essence of the above code is the application of the t-distribution.
The function qt () returns the cumulative lower tail of the distribution.
Hence special accommodation for this is made by a break in the ver-
batim application of the confidence interval equation shown above.
One must be careful about how percentiles, tails, and as are used in a
particular function regardless of software package. You should also be
able to readily verify that an arbitrary software package does in fact
implement the computations correctly as we have here.
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B.2 Median

The median is another well known statistic that measures the loca-
tion of the data. The median is the 50th percentile. That is, it is expected
that 50 percent of observations would be less than the median and 50
percent would be larger. The median is known as a nonparametric
statistic that is based on the ranks of the data. The median is readily
computed in R. For the example, the middle value is computed as
the mean between 345.2 and 321 because the sample size is an even
number.

madeupdata <- c(123, 546, 345.2, 12,
875, 321, 90, 800)

mu <- mean(madeupdata)

med <- median(madeupdata)

cat(c(mu,med, "\n"))

madeupdata <- c(123, 546, 345.2, 12,
875, 321, 90, 800)
range(madeupdata)

Figure B.6. R code demonstrating computation of range

However, the IQR is readily computed using a higher level function
summary () through value extraction. The computation of IQR is:

Figure B.5. R code demonstrating computation of mean and median

B.3 Range and the Interquartile Range

The range is a statistic computed by the difference between the
maximum and minimum values. The range is an alternative measure
of data variability, but does not have particularly attractive proper-
ties. The interquartile range IQR is the difference between the 75th
percentile (third quartile) minus the 25 percentile (first quartile). The
range has a dedicated function

madeupdata <- c(123, 546, 345.2, 12,
875, 321, 90, 800)

the.summary <- summary(madeupdata)

igr <- the.summary[5] - the.summary[2]

print(iqr)

# How did I know to use the 2nd and 5th values?
# Well summary() reports five statistics.
print(the.summary)

# Even cooler, we can bipass the print()
the.summary

Figure B.7. R code demonstrating computation of interquartile range and the
summary command

R is a command line oriented program, thus redirection of compu-
tational results should readily be pushed into other files. Indeed this is
easy using the sink() function.
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madeupdata <- c(123, 546, 345.2, 12,

875, 321, 90, 800)
the.summary <- summary(madeupdata)
sink("a_text_file.txt") # has many additional parameters
print(the.summary)
sink() # close the file off

a random normal sample of size 30 with a 4 = 100 and ¢ = 200 and
compute skew and kurtosis.

Figure B.8. R code demonstrating redirection of textual output to a file using
the sink function

We can now open a_text_file. txt in a text editor or other appro-
priate software on your platform of choice. When files are produced in
this fashion, they can readily be picked up by other software for further
computation. R has much more powerful tools for data exporting than
shown by the tiny example above. A starting point for adventurous
folks is the write.table() function.

B.4 Skew and Kurtosis

Skew (7y) and kurtosis (x) are known as higher moments. They have
particularly poor properties in analysis of hydrologic data sets such
as floods and other data exhibiting high outliers. R apparently lacks
built-in functions for computation of these statistics, but the moments
package that is available online does. The library() function is used
to load in one or more of the nearly 1,000 contributed packages to R
that are available online. To demonstrate by example, let us generate

madeupdata <- rnorm(30, mean=100, sd=200) # 30 normal samples

library(moments) # your system will only have the this package if
# you have downloaded and installed it. We need this package
# for the skewness() and kurtosis() functions.

g <- skewness(madeupdata)

k <- kurtosis(madeupdata)

# Let us look at the definition of skewness and kurtosis
skewness
kurtosis

Figure B.9. R code demonstrating computation of skew and kurtosis

See how the open-source natre of R permits us to peak at how things
are actually computed? Anyway the computations seem easy enough
don’t they? No the don’t. Software packages and even some hard copy
sources often are insufficiently versed in either statistical theory, prac-
tice, or documentation. As the above example shows the definition
of 7 and «x are simple enough to understand and cross check against
text-book sources (Dingman, 2002). Using Dingman (2002, p. 559) lets
role our own functions in R. The R codes for v and x are shown in the
next two code examples.

The following figure shows development of a function my. skewness
() to compute the classical definition of ¢ and the unbiased version.
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The unbiased version is what we own to use in practice. You will note

that the classical estimate is always less than the unbiased estimate.

The difference prepresents the inherent bias in the mathematics. We
want to use unbiased estimators in hydrologic studies. The example
generates another random sample and computes 7 using skewness()
of the moments package and then continues on to compute my . skewness
(). Inspection of the output will show that the skewness() computes a
biased version of 7. An easy mistake to make if one does not consult
sources or the manual.

g <- skewness(madeupdata)
print(g)

z <- my.skewness(madeupdata)
print(z)

my.skewness <- function(x) {
n <- length(x)
mu <- mean(x)
sig <- sd(x) # unbiased standard deviation

M2 <- sqrt(sum((x-mu)A2) / n)
M3 <- sum((x-mu)A3) / n
classic.skew <- M3 / M2A3
unbiased.skew <-
nA2:=M3
/
((n-1)*(n-2)=sigr3)

return(list(classic = classic.skew,
unbiased = unbiased.skew))
}
madeupdata <- rnorm(30, mean=100, sd=200)
library(moments)

Figure B.10. R code demonstrating computation of classical and unbiased
skew

The following shows development of a function my.kurtosis() to
compute the classical definition of x, the unbiased version, and another
x known as excess kurtosis. The unbiased version or excess « is what
we need to use in practice. It is not always clear which « or excess « is
needed for a particular situation involving application of distributions—
This is a serious shortcoming in the statistical discipline. You will note
that the classical estimate is always less than the unbiased estimate. The
difference prepresents the inherent bias in the mathematics. We want to
use unbiased estimators in hydrologic studies. The example generates
another random sample and computes x using kurtosis() from the
moments package and then continues on to compute my.kurtosis().
Inspection of the output will show that kurtosis() computes a biased
version of skew represent nonexcess x. Another easy mistake to make
if one does not consult sources or the manual.

my.kurtosis <- function(x) {
n <- length(x)
mu <- mean(x)
sig <- sd(x) # unbiased standard deviation
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B.5 Boxplots in Hydrology
M2 <- sqrt(sum((x-mu)A2) / n)
M4 <- sum((x-mu)?4) / n
classic.kurt <- M4 / M274 Boxplots are a highly useful tool for presentation of distributions
unbiased.kurt <- n"3:M4 of data. Particularly so when discrete groups or classifications of data
/ . exist. Box plots permit a compact visual representation of the distri-
((n-1)*(n-2)*(n-3)*sigr4) .
bution of the data. One or two boxplots are perhaps better shown as
. . . listed values in a table. However, as the number of boxes or catagories
# the excess kurtosis term is seen in some software packages T >
# including your typical spreadsheet software for a large sample becomes large greater cllarlty.m the presentation .1s
exc <- (3#(n-1)A2)/((n-2)#(n-1)) made through boxplots. Lets compute a view, discuss, and then I will
show some really good ones.
return(list(classic = classic.kurt,
unbiased = unbiased.kurt, madeupdata <- c(123, 546, 345.2, 12,
excess.unbiased = 875, 321, 90, 800)
unbiased.kurt - exc)) boxplot(madeupdata)
}
madeupdata <- rnorm(30, mean=100, sd=200) help(boxplot)
library(moments)
k <- kurtosis(madeupdata) data(airquality)
print (k) boxplot(airquality)
z <- my.kurtosis(madeupdata)
print(z) boxplot(airquality$Wind ~ airquality$Temp,

Figure B.11. R code demonstrating computation of classical, unbiased, and

excess-unbiased kurtosis

xlab="Wind, in_m/s",
ylab="Temperature,_in_degC")
mtext ("Temperature, =_func(wind_speed)")

Figure B.12. R code demonstrating computation of mean and median
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Temperature = func(wind speed)
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Figure B.13. Plot from second call to boxplot() in figure B.12

A major short coming in all software packages that I have seen,
with the exception of my own Tkg2, is the insufficient graphical de-

scription of the actual boxes generated is made. Figure B.14 provides
an outstanding example of comparatively simple boxes in which the
conditional adjustment of the plotting is required to accommodate
small sample sizes. The boxes described in figure B.14 are shown in
figure B.15. The description required hand construction and placement
of four unique types of boxplot explanation.
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Boxplot explanation for samples sizes of four or more
(41) No. of storms (sample size)

Stem indicates maximum value of the data

Upper quartile, 75 percent of data is less than this value

Median value (horizontal bar), 50 percent of data is less than this value

58.8

Mean value (plus glyph)—number indicates value.

Lower quartile, 25 percent of data is less than this value

Stem indicates minimum value of the data

Boxplot explanation for samples sizes equal to three

() No. of storms (sample size)
o

Median value (horizontal bar), 50 percent of data is less than this value

T

58.8

Mean value (plus glyph)—number indicates value.

o Data point

Boxplot explanation for sample sizes equal to two

(2) No. of storms (sample size)

© © Data point

@ + Mean and median (values correspond), 50 percent of data is less than tt
o value—number indicates value.

Boxplot explanation for sample sizes equal to one

w No. of storms (sample size)
] + Mean and median (values correspond)—number indicates value.

Figure B.14. Example of a boxplot description

Front-
loaded 290
100 290)  (253)

(108)

90 (41)

no data —

(11) (1)
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10 Weighted average of means is 59.1 percent.
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49.6
+

v bv s b beaa e by s baaa by laaal

Back- 0 | | | | | | | | | |
loaded 1 2 3 4 5 6 7 8 9 10

DEPTH CATEGORY FOR 0 TO 12 HOUR STORMS, IN INCHES

Figure B.15. Example of high-quality typesetting of boxplots

In conclusion, I would like to add a few comments about good
graphics. Graphics in a report are incredible tools to convey informa-
tion and greatly ease the burden of lengthy written discription. The
following list provides some guidance that I felt compelled to mention
as I write this course.
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1. Seldom will a graphics package provide near perfect typesetting.

Be prepared to post process your graphics in a vector editing
software package.

. Read sources with description of proper graphic style in scien-
tific and technical writing. Common spreadsheets make abysmal
graphics—do not use them.

. Minimize ink usage. Ink alone conveys neither information or
wisdom. The intersection of arbitrary ink lines and dots only
conveys information by reader’s previous exposure, context, and

written description. Our collective educational and cultural experi-
ences bring meaning to scientific graphics.

. Virtually avoid color at all costs. Although I am using color liber-

ally today, it is not good practice for scientific writing. Creativity
stems from constraint, constrain yourself from color and your
graphics will improve.

. Do not use histogram, pie charts, and 3-D effects. (3-D plots are

excluded.)
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LESSON C: FLOW-DURATION CURVES

C.1 Flow-Duration Curves

Flow-duration curves are simple, yet highly informative graphical
summaries of the variability of a (daily) time series. A flow-duration
curve is a graph plotting the magnitude of a variable Q verses fraction
of time the Q does not exceed a specified value Q(F). The fraction
of time can be thought of as probability and cumulative fraction of
time is termed nonexceedance probability F. The probability refers
to the frequency or probability of nonexceedance (or exceedance) in a
“suitably long” period of time rather than probability of exceedance on
a specific time interval (daily).

The area under the flow-duration curve is equal to the average for
the period. Other statistics or statistical concepts visible include: me-
dian, quartiles, other percentiles, variability, and skewness. Steeper
curves are associated with increasingly variable data. The slopes and
changes in the slope of the curves can be important diagnostics of
streamflow conditions in a watershed.

Flow-duration curves for neighboring stations yield valuable in-
sights into hydrologic or hydrogeologic processes. For natural streams,
the slope of the flow-duration curve for upper end is determined by

regional climate and characteristics of large precipitation events. The
slope of the lower end is determined by geology, soils, and topography.
The slope of the upper end is relatively flat where snowmelt is the
principal cause of floods and for large streams where floods are caused
by long duration storms. Flashy watersheds and watersheds effected
by short duration storms have steep upper ends. A flat lower end slope
usually indicates that flows come from significant storage in ground
water aquifers or frequency precipitation inputs.

C.2 Plotting Positions

Plotting positions are used to define the nonexceedance probability
or cumulative percentages of data points in a sample. Plotting positions
are used to define flow-duration curves, generate probability graph
paper, and compare two distributions. To generate such plots:

1. Orderdatax; <x, <...<x,
2. Rank’em 1,2,...,1i,...,n (i is rank)

3. F(x) = nonexceedance probability or just the percentile
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4. 1 — F(x) = exceedance probability

The general formula for plotting positions is

i—a
Flx) = ————+—
(x) n+1-—2a
where i is ascending rank, a is the plotting position coefficient, and # is
the sample size.

The true probability associated with the largest (and smallest) ob-
servation is a random variable with mean 1/(n + 1) and a standard
deviation of nearly 1/(n + 1). Hence, all plotting position formulas
give crude estimates of the unknown probabilities associated with
largest and smallest events. The plotting position coefficient can ac-
quire several different values. But for our purposes a = 0 the so-called
Weibull plotting position, which is the most(?) for magnitude and fre-
quency analysis. You can convince yourself that as #n becomes large
that choice of 4 becomes unimportant.

# perform this command separately from above to see both plots
plot(rank/(1+n),
logl0(streamflow), type="1")

# add the gnorm to make normal probability paper on the
# horizontal axis

plot(gnorm(rank/(1+n)),
logl0(streamflow), type="1")

Figure C.1. R code to generate a flow-duration curve for a data set

D1 <- read.table("ppl.txt",fill=TRUE,
header=TRUE)

names(D1)

streamflow <- D1$dv_va

streamflow <- sort(streamflow)

n <- length(streamflow)

rank <- seq(l,n)

plot(rank/(1+n),streamflow, type="1")

# not the addition of the comment character argument
# read.table defaults to comment.char="#", but read.csv does not.
D2 <- read.csv('"pp2.csv",
comment.char = "#",
header=TRUE)
names (D2)

D3 <- read.csv('"pp3.csv",
comment.char = "#",
header=TRUE)

names (D3)

makeFDC <-
function(flow) {
flow <- sort(flow) # ascending sort
n <- length(flow) # how many data points
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rank <- seq(1l,n) # sequence of increasing numbers
pp <- rank/(1+n) # the plotting position

return(list(PP=pp, FLOW=f1low)) <
}
FDC2 <- makeFDC(D2$VALUE) ™
FDC3 <- makeFDC(D3$VALUE) 0
LL
O
plot(gqnorm(FDC2$PP), logl0(FDC2$FLOW), z N
type="1", xlim=c(-2,4), col=4, =
x1ab="STANDARD_NORMAL_DEVIATE", 9
ylab="10g10_STREAMFLOW,_IN_CFS") # BLUE LINE g 7
lines(qnorm(FDC3$PP), logl0(FDC3$FLOW), ﬁ
col=2) # RED LINE ,D_f
n O
Figure C.2. More complex R code to generate flow-duration curves for two 9
data sets g
- |
|
o
|

STANDARD NORMAL DEVIATE

Figure C.3. Plot from R code in figure C.2
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C.3 Better Graphical Presentation of Flow-Duration
Curves

Graphical presentation of flow-duration curves is not a trivial task
with most software. Years ago I wrote a Perl based program called Tkg?2
just for this very task. The software runs extremely well under Unix,
Linux, and MacOSX, milage will very on Windows because of inherent
shortcomings in that operating system. However, the following two
figures were generated for this course and depict the flow-duration
curves for the subject daily streamflow data.

7000 17 T T T T T T T T T 1 T 1
6000 C BARTON CREEK AT HWY 71
C BARTON CREEK AT LOOP 360

5000 |- 3
DALY 4000 |- 3
MEAN C ]
STREAMFLOW,, o B
IN CFS o ]
2000 -
1000 - -
0 - T T T TTT L1 | | [

0.01 0.1 0.51 5 10 2030 50 7080 90 95 99
NONEXCEEDANCE PROBABILITY, IN PERCENT

99.9 99.99

Figure C.4. Example of a boxplot description

Figure C.4 shows the flow duration curve with a properly built
probability axis instead of the standard normal deviates provided by R.
The streamflow axis is linear. Figure C.5 on the other hand depicts the
streamflow axis in log10 space. What differences do you see between
the two plots. How are one’s interpretations of watershed behavior
influenced by the choice of plotting method?

}8888E|||||||||| T
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MEAN 20
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IN CFS
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BARTON CREEK AT LOOP 360

AL AL S R A A

ST AT AT AT A

[N I N | N N 1 1 11 1
5 10 20 30 50 70 80 90 95 99 99.9
NONEXCEEDANCE PROBABILITY, IN PERCENT

©
©
©
©

Figure C.5. Example of high-quality typesetting of boxplots

Now both figures C.4 and C.5 still need a few tweaks here and there.
Primarily font rotation on the vertical axis label. But that is a job of post
processing software like Illustrator or Inkscape.
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LESSON D: DISTRIBUTIONAL ANALYSIS—-Classical Moments
D.1 Moments where M, is the nth moment. The higher moments are often standard-

We have already played with classical or product moments in easlier

lessons. These are the mean, standard deviation, skew, and kurtosis.
Moments are powerful statistics that reduce data into a few values.

The mean is the most important and it can be argued that higher and
higher moments provide decreasingly important information of the

distribution of the data.
The product moments raise data to a power—hence, “products” of

the data are generated.

1 n
M1 = — Exi

ni3

1 & 5
My ==Y (xi— M)

)

1 & 3
Mz = =) (x;— M)

nl:l

1& 4
My = o Y (xj — My)

I
—

ized by division with (1/M;)".

In hydrology, the application of the product moments is not always
satisfactory and the L-moments are preferred.

D.2 Method of Moments

Distributions are specified by theoretical moments, and distribu-
tions of data are specified by sample moments. When the theoreti-
cal moments of the distribution are equated to the sample moments
through solution of the distribution parameters, then the distribution
is said to be “fitted” to the data. The normal distribution is a simple
example.

The normal distribution is a two parameter distribution whose two
parameters exactly equal the mean and the standard deviation. The
following example demonstrates the fitting of the normal distribution
to some data generated from a normal distribution. This is an example
in which the data is known to be “drawn” from the normal.
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just.some.data <- rnorm(24,mean=3400,sd=5000)
just.some.data <- sort(just.some.data)

n <- length(just.some.data)

pp <- seq(l,n)/(n+l) # plotting positions

mu <- mean(just.some.data) # sample mean
sd <- sd(just.some.data) # sample standard deviation

fitted.normal <- gnorm(pp,mean=mu,sd=sd)

plot(gnorm(pp), just.some.data)
lines(gnorm(pp),fitted.normal,col=2)

if repeatedly cut and pasted into an R session. Note that  have added
the gnorm() on the pp term in the graphics calls to change the horizonal
axis to probability paper.

Figure D.1. R code to demonstrate method of mometns

The code draws a random sample from a normal distribution having
mean=3400 and ¢ =sd=5000. The code computes the Weibull plotting
positions for the simulated data. Next, we compute the first two mo-
ments and fit the normal distribution by computing the quantiles of
this fitted distribution to the plotting positions of interest by the qnorm
O function. Finally, we simply plot the quantiles of the data as open
circles and overlay a red line represents the fit of the data. As seen in
the plot generated, the fit is pretty darn good. Well it should be, the
data was normally distributed to begin with.

However, as the sample size decreases or is otherwise small and
the ¢ of the distribution becomes large the sampling properties of the
product moments are problematic. The following code is illustrative

dat <- rnorm(24,mean=3400,sd=50000)
dat <- sort(dat)
n <- length(dat); pp <- seq(1l,n)/(n+l1)

mu <- mean(dat); sd <- sd(dat)
fitted.normal <- qnorm(pp,mean=mu,sd=sd)
plot(gnorm(pp),dat,

x1ab="STANDARD_NORMAL_DEVIATE")
lines(gnorm(pp),fitted.normal,col=2)

Figure D.2. R code to demonstrate method of moments using a large standard
deviation

What are your thoughts after watching several re-simulations and
re-plotting? You will note that the data now plots as a straight line on
the normal probability paper—a good sign that we know what we are
doing. However, occasionally you will see outliers.

There are many distributions to choose from. It is not always easy—
in fact often hard—to decide which distribution should be used in a
particular circumstance. The Selected References section of this hand-
out provides several authoritative resources regarding application of
the method of moments.
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Let us work another example. The following code loads in the an-
nual streamflow values for a streamflow-gaging station in the Austin
area and uses the normal distribution as a model of the distribution of
the data. Is the fit any good? Is the sample size large enough to make
statements about alternative distributions?

S <- read.table("locl.txt",header=TRUE)
print(S);

Q <- sort(S$mean_va)

n <- length(Q); pp <- seq(l,n)/(n+l)

mu <- mean(Q); sd <- sd(Q)

plot(pp,Q®

lines(pp, gqnorm(pp,mean=mu, sd=sd) ,col=2)

# Now let use replot the data on probability paper
# Do you see deviations better in the tails?
plot(gnorm(pp),Q)s

lines(gnorm(pp), gnorm(pp,mean=mu, sd=sd),col=2)

The plot using the normal distribution in the previous example has
some serious left and right tail fit problems after careful inspection.
Perhaps the lognormal distribution would be better. The lognormal
distribution is used in situations in which the logarithms of the data are
normally distributed. Let us give it a try. The code listed in figure D.4
is to follow immediately from the code listed in figure D.3.

mu.L <- mean(logl0(Q)); sd.L <- sd(logl0(Q))
lines(gnorm(pp),
10Agnorm(pp,mean=mu.L,sd=sd.L),
col=4)

Figure D.3. R code to demonstrate method of moments using a streamflow
dataset

Figure D.4. R code to demonstrate method of moments using a streamflow
dataset

The blue line appears to not provide a better fit to the data. We will
return to this exact same data set in the next lesson.
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LESSON E: DISTRIBUTIONAL ANALYSIS-L-moments

E.1 Linear Moments (L-moments)

The analysis of univariate distributions is a complex subject. This
is particularly the case with heavy-tailed data. The L-moments, which
have similar meaning as the ordinary (product or central) moments,
have revolutionized many fields including statistical hydrology in
which I participate. L-moments have many properties that make them
extremely attractive. These properties include unbiasedness, efficiency,
consistency, robustness, and others.

E.1.1 L-moments

The theoretical L-moments for a real-valued random variable X
with a quantile function X(F) are defined from the expectations of or-
der statistics. The order statistics of X for a sample of size n are formed
by the ascending order X;.,, < Xp.; < ... < Xy The theoretical
L-moments are

1 r—1

e PN (L e )

k=0

where r is the order of the L-moment, and E[X,_j.,] is the expectation
of the r — k order statistic of a sample of size r. The expectation of an
order statistic is

E[Xy] = — /1 X(F) x Fi=1(1 = F)"~IdF
PG =D =) Jo '

The first four theoretical L-moments are

1
Alz/ X(F)dF,
0
1
/\2:/ X(F) x (2F — 1)dF,
0
1
A3:/ X(F) x (6F% — 6F + 1)dF, and
0

1
Ay = / X(F) x (20F% — 30F? + 12F — 1)dF.

0
The L-moment ratios are the dimensionless quantities

T = Ay /A1 = coefficient of L-variation,
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3 = )L3 /)\2 = L-skew,
T4 = Ag/ Ay = L-kurtosis,
and for r > 5, which are unnamed,

T = )\r//\z.

The sample L-moments are computed from the sample order
statistics x1.,, < %2y < --+ < xy. The sample L-moments are

1y rfll >< i—1 >< nlfi>
= ( J r=1-j ]
n
()
Several L-moments, unlike conventional moments, are bounded

(Hosking, 1990, Theorem 2). Two useful examples for L-moment ratios
are

ri1
i=1

A=

N |-

Xitn-

—-1< 1 <1lforr>3and

G -1) <7<l

N

E.1.2 R package 1momco

The R package 1momco fully implements L-moments in the context
of many probability distributions including the Exponential, Gamma,
Gumbel, Normal, Generalized Extreme Value, Generalized Lambda,
Generalized Logistic, Generalized Normal (log-Normal), Generalized

Pareto, Pearson Type III, Kappa, Wakeby, and Weibull. The 1momco
package provides core functions and numerous ancillary functions to
help get the user started and to keep the user entertained by building
complex analysis applications.

E.2 The Method of L-moments

Assuming that the 1Imomco package has been downloaded an in-
stalled on your machine, we can begin some statistical computations

using L-moments.
irst, the data file peak.csv contains the annual peak streamflow

and gage height data for a streamflow-gaging station in the Hill Coun-
try. The flood data series for this site is characteristic of those in the
area: (1) Periods of considerable lowflow in which the annual peak
might not represent runoff, and (2) During periods of abundant rain-
fall the annual peaks can be several orders of magnitude higher. An
abbreviated listing of the data file is shown in the following figure.
peak_dt,peak_va,gage_ht,wy
1869-07 ,missing,42.3,1869
1900-07-16,missing, 38.4,1900
7/1/32,missing,38.4,1932
1939,3820,missing,1939
10/10/39,7520,14.79,1940
4/27/41,15400,19.14,1941
4/25/42,7010,14.5,1942
10/15/42,3870,12.1,1943

. Snippet ..
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Figure E.1. Partial listing of annual peak streamflow data

Inspection of the data shows that some values are missing and these
are identified with the string missing. Missing values are a chronic
problem in most fields of science, and this is certainly true in hydrology.
Many statistical software packages are well poised to handle missing
values and have specific syntax. We get a flavor of that in the next
figure, which lists the code needed to read the data in to the data frame
S. The na="missing" tells R that any field in the file with “missing”
is a missing or NA value. R can handle more than one missing value
identifier at a time, but that is beyond the scope of this course. After the
data is read in, the customary printing of the data is made, the data
frame attached, and the names in S shown. The code completes with
two separate plots of the data to inspect the time series of annual peak
streamflow and gage height at this location.

In distributional analysis of course we are interested in the quantiles
of the data. This is readily accomplished in the next code listing that
builds on our previous work with plotting positions and the method
of moments. Two new topics are introduced here. The subselection of
nonmissing streamflow values into the Q variable. The ! is.na(peak
_va) instructs R to find those entries that are not (!) is-a-missing (na)
values. These nonmissing values are handed off to the sort function
and finally loaded into Q. The 1momco library is loaded to gain access
to a premade function pp that by default returns the Weibull plotting
positions. The plotting positions are loaded into a variable named pp.
Note that pp() is the function and pp is just another variable.

S <- read.csv("peak.csv", header=TRUE,
na="missing")
print(S); attach(S); names(S);

plot(wy,gage_ht,xlab="WATER_YEAR",
ylab="GAGE_HEIGHT, _IN_FEET")

plot(wy,peak_va,xlab="WATER_YEAR",

ylab="STREAMFLOW, _IN_CFS")

Figure E.2. R code to load an visualize an annual peak streamflow dataset

Q <- sort(peak_va[! is.na(peak_va)])

library(lmomco) # your system will only have the this package if
# you have downloaded and installed it. We need this package
# for the pp() function.

pp <- pp(Q)

mu <- mean(Q)

sd <- sd(Q)

cat(c("Estimated_standard_deviation",
sd,"\n"))

mu.L <- mean(logl0(Q))
sd.L <- sd(1ogl1l0(Q))
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plot(gnorm(pp),logl0(Q),cex=2)
lines(gnorm(pp),
log10(gnorm(pp ,mean=mu, sd=sd)))
lines(gnorm(pp),
qgnorm(pp,mean=mu.L,sd=sd.L),col=2)

Figure E.3. R code to load an visualize an annual peak streamflow dataset

5.0

l0g10(Q)
4.0 4.5

35
|

3.0

25

I I I I I
-2 -1 0 1 2

anorm(pp)

Figure E.4. Plot from R code in figure E.3 but not including graphical code in
figure E.5

The code in figure E.3 continues with computation of the sample



COURSE: Hydrologic Statistics

—29_

mean and standard deviation using nomenclature that we have used
before. These are printed to the screen with the cat function. Next the
sample mean and standard deviations of the 1og10() of the values are
computed. The code terminates with a hopefully now familiar quantile
plot. The data points are plotted by plot() using an open circle twice as
big as the default (cex=2). Note that we again use qnorm() to generate
probability paper and 1og10() to make the vertical axis in log space.
The normal distribution fit by the method of moments is drawn as the
thin black line by the first call to 1ines(). The log normal distribution
is similarly drawn in red (col=2, color = 2). Notice immediately that
the red line is straight on log-probability paper.

Careful inspection of the left and right tails suggests that the log-
normal distribution (red line) over estimates the distribution. The over
estimation is subtle and difficult to grasp without experience looking
at such plots. However, the effects of sample size are sinister and the
conclusion could simply be in error.

Lets continue and use the method of L-moment to fit two more
selected distributions. Both the normal and log normal distributions
used thus far are two parameter. There exists a three parameter gener-
alized normal and four parameter kappa. For each parameter, another
moment (or L-moment) is required to fit the distribution. Thus the first
three L-moments are needed to fit the generalized normal and the first
four L-moments are needed for the kappa. The following code listed in
figure E.5 is intended to immediately follow figure E.3.

# library(1lmomco) has already been loaded to gain access to the
# Imoms(), pargno(), quagno(), parkap(), and quakap()
# functions
Imr <- lmoms(Q) # compute the L-moments of the streamflow Q
str(lmr) #

Imom.sd <- lmr$lambdas[2]+sqrt(pi)
cat(c("L-moment _estimated_standard deviation",
Imom.sd,"\n"))

my.gno <- pargno(lmr)
lines(gnorm(pp),logl0(quagno(pp,my.gno)),
col=4,1wd=2)

my.kap <- parkap(lmr)
lines(gnorm(pp),logl0(quakap(pp,my.kap)),
col=6,1wd=4)

Figure E.5. R code to demonstrate computations of L-moments using annual
peak streamflow dataset after the code in figure E.3

The 1moms returns a list of vectors containing the L-moments and
L-moment ratios. The str function is built-in to R and provides for
pretty printing of a variable—we have not seen the str function before.
The next two lines involving the 1mom.sd show a computation. Theory
requires that ¢ = A, x /7. However, this estimate will not equal ¢
from a function such as sd. Hosking has reported to me that one should
not estimate o through the second L-moment (A,), but should instead
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just use A,.

The following pair of lines compute the parameters of the gener-
alized normal distribution (pargno) and then draw a thicker (1wd=2)
blue line (col=4). One can readily see how the generalized normal
quantiles (quagno) generally fit the distribution better on the right tail,
but do not fit as well on the left tail. This is very common and in many
cases (paradoxically) we don’t care about left tail fit in the context of
flood magnitude. Now for lowflows this is another story; for lowflow
situations, often the data is reversed by multiplying by -1 or some other
reversing operation.

Finally, the four-parameter kappa distribution is shown. The pa-
rameters are estimated by the parkap function, and the quantiles are
generated by the quakap function. The drawn line is very thick (1wd=4)
and purple (col=6). Although several of the distributions drawn pro-
duced a NaNs produced in: log(x, base) warning message because
logarithms of < 0 values can not be made, a major advantage of the
L-moments is that log transformation of the data prior to fitting of a
distribution is not needed. This greatly simplifies analysis of data sets
involving zero values or a mixture of negative and positive values.

library(lmomco) # your system will only have the this package if
# you have downloaded and installed it. We need this package
# for the Ilmoms(), pargno(), parkap(), quagno(), and quakap()
# functions.

pp <- pp(Q

Imr <- lmoms(Q) # compute the L-moments
my.gno <- pargno(lmr) # fit the gen. normal
my.kap <- parkap(lmr) # fit the kappa

plot(gqnorm(pp),Q,cex=2) # plot data

lines(gnorm(pp), quagno(pp,my.gno),
col=4,1wd=2) # plot gen. normal

lines(gnorm(pp),quakap(pp,my.kap),
col=6,1wd=4) # plot kappa

S <- read.csv("peak.csv", header=TRUE,
na="missing")

attach(S);

Q <- sort(peak_va[! is.na(peak_va)])

Figure E.6. R code to demonstrate computations of L-moments using annual
peak streamflow dataset
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Figure E.7. Plot from R code in figure E.6

To conclude our discussion of L-moments, I want to discuss a very
powerful component of the theory by which assessment of distribution

fit can be made using a graphic known as an L-moment ratio (or just L-
moment) diagram. This diagram plots the relation between L-skew and
L-kurtosis of the data and comparison this relation to the theoretical
L-skew and L-kurtosis relations for each distribution. The distribu-
tions that mimic the appearance of the data are deemed suitable. The
1momco package provides a couple of functions for plotting the base
(background) of these plots. The R code is shown in figure E.8. The
Imrdia() function returns the coordinates to draw the distributions,
and plotlmrdia(), which can take numerous arguments, draws the
plot. The graphic from the R code in figure E.8 is shown in figure E.9.

library(lmomco) # your system will only have the this package if
# you have downloaded and installed it. We need this package
# for the Imrdia() and plotlmrdia() functions.

Imr.diagram <- Imrdia()

plotlmrdia(lmr.diagram)

Figure E.8. R code to demonstrate development of an L-moment ratio diagram
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Figure E.9. Plot from R code in figure E.8

Finally, the L-moment ratio diagram in the previous figure is not
particular interesting by itself. It lacks data and is not well type set. The

L-moment ratio diagram in figure E.10 is very well done. This diagrams
depicts the relation between the L-skew and L-kurtosis of observed
distributions of storm depth and storm duration for 774 rainfall stations
in Texas. I will further explain the figure in the classroom.
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LESSON F: HYPOTHESIS TESTINGS—Change of Location

F1 Comparing Normally Distributed Data—
Student's t-Test

The t-test is used to evaluate the hypotheses about the mean of two
data sets (populations), which are assumed to by normally distributed.

The so-called independent samples t-test is used to test a null hy-
pothesis that the means of the populations sampled by the data are
equal. The test statistic is a standardized difference between the means.

X1 — X2
V1/ny+1/ny

where %; is the sample mean for the ith dataset and n; is the sample size
for the ith dataset. A pooled standard deviation is

\/(nl —1)s2 + (np — 1)s?

n1+n2—2

where s; is the sample standard deviation for the ith dataset.

By null hypothesis, the t-statistic listed above has a Student’s t-
distribution with n; + n — 2 degrees of freedom. The 100(1 — «) per-
cent confidence interval for the difference of the means is constructed

as
X]— Xy = t[a,n1+n2,2]sv 1/n1+1/ny

where f(, . 1, ) is the t-distribution with a cumulative distribution
function of, P(t < t(g , 4n,—2) =1 — /2.

If the two populations under study have differing standard devia-
tions then the t-statistic is modified and becomes the Welch test:

X —x

\/81/m1 +55/m3

A “paired t-test” is used to compare sample means of two popula-
tions in which each individual of the first dataset has a paired value
from the second dataset. Such a test might involve the simultaneous
deployment of two water quality sensors, and one wants to evaluate
the performance differences of each. For the paired t-test the t-statistics

t:
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becomes

,_
=

where d is the mean difference between the two datasets, s is the sample
standard deviation of the differences, and # is the sample size.

F.1.1 The Welch t-Testin R

In R, the t-test is implemented by the t.test function. Lets work
an example. The annual mean streamflow for Colorado River at Austin
resides in data file coloaustin. txt. This is a tab-delimited file. In the
following code, we read the data into the D data frame. Mansfield dam
was completed about 1941/1942 as best I can remember. We want to
know if the mean flow of the river is different today than it was prior to
Lake Travis impoundment. Therefore, we define two variables contain-
ing the flow as in Q.before] and Q.after. For plotting purposes, we
also define Y.before and Y. after to represent the water years. Finally,
we compute the two sample means in mu.before and mu.after.

plot(Y.before,Q.before,
xlim=c( range(year_nu) ),
ylab="ANNUAL_STREAMFLOW,_IN_CFS",
x1lab="WATER_YEAR" )
points(Y.after,Q.after,col=2,cex=2)

abline(mu.before,0)
abline(mu.after,0,col=2)

D <- read.table("coloaustin.txt",header=TRUE)
attach(D)

Q.before <- mean_val[year_nu <= 1941]

Q.after <- mean_val[year_nu > 1941]

Y.before <- year_nu[year_nu <= 1941]

Y.after <- year_nu[year_nu > 1941]

mu.before <- mean(Q.before)

mu.after <- mean(Q.after)

Figure F1. R code to read in and plot annual mean streamflow values in prepa-
ration for a t-test.
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Figure F.2. Plot from R code in figure F.1

The example continues by ploting each dataset in a different sym-
bol size and color. Note the use of the x1im=c(range(year_ne)), which

anticipates that we need the horizontal axis to encompass the entire
record. We have not seen the need for resetting the default axis limits
(as far as  know as I type.)

We are now prepared to perform the t-test using t.test() as shown
in the following code, which is intended to follow the code in figure F.1.
The code also launches the help page for the t-test so that we can learn
precisely how the call is made and how to interpret the returned values.

help(t.test)
t.test(Q.before,Q.after)

Figure F.3. R code to perform a t-test using data from figure F.1

Welch Two Sample t-test

data: Q.before and Q.after
t = 3.4005, df = 60.229, p-value = 0.001199
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
425.8712 1642.4530
sample estimates:
mean of x mean of y
2780.651 1746.489

Figure F4. Listing of the results of the t-test from R code in figure F.3

The t-test is a fine test when it is appropriate to assume that the
population from which the data results is normal. In practice this is not
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always appropriate. Hydrologic data in particular is often not normally
distributed. Our data is bounded below by zero (negatives often are
physically meaningless) and plagued by outliers on heavy right-tailed
distributions. In these settings the Wilcoxon Mann-Whitney rank sum
or Wilcoxon signed rank test (paired data) are more appropriate.

F.1.2 Wilcoxon Rank Sum Testin R

The Wilcoxon Mann-Whitney rank sum or Wilcoxon signed rank
tests are widely used alternatives to the t-test. In either case the data is
discarded—that is the original data is replaced—in favor of the ranks of
the values. The test is implemented by the wilcox.test. The following
code performs the test. An addition of the help.search() is made to
this code because I could not remember the precise name of the test
function (wilcox. test). The t.test defaults to showing the confidence
interval—the wilcox. test does not, so the conf.int=TRUE is added.

Q.before <- mean_va[year_nu <= 1941]
Q.after <- mean_val[year_nu > 1941]
help.search("rank_sum")

help(wilcox.test)
wilcox.test(Q.before,Q.after,conf.int=TRUE)

Figure E5. R code to demonstrate application of the Wilcoxon rank sum test

Wilcoxon rank sum test with continuity correction

data: Q.before and Q.after
W = 1942, p-value = 0.0003266
alternative hypothesis: true mu is not equal to O
95 percent confidence interval:
297.9999 1043.8000
sample estimates:
difference in location
646.4282

D <- read.table("coloaustin.txt",header=TRUE)
attach(D)

Figure F6. Listing of the results of the Wilcoxon test from R code in figure F.5




-38-

COURSE: Hydrologic Statistics

LESSON G: REGRESSION

Regression is a generic term encompassing well known and not
so well known methods for describing and quantifying the statistical
relation between two or more, usually continuous, variables. Statistical
theory and operations related to the linear modeling of the relation
is the most developed and readily available in numerous software
packages. This lesson will consider several different “fronts” in the de-
scription of the linear relation between variables. The many references
shown in the Selected References section of this document will provide
a valuable exit for your own endeavors.

The practice of regression must encompass the graphical display of
the relation. (FYI: USGS absolutely does not permit the term “relation-
ship,” as that is a feature exclusively of human relationships—thought
that you would like to know.) The relations are extremely difficult to
depict simultaneously if one is working in more than 3 dimensions. So
careful exploratory analysis is needed. We will look at more plots later,
but first I want to introduce an extremely well typeset scatter plot in
figure G.1.

This scatter plot has nicely proportioned open circles for symbols.
An explanation is lacking, but the caption would provide description.
The line object in the plot is in fact a 1:1 line, but is precisely stated as

an EQUAL VALUE LINE. You will notice that the line is thicker than the
rest of the line work on the plot to draw the reader into the fact that
the symbols reasonably scatter on either side of the line. Both scales
are logarithmic. In fact these scales are extremely well done log-scales
that popular spreads still(?) are incapable of depicting. Note that each
scale has its own unique terminal points that are not coincident with
an even log cycle (1, 10, 100, 1000, ...). The ticking on the log scale is
sufficient to show that the scale is in fact log, but the labeling is not so
dense as to interfere with the “airiness” of the graphic. As mandatory,
the units of each axis are well identified without abbreviation. Further,
this particular figure was rendered with an aspect ratio that should
permit ideal lifting into presentation software. The typeset page is tall,
but the presentation projector is wide. Anyway, enough banter, let us
move along to regression and the line of organic correlation.

G.1 Line of Organic Correlation

The line or organic correlation (LOC), in some geologic fields “re-
duced major axis,” in some hydrologic fields “Maintenance of Variance-
Extension,” is an important method that we should know about in the
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context of simple linear regression. Thus, I choose to discuss the LOC
first.

The LOC possesses three characteristics (Helsel and Hirsch, 1992)
preferable to simple linear regression in specific circumstances:

1. LOC minimized errors in both horizontal and vertical directions.

2. It provides a unique line whether X is regressed on Y or visa
versa. This is important if one of the variables is not necessarily a
physical predictor of the other (the cause and effect paradox of
regression).

3. The cumulative distribution function of predictions from the re-
gression have similar statistical properties of the actual data the
predictions are generated to represent.

The LOC is highly suitable in situations of index prediction of
streamflow or other hydrologic characteristics from one location to
another based on previous history of pairwise values for the two loca-
tions. The equation for a line is

Y=mX+b+e

where Y is the regressor variable, X is the predictor variable, m is the
slope, b is an intercept, and € is an error term. LOC is designed to
minimize the sum of the areas of right triangles formed by horizontal
and vertical lines extending from observations to the fitted line (Helsel
and Hirsch, 1992, p. 276).

LOC is computed by

where 7 is the correlation coefficient, s, is the standard deviation of y,
sy is the standard deviation of x. The intercept is computed as:
— . Sy—
b =Y —sign[r] S—X

X

The following R code provides a thorough demonstration on how
the LOC is to be computed. We have two streamflow-gaging stations
located in the Austin area, and the data is contained in the two data files
locl.txt and loc2.txt. We read the data in as usual. However, this
time a couple of print()s are needed to show that the period of record
is different between the two sites. This is a very common occurrence in
hydrology—yuk! We seek to estimate the flow at the first station using
the data from the second. The first station lacks data from 1983 through
1989; thus, it is necessary to add complexity to the code to deal with
this situation. The S2$year_nu <= 1982 and S2$year_nu >= 1990 are
used as conditional tests to subselect the data. The | symbol denotes an

“or.” Later in the code example an “and” will be used by the & symbol.
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# Read two data files for an upstream (1) and downstream
# streamflow station

S1 <- read.table("locl.txt",header=TRUE)

S2 <- read.table("loc2.txt",header=TRUE)

print(S1); print(S2) # as usual peek at the data to confirm that
# things were read in properly

Ql <- S1$mean_va # extract the flow

# darn we have a gap in record at station 1
# so build a subset
Q2 <- S2$mean_va[S2$year_nu <= 1982 |
S2$year_nu >= 1990]
# R possess a high level function for the above, but I am at a
# loss as what it is---easier to role one’s own as I rush to
# get this handout ready.

# this plot call would have failed unless Q2 built as in above
sdl <- sd(Ql); sd2 <- sd(Q2)
rho.sign <- sign(cor(Q2,Q1))

m <- rho.sign=sd2/sdl # slope
b <- mean(Q2) - m+mean(Ql) # intercept
# begin a few computations to get estimated streamflow for Q1
Q2.for.Ql.estimation <-
S2$mean_va[S2$year_nu > 1982 &
S2$year_nu < 1990]

# note the switch around of the math to accommodate the nature of
# our variable definitions
Ql.est <- (Q2.for.Ql.estimation - b)/m

# FIRST PLOT IN EXAMPLE
plot(Ql,Q2) # take a peak
abline(b,m,col=2) # a built-in function to plot a line, which
# happens to be colored red
points(Ql.est, Q2.for.Ql.estimation,
pch=16, col=4, cex=2)

# SECOND PLOT IN EXAMPLE
plot(Q1,Q2,x1im=c(0,30),ylim=c(0,30))
abline(b,m,col=2)
points(Ql.est, Q2.for.Ql.estimation,
pch=16, col=4, cex=2)

Figure G.2. R code demonstrating computation of the line of organic correlation
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Figure G.3. Plot of line of organic correlation for first plot in example R code in
figure G.2

The code in figure G.2 uses the plot() function to visualize the

data, and the abline() function is used to draw the red col=2 line to
visualize the organic relation between the annual flow between station
2 and station 1. The sign() function is used to compute the sign (—1 or
1) of the correlation coefficient between Q2 and Q1.

The example ends by extracting the flow values for years present
at station 2 but not station 1 (Q2. for.Ql.estimation). The LOC for Q1.
est is thus solved. Finally these the estimated data values are estimated
by the points() function.

Is the plot from the previous code informative? Does station 1 have
to operate? In other words is the statistical relation of annual stream-
flow so large or reliable that data from station 1 is redundant relative to
station 1? These are serious questions with no straightforward answers
that affect real taxpayer dollars. Perhaps in the annual flow context
the station is not needed, but in other contexts such as lowflow or
stormflow that station is? Perhaps there is critical curvature in the far
left of the line. How well does LOC work? Lets take a look in figure G.4
that is to follow code in figure G.2 .

plot(Q1,Q2,x1im=c(0,10),ylim=c(0,10))

abline(b,m,col=2)

points(Ql.est, Q2.for.Ql.estimation,
pch=16, col=4, cex=2)

Figure G.4. R code demonstrating computation of the line of organic correlation

After viewing the second plot with greater resolution at small flows,
do you have a different impression? (Recall that I have purposefully
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hidden the names/locations of these stations.) These two stations from
a pragmatic or large picture perspective demonstrate a flavor of the
myriad of decisions involved in the design of a data collection program.

G.2 Multiple-Linear Regression

As mentioned earlier, regression is the statistical process of mathe-
matically quantifying the relation between a regressor variable and one
or more predictor variables. Regression is immensely popular and con-
siderable research continues on the methods associated or otherwise
related to it. I like regression because my customers typically require
parameter—that is easy to formulate—models by which they can make
predictions from the equations at locations for which no hydrologic
data has ever been recorded.

Prior to multiple-linear regresssion, visualization of the data and
the various relations between the data is extremely informative. So let
us do that. The following example reads our dataset in to F from the file
tx664.csv. This file for deep legacy reasons already has a log;, tran-
formation made no most of the columns. This is a common delimited
file that I used to develop well-known regression equations to estimate
flood frequency for ungaged and natural (rural) locations in Texas. Al-
though the specific indent and implementation of that research is not
the subject of our example per se.

The example continues by attaching the data frame into the current
work space. A first use in the course is the layout() function which

permits more than one graphic on the screen device at a time. The en-
semble of four plot() calls produce the observed relation between the
100-year peak streamflow and readily acquired basin characteristics.

F <- read.table("tx664.csv",sep=",",
header=TRUE)

attach(F)

# Q100 = 100-year streamflow

# CDA = drainage area

# Slope = main channel slope

# Shape = CDA / squared channel length

# MAP = mean annual precipitation

layout (matrix(1:4,nrow=2))
plot(Q100~CDA); plot(Q1l00~Slope)
plot(Q100~Shape); plot(Q100~MAP)

pdf ("fldfrqA.pdf")
layout (matrix(1:4,nrow=2))
plot(Q100~CDA); plot(Ql00~Slope)
plot(Q100~Shape); plot(Q100~MAP)
dev.off()

Figure G.5. R code to visualize some annual peak streamflow data

The example R code in figure G.5 terminates by recalling the four
plots, but with the wrapping of the pdf ("fldfrqgA.pdf") and dev.off
() functions, which product a PDF file named fldfrqA.pdf, which is
shown in figure G.6.
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G.2.1 Ordinary Least Squares Regression

Ok, now that we have visualized the data, let us start by fitting an
ordinary least squares (ols) regression. These examples are multiple-
linear, but it should be self evident how a single Y and X model would
be built. However, let us fully introduce the modeling syntax of R.

The R syntax for model building uses the ~ to separate the regressor
variable from the predictors. The Im() or linear model is the function
that calls the linear modeling subsystems in R. To regression Y on X one
simply says Im(Y~X). Additional variables are added: 1m(Y~X1+X1).
One can add some mathematical transformations: 1m(1og10(Y)~X1+X2
*X3), which says to regress the base-10 log of Y on X1 and the product
of X2 and X3. If you have a darn good reason to eliminate the inter-
cept term, you can say Im(Y~X1-1), where the -1 removes the intercept.
The Im() has numerous additional arguments. We will see only the
inclusion of two more in a later example.

MAP

Slope

Figure G.6. Plot of four plot ensemble from R code in figure G.5

F <- read.table("tx664.csv",sep=",",
header=TRUE)
attach(F)
D <- data.frame(Q100=Q100,
Area=CDA, Slope=Slope,
Shape=Shape ,MAP=MAP)
detach(F)
ols.modelB <- 1m(Q1l00~.,data=D)
summary(ols.modelB) # conclude that shape is useless!
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# The next two are our formal models for the topic
ols.modelA <- 1m(Ql00~Area+Slope+MAP,data=D)
ols.modelT <- 1m(Q1l00~Area+MAP,data=D)

# Run the next two lines together and then run the following two
# lines separately

layout (matrix(1:4,nrow=2))

plot(ols.modelA)

layout (matrix(1:4,nrow=2))

plot(ols.modelT)

Figure G.7. R code to compute three distrinct multiple-linear regression models
from some annual peak streamflow data

From the ols regression seen in figure G.7, we see the re-expression
of the F data frame into a smaller data frame with minor relabeling of
the columns. This is done so that the 1Im(Q100~. ,data=D) can be used
to use the entire (.) data frame as the predictor variables—nice tidy
notation. Anyway, the regression model returned from 1Im() is another
data object to R, and we’ve loaded it into ols.modelB. The summary
(ols.modelB) produces pretty output. (We will actually capture this
information later.)

The summary(ols.modelB) output shows virtually all critical com-
ponents of a regression and for many reports, it could be argued that
this information is sufficient. (I have needs for other details, which we
will cover shortly.) It is very important to stress that simply reporting

the model and the so-called R? is considered in extremely poor taste
and reflects poorly on the analyst presenting the data. Sorry for the
digression.

The summary () output shows that Shape is not statistically signifi-
cant in prediction of the 100-year streamflow. So we drop it and rerun
the regression without it and load the results into ols.modelA. Ex-
tremely easy to do and the code in figure ?? would provide a fine
archive as to what was done. Finally, I have included the ols.modelT
as a regression using only drainage area and mean annual precipitation.
I do this as a reminder to myself to discuss the purposes and abilities
of end users. During my tenure, it has become useful to have “regional”
equations for hydrologic variables to have only drainage area and other
very easy to acquire variables (such as mean annual precipitation).
Because drainage area is universally available for a stream location
understudy such equations as contained in ols.modelT are very useful.
Moral? Know your customer.

To finish discussion and give me a major jump off point for class
discussion, the last two ensembles of code in figure G.7 show the very
powerful high level and inheritance nature of some R functions. The
plot() function when called with a linear modeling object dispatches
to a function called plot.1m() (not shown), which in turn produces a
sequence of four standard regression diagnostic plots. These plots for
the plot(ols.modelA) are shown in figure G.8
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Figure G.8. Plot of four plot ensemble from R code in figure G.7

The diagnostics plots consist of a standard residual plot in which
the residuals are plotted against the fitted values from the model. The

red line is a smooth line. In this case some curvature in the residuals
is evident, which is not a good thing. We will talk more about the
residuals in the classroom. The next plot is the normal Q-Q plot in
which normally distributed residuals would plot as a straight line. In
this particular can the relation is not too bad. The standardized residual
plot also is shown. Standardized residuals have a mean of zero and
approximately unit variance. As a result, a large standardize residual,
greater than about 3, potentially indicates an outlier. Finally, the resid-
uals are plotted against leverage. Leverage is a measure of how far a
particular combination of predictor variables are from the center of the
cloud or parameter space. For the example, observations 305, 614, and
628 are shown as outliers.

High leverage points exert large influence on the regression. High
leverage points might not be outliers. Outliers are points in which the
model does not fit well. Outliers might not be high leverage points.
Influence in a regression is measured by Cook’s D. Cook’s D is a dele-
tion diagnostic—it measures the influence of the ith observation if it is
removed from the sample. Cook’s D is computed as

where D; is Cook’s D, tlz is the squared studentized residual, and /;; is
leverage for the data point. The r; is

€j

1T ek
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where ¢; is the usual regression residual.

Cook’s D, leverage, and other statistics are readily extracted in R
using the influence.measures(). Leverage can be extracted by hat
.values(). The influence.measures() function is demonstrated in
figure G.9.

F <- read.table("tx664.csv",sep=",",
header=TRUE)

attach(F)

D <- data.frame(Q100=Q100,
Area=CDA, Slope=Slope,
Shape=Shape ,MAP=MAP)

detach(F)

ols.modelA <- 1m(QlOO~Area+Slope+MAP,data=D)

influence.measures (ols.modelA)

Figure G.9. R code to compute show table of regression diagnostics

Other common diagnostic statistics are reported by the influence.
measures () function. These include DFBETAs and DFFITs. The DFBE-
TAs is a measure by coefficient to the change in that coefficient based
on the deletion of the ith value. The DFFITs statistic is the change in
the fitted value for the ith observation if it is deleted. It has been sug-
gested that if [DFBETASs(;;| > 2/+/n then the ith observation needs

examination. It has been suggested that if [DFFITS;| > 2,/p/n.

G.2.1 Evaulation of Multicollinearity of Variables

Often we pack variables into equations with little consideration that
related variables contain redundant information. This can be assessed
through variance inflation factors (V IF) on the regressor variables. In-
ternal correlation between the regressor variables results in inflation
of the variances of regression coefficients. This “multicollinearity” can
seriously affect the precisions of regression coefficient estimation. The
VIF for the jth regressor variable is

VIF; = 1
1—R]2

where RJZ is the coefficient of determination obtained from regressing
x; on the other regression variables. If x; is linearly dependent on the
other variables, then x; brings no information to the regression and R]Z
will be near unity. It is suggest in literature that VIF > 10 implies a
serious problem. My experience in our hydrologic problems related to
streamflow regionalization is that VIF > 5 is worrisome. I demonstrate
VIF computation using the vif() function from the DAAG package in
the code listed in figure G.10. This code adds another plotting function
to our toolbox; the pairs() function is used to produce a scatter plot
matrix shown in figure G.11.

library(DAAG)# your system will only have the this package if you
# have downloaded and installed it. We need this package for
# the vif() function.
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F <- read.table("tx664.csv",sep=",",
header=TRUE)

attach(F)

D <- data.frame(Q100=Q100,
Area=CDA, Slope=Slope,
Shape=Shape,MAP=MAP)

2 3 4 5 6

detach(F)

pairs(D) # this is a powerful function that produces a complete
# matrix of the data and produces a scatter plot for each

ols.modelC <- 1m(QlOO~Area+Slope+Shape+MAP,data=D) # fit a linear
# model as before

vif(ols.modelC) # compute the variance inflation factors for the
# regressor variables in the model. The output is shown below.

1.0 20

-0.5

# The following is the output from vif()
# Area Slope Shape MAP
# 3.7337 3.0666 1.8810 1.7310

Figure G.10. R code to compute three distrinct multiple-linear regression mod-
els from some annual peak streamflow data

1.4

1.0

Figure G.11. Plot of pairs() function from example R code in figure G.10
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G.2.1 Three Dimensional Scatter Plots

Because we have been discussing the interrelations between two and
more variables. I think this is a good point in the course to provide an
example of a three dimensional scatterplot. The R code is shown in
figure G.12 and an example plot from this code is shown in figure G.13.
The scatterplot3d() function obtained from the scatterplot3d pack-
age is used. I have provided a few examples of calling style to help
give you a flavor for the capabilities of the function.

library(DAAG) # your system will only have the this package if you
# have downloaded and installed it. We need this package for
# the pause() function.
library(scatterplot3d) # your system will only have the this
# package if you have downloaded and installed it. We need
# this package for the scatterplot3d() function.
F <- read.table("tx664.csv",sep=",",
header=TRUE)
attach(F)
D <- data.frame(Q100=Q100,
Area=CDA, Slope=Slope,
Shape=Shape ,MAP=MAP)
detach(F)
scatterplot3d(Area, Slope, Shape)
scatterplot3d(Area, Slope, Shape,
highlight.3d=TRUE) # used for figure in course
# handout

scatterplot3d(Area, Slope, Shape,
highlight.3d=TRUE, type="h",
angle=90)

# Loop the angles and require user to hit enter to see next plot
for(angle in seq(-180,180,by=5)) {
scatterplot3d(Area, Slope, Shape,
highlight.3d=TRUE, type="h",
angle=angle)
pause()

3

Figure G.12. R code to compute three-dimensionless scatter plot of watershed
characteristics
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Figure G.13. Plot of the first scatterplot3d() function from example R code
in figure G.12

G.2.2 Weighted Least Squares Regression

Weighted least squares is a regression variant in which weights are
assigned that are inversely proportional to the uncertainty or variance
of the data for a given data point. For the file tx664.csv there is a
column that represents something called the equivalent years of record,
which is tightly related to the number of years of record for a given

streamflow-gaging station. ) )
Weighted least squares can be a very tricky topic and software

documentation is often lacking sufficient description. Usually the appli-
cation of the weights is easy and the regression coefficients are invariant

to transformations of the weights. That is the good new.
Now the bad. One can get very different standard errors from re-

gression operations. You must grant me a highly technical discussion
on this topic and in the context of the next few examples. I have used at
least five major statistical packages (three packages on old mainframes
or Unix) including R and remained unclear as the to specific properties
of the weights. Through brute force and intuition I have determined
that R requires that the sum of the weight factors equal the number of
data points. This is accomplished through the MLRweights () function

defined in the following example.
Weighted least squares is demonstrated in figure G.14. The code

mimics that seen in figure G.7. You will note the inclusion of the
MLRweights() function and the Wgts and CorrectWgts in the D data
frame. The example fits ordinary least squares model ols.modelA as
before. Then fits two weighted least squares models: wls.modelA and
wls.modelB. Note that we can simply make a regression weighted by
the inclusion of the weights= option to Im().
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F <- read.table("tx664.csv",sep=",",
header=TRUE)
attach(F)

MLRweights <- function(avector) {
tmp = length(avector)/sum(avector)
return (tmp=avector)

}

D <- data.frame(Q100=Q100,
Area=CDA, Slope=Slope,
Shape=Shape,MAP=MAP,
Wgts=EqYrs,
CorrectWgts=MLRweights(EqYrs))

ols.modelA <- 1m(Q1l0O~Area+Slope+MAP,data=D)

wls.modelA <- 1Im(Q1l00~Area+Slope+MAP,
weights=Wgts,data=D)

wls.modelB <- 1m(Q100~Area+Slope+MAP,
weights=CorrectWgts,data=D)

summary (ols.modelA)
summary(wls.modelA)
summary (wls.modelB)

0 <- summary(ols.modelA)
A <- summary(wls.modelA)
B <- summary(wls.modelB)

z <- list(ols.sigma=0$sigma,
bad.wls.sigma=A$sigma,
good.wls.sigma=B$sigma)

str(z)

Figure G.14. R code to compute three distrinct multiple-linear regression mod-
els from some annual peak streamflow data

I show the triad of regressions by the summary() ensemble. Inspec-
tion and discussion of these results is left for the class room. My focus
here is on the residual standard error (sigma). The second summary ()
ensemble loads the summary of each regression into 0, A, and B. The
sigma is readily extracted from each with syntax such as ols.sigma=0
$sigma. The sigma for each model is placed into the list() z. Finally,
the str(z) reports each value in a nice structured fashion.

What is the point? Close inspection of the ols.sigma and good.wls
.sigma will show that the errors are of the same order with good.wls
.sigma < ols.sigma as one would anticipate if the weights represent
information content. (At least that is my interpretation—I would be-
come alarmed /surprized if the relation was opposite.) However, note
that the bad.wls.sigma is much much larger than the other two. Game
playing will show that we can systematically change the sigma of the
regression by simply multiplying the EqYrs by arbitrary constants—
this is not a good thing. I will demonstrate this in class and discuss my
historical context with this topic.
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I make no apology for this discussion as you could very well en-
counter similar in your own field of study regardless of whether you
ever use R or not.

G.3 Presentation of Regression in a Hydrologic Re-
port

I want to nearly conclude our discussion of regression by returning
briefly to my thoughts about documenting the regression process before
finishing with regression trees. I have written the following function
PostRegressComps (), which accepts an object by Im() and the vector of
weights. The PostRegressComps() outputs the standard summary—no
big deal here. The function continues on with the computation and then
printing of the inverted-covariance matrix and the maximum leverage.
We will talk about each of these during the course. The primal purpose
of this discussion is related to the presentation of regression results
by which end users can compute the prediction intervals for arbitrary
predictions from the regression model.

PostRegressComps <- function(themodel,theweights) {
print (summary(themodel))
W <- diag(theweights) # convert weight vector to diagonal of
# matrix
X <- model.matrix(themodel) # extract the model matrix
Xt <- t(X) # transposition of matrix X

invcov <- chol2inv(chol(Xt %*% X)) # Choleski Decomposition
# and then inverted.
invcov.W <- chol2inv(chol(Xt %% W %%% X))

# This matrix is critical to document for end users to be able

# to construct prediction intervals.
cat(c("Inverted, Covariance Matrix, ([XWXt]-1)_=\n"))
print(invcov.W)

# This matrix is critical to document for end users to be able

# to construct prediction intervals.
cat(c("Inverted, Covariance Matrix  ([XXt]-1) _=\n"))
print(invcov)

# Maximum leverages
hat.nowgt <- diag(X %=% invcov %%% Xt)

hat.nowgt.W <- diag(X %=% invcov.W %=% Xt)
hat.max.nowgt <- max(hat.nowgt)

hat.max.nowgt.W <- max(hat.nowgt.W)

hat.max <- max(hatvalues(themodel)) # The maximum leverage with
# for consideration of the regression weights.
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cat(c("Max_hat_(no_weights_with [XXt]-1) =",
hat.max.nowgt, "\n"))

cat(c("**_Max_hat_(no_weights_with_[XWXt]-1)_=",
hat.max.nowgt.W,"\n"))

cat(c("Max_hat _=",hat.max,"\n"))
sum.hat.max.notwgt <- sum(hat.nowgt)

sum.hat.max.notwgt.W <- sum(hat.nowgt.W)
sum.of .hats <- sum(hatvalues(themodel))

cat(c("Sum_of_hats_(no_weights_with_[XXt]-1)_=",sum.hat.max.
# notwgt,"\n"))
cat(c("##_Sum_of_hats_(no_weights_with_[XWXt]-1)=",sum.hat.max.
# notwgt.W,"\n"))
cat(c("Sum_of_hats_=",sum.of.hats,"\n"))
}
PostRegressComps(wls.modelB,D$CorrectWgts)

Figure G.15. R code showing a suggested function to produce near ideal
documentation of a regression equation




—54—

COURSE: Hydrologic Statistics

LESSON H: TREND EVALUATING

Hydrologic data is dominated by a particular data type—time se-
ries data. Although I have not utilized any “true” time series statistics
in this course, there are some simple topics that we are prepared to
discuss. That of trend testing, which from a certain perspective can be
thought of as a regression like problem.

Helsel and Hirsch (1992, p. 323) report that procedures for trend
analysis are built on topics of regression and hypothesis testing. The
explanatory variable of interest is usual time, but this need not be the
case.

Hydrologic data sets often exhibit seasonality. I leave that topic
untouched in the current course. However, Helsel and Hirsch (1992,
p- 337-346) provide an excellent and thorough discussion of seasonal
evaluations.

H.1 Kendall's T

Kendall’s T or more formally the Mann-Kendall test is a nonparamet-
ric or rank-based test that can be used to test significance of Kendall’s T
correlation. In lay words, the test can be stated most generally as a test

of whether the variable Q increases or decreases with time (a monotonic
change). 7 is insensitive to monotonic transformations of Q, which in
part makes the test attractive. As a result no a priori assumptions of the

form of the trend (linear or nonlinear) is required. )
ithin R, correlation is computed through cor() and associated

arguments and options. Kendall’s 7 is a special correlation available
in cor(). The test itself is performed by cor.test(). The following ex-
ample reads in some annual peak streamflow data from the Texas Hill
Country in data file peak.csv. As mentioned before, this file has some
missing values so we accommodate this fact without further discussion.
As good habit for a course like this, we print(S) the data frame.

# read in some annual peak streamflow data
S <- read.csv("peak.csv", header=TRUE,
na="missing")
print(S);
S <- S[S$wy >= 1939, ] # desire only wateryears after 1939
Q <- S$peak_va; WY <- S$wy
cor(WY, Q, method="kendall") # compute tau
cor.test(WY, Q, method="kendall") # this time actually perform the
# test and compute significance of tau
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Figure H.1. R code to load and conduct Kendall's T correlation on annual peak
streamflow dataset

Continuing, only data from 1939 on ward is useable in the T context,
and the condition is made by S$wy >= 1939. I then to tidy up the code
set Q and WY equal to the streamflow and the water year, respectively.
The cor () function is demonstrated by computation of T between WY
and Q. Finally, the Mann-Kendall test is applied with cor.test(). From
the results would you conclude that there is a trend in annual peak
streamflow for this location?

Kendall’s_rank_correlation_tau

data:__WY_and_Q

z =.0.9211, p-value_=_0.357
alternative_hypothesis: _true_tau_is_not_equal_to_0
sample_estimates:

(R

0.07648358

reality is lacking. The smoothing technique LOWESS (LOcally WEighted
Scatterplot Smooth) can be use to describe the relation between Y and
X without assuming that the relation is linear or that the residuals are

normally distributed (Helsel and Hirsch, 1992, p. 334). .
R provides two functions for LOWESS generation. First, there is an

older function titled lowess, and a second function called loess. They
are functionally similar although each function by default produces
different trend lines. I recommend consultation of the help() of each:

helg(lowess and loess.
he R code listing in figure H.3 returns to the same data set used

in the previous section. The period of record is plotted and shown in
figure H.4. Two separate smooth lines are generated by the lowess(Q)
and loess(Q~WY) functions. These lines will be different. The lines are
superimposed on the plot by the two 1ines() commands. The line by
lowess() is red, and the line by loess() is green.

Figure H.2. Listing of the results of the Mann-Kendall from R code in figure H.1

H.2 LOWESS and LOESS Trend lines

Sometimes trend evaluation is all that we are interested in for a
particular time series; we do not need/want an actual test to be per-
formed because the test might imply understanding of the data that in

S <- read.csv('"peak.csv", header=TRUE,
na="missing")

print(S);

S <- S[S$wy >= 1939, 1]

Q <- S$peak_va; WY <- S$wy

plot(WY,Q,x1lab="WATER_YEAR",

ylab="STREAMFLOW, _IN_CFS")

my.lowess <- lowess(Q)

my.loess <- loess(Q~WY) # newer formula version of lowess, but
# has different defaults

lines (WY, my.lowess$y,lwd=2,col=2)

lines (WY, fitted.values(my.loess),lwd=2,col=3)
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Figure H.3. R code to load an visualize and annual peak streamflow dataset
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Figure H.4. Plot from R code in figure H.3
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H.3 The Theil Line

The Theil line is an usual graphical tool to accompany Kendall’s
7. Just as T uses the ranks of the data, we can construct a line known
as the Theil line using median statistics. The line will not depend on
normality of residuals, as is very insensitive to outliers.

The slope of the Theil line is computed as the median of the
n(n —1)/2 unique pairwise slopes computed from the data set. The
intercept of the Theil line is computed as the difference between me-
dian streamflow and the slope multiplied by the median water year.
The solid black dot in figure H.6 represents the median streamflow and
median water year. It can be thought of as a pivot point for the Theil
line.

St = median[y(i,j)] for1 <i <,
Br = median[FLOW)] — S7 x median[YEAR]

where S7 is the Theil slope, B is the Theil intercept, (i, j) is the slope
between the jth and ith data point:

(i i) = TLOW, = FLOW,
n(i,j) = YEAR; — YEAR;

The R code listed in figure H.5 computes and plots the Theil line
for the annual peak streamflow data used in the previous two sections.
The graphical output from this code is seen in figure H.6.

S <- read.csv('"peak.csv", header=TRUE,
na="missing")

print(S);

S <- S[S$wy >= 1939, 1]

Q <- S$peak_va; WY <- S$wy

slopes <- vector(mode="numeric")
counter <- 0
for(i in seq(1,length(Q)-1)) {
for(j in seq(i+l,length(Q))) {
denom <- WY[j] - WY[di]
# we need to trap for division by zero
if(denom !'= 0) {
counter <- counter + 1
my.slope <- ( Q[j] - Q[il) /
denom
slopes[counter] <- my.slope
}
}
}
m <- median(slopes)
med.Q <- median(Q)
med.WY <- median(WY)
b <- med.Q - med.WY=m
plot(WY,Q,xlab="WATER_YEAR",
ylab="STREAMFLOW, _IN_CFS")
abline(b,m,1lwd=2)
points(med.WY,med.Q,pch=16,cex=2)
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Figure H.5. R code to compute and plot the Theil line on an annual peak stream-
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Figure H.6. Plot from R code in figure H.5
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LESSON I: SOME HYDROLOGIC STATISTICS IN TEXAS

After developing the previous lessons, it is obvious that I do not research into hydrologic statistics in Texas. However, I have identified
have the luxury of time to describe how the lessons have influenced my several salient references in the Selected References section.
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