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ABSTRACT: We propose an extension of map algebra to three dimensions for spatio-temporal data 
handling. This approach yields a new class of map algebra functions that we call "cube functions."  
Whereas conventional map algebra functions operate on data layers representing two-dimensional 
space, cube functions operate on data cubes representing two-dimensional space over a third-dimen-
sional period of time. We describe the prototype implementation of a spatio-temporal data structure 
and selected cube function versions of conventional local, focal, and zonal map algebra functions.  
The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal 
variability of remotely sensed, southeastern U.S. vegetation character over various land covers and 
during different El Niño/Southern Oscillation (ENSO) phases. Like conventional map algebra, the 
application of cube functions may demand significant data preprocessing when integrating diverse 
data sets, and are subject to limitations related to data storage and algorithm performance. Solutions 
to these issues include extending data compression and computing strategies for calculations on very 
large data volumes to spatio-temporal data handling.
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Introduction

The term "map algebra" was first intro-
duced in the late 1970s (Tomlin and 
Berry 1979) and has since been used in 

loose reference to a set of conventions, capabilities, 
and analytical techniques that have been widely 
adopted for raster-based geographic information 
systems (GIS) (Tomlin 1990; 1991). Map algebra 
attempts to accommodate a wide variety of GIS 
applications in a clear and consistent manner 
by decomposing data, data processing capabili-
ties, and data processing control techniques into 
elemental components that can then be recom-
posed with both ease and flexibility. The resulting 
algebra-like language is one in which single-factor 
map layers are treated as variables that can be 
transformed or combined into new variables by 
way of primitive operations invoked through 
expressions conforming to a well defined syntax. 
Map algebra has been incorporated in many 
GIS and remote sensing image processing pack-
ages, and it has been extended in areas ranging 

from cellular automata (Takeyama and Couclelis 
1997) to environmental modeling (van Deursen 
1995; Hofierka and Neteler 2001; Pullar 2001) to 
topographic analysis (Caldwell 2000). It is widely 
recognized as one of the most influential analyti-
cal frameworks for GIS-based raster data handling 
(Longley et al. 2001; DeMers 2003).  

Like most of the analytical frameworks embodied 
in current GIS packages, map algebra is primarily 
oriented toward data that are static. Each layer is 
associated with a particular moment or period of 
time, and analytical capabilities are intended to 
deal with spatial relationships. In its original form, 
map algebra was never intended to handle spatial 
data with a temporal component. However, as the 
availability of spatio-temporal data has increased 
dramatically in recent years due to the growth of 
satellite remote sensing and other technologies, and 
as the sophistication of things such as video games 
and animation in the motion picture industry has 
raised popular expectations for spatio-temporal 
processing capabilities there has also been an 
increasing demand for the spatio-temporal exten-
sion of GIS.

One of the reasons for the widespread adoption of 
conventional map algebra for raster processing in GIS 
is its simple syntax and the ability to string together 
multiple functions to create more complex models. 
These features provide a simple yet powerful toolbox 
for raster data manipulation analysis. The inclusion 
of a library of temporal map algebra functions in 
GIS packages would be just as useful and facile for 
analyzing the multitude of spatio-temporal raster 
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data now being generated. We note that despite the 
growing volume of research on spatio-temporal data 
models over the past dozen or so years (e.g., Langran 
1992; Peuquet 2001), the extension of map algebra 
to the temporal dimension has been largely ignored 
by the spatio-temporal GIS research community. The 
present research is intended as a first step toward 
the development of such a temporal map algebra 
library by providing a conceptual foundation for 
temporal map algebra and the implementation of 
a select set of map algebra functions that may be 
applied to spatio-temporal data.  

In the following section a framework for the exten-
sion of map algebra to the temporal dimension is 
described. This design is then demonstrated through 
a prototype implementation of certain temporal 
map algebra functions which we call "cube functions." 
Whereas conventional map algebra functions operate 
on data layers representing two-dimensional space, 
cube functions operate on data cubes representing 
two-dimensional space over a third-dimensional 
period of time. A case study is used to demonstrate 
how cube functions can be utilized. This case study 
analyzes the spatio-temporal variability of remotely 
sensed, southeastern U.S. vegetation character over 
various land covers and during different El Niño/
Southern Oscillation (ENSO) phases.

Motivation
A variety of approaches for storing and analyzing 
spatio-temporal data in GIS have been proposed 
and implemented (cf. Abraham and Roddick 
1999; Peuquet 2001). Most of these approaches 
have focused on the representation and analysis 
of spatial phenomena that have a temporal begin-
ning and end, and which may change in their spa-
tial extent, location, or non-spatial properties over 
their lifetime (Worboys 1994; Wachowicz 1999; 
Hornsby and Egenhofer 2000). Additionally, con-
ventional metric and topological spatial operators 
have been extended for spatio-temporal analysis 
(Breunig 2003). This research has been heavily ori-
ented toward spatial phenomena that are modeled 
as discrete objects, such as countries or cars, rather 
than qualities of space that are modeled as con-
tinuous fields, such as temperature or population 
density. Such approaches have generally involved 
temporal extensions to structured query language 
(SQL) processing of vector-encoded data (Erwig et 
al. 1999; Griffiths et al. 2001).

In contrast there have been fewer efforts at 
developing representation and analysis strategies 
for spatio-temporal field-like data stored in raster 
format. The most straightforward approach for 

storing spatio-temporal raster data is the "snapshot" 
model in which change through time is represented 
using a series of spatially registered grids, each cor-
responding to a particular moment in time (Langran 
1992). Another approach employs a form of spatio-
temporal "run length encoding" in which temporal 
events that mark changes in the value of individual 
grid cells are stored (Peuquet and Duan 1995). Other 
approaches have used object-oriented techniques 
to store spatio-temporal arrays of environmental 
measurements encoded in a spatio-temporal "data 
cube" in which two cube dimensions are spatial and 
the third is temporal (Raper and Livingstone 1995; 
Mennis 2003).  

The statistical analysis of spatio-temporal raster 
data has been undertaken for interpolation (Mitasova 
et al. 1995), geostatistics (Kyriakidis and Journel 
1999; Christakos 2000), and Bayesian approaches 
(Christakos et al. 2002). Researchers in remote 
sensing have also applied spectral analysis and 
principle components analysis to extract temporal 
signals from time series of imagery (Eastman and 
Fulk 1993; Jakabauskus et al. 2001). Other research-
ers focusing on spatio-temporal raster processing 
have addressed feature extraction, for instance 
in the recognition of meteorological phenomena 
from time series of observational meteorological 
data, remotely sensed imagery, or general circula-
tion model (GCM) output (Stolorz et al. 1995; Yuan 
2001; Mennis and Peuquet 2003). Van Deursen (1995) 
and Wesseling et al. (1996) describe a language for 
extending the spatial capabilities of map algebra 
to support dynamic modeling, implemented in the 
GIS PCRaster.

Also of relevance to the present research is three-
dimensional raster GIS in which space is exhaus-
tively partitioned into a regular tessellation of 
three-dimensional cubic volume elements (voxels) 
instead of two-dimensional square grid cells (Raper 
1989; 2002). This approach has been used for a vari-
ety of geologic and atmospheric science modeling 
and visualization applications (Hibbard et al. 1994; 
Marschallinger 1996; Masumoto et al. 2004). Of note 
is the Geographic Resources Analysis Support System 
(GRASS) GIS, originally developed by the U.S. Army 
Construction Engineering Research Laboratories, 
which supports three-dimensional raster encoding 
for which a limited set of map algebra functions are 
available (Brown et al. 1997; Neteler 2004). Other 
GIS software packages that handle raster data, such 
as ArcGIS (Environmental Systems Research Institute, 
Inc.), provide the ability to link multiple grids in a 

"stack" to mimic a three-dimensional representation, 
though the analysis capabilities associated with these 
stacks are typically limited. Raper (2002) provides 
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a taxonomy of three-dimensional spatial query and 
analysis functions.  

Research in image processing has also described 
algorithms similar in nature to those used in three-
dimensional GIS. These algorithms have focused 
on the extension of filters, image arithmetic, and 
segmentation to three and four dimensions (Nikolaidis 
and Pitas 2000). This research has been applied pri-
marily to medical imaging (Wan and Higgins 2003) 
as well as to motion detection in video sequencing 
(Rajagopalan et al. 1997) and time series of satellite 
imagery (Yamomoto et al. 2001).    

Despite this breadth of research in spatio-temporal 
and three-dimensional GIS there is a notable lack of 
attention given to extending map algebra beyond two 
spatial dimensions, and particularly to the temporal 
dimension. In fact, none of the research cited above 
explicitly addresses the extension of map algebra 
algorithms to the temporal dimension. Because of 
the lack of general-purpose, spatio-temporal raster 
data manipulation capabilities in current commercial 
GIS, researchers working with spatio-temporal raster 
data have been forced to develop customized algo-
rithms (e.g., Yuan 2001; Mennis and Peuquet 2003). 
Consequently, these algorithms are specific to the 
application domain under investigation and cannot 
be readily reused in other application contexts.  

In the present research we demonstrate how the 
original map algebra construct can be extended to 
support spatio-temporal raster data analysis in a 
manner that transcends any one particular applica-
tion domain. For this purpose we draw from previous 
research in spatio-temporal GIS in the use of the 
spatio-temporal cube metaphor for data encoding 
and manipulation. The cube function algorithms 
are adapted from conventional map algebra and its 
extension to three spatial dimensions, as well as from 
related functions associated with three-dimensional 
image processing.

Extending Map Algebra for Spatio-
Temporal Processing

Two-Dimensional Map Algebra
In the original map algebra, each variable or 

"layer" is a bounded plane surface on which posi-
tion is expressed in terms of Cartesian (X,Y) 
coordinates. The portion of that surface uniquely 
referenced by a given X,Y pair is termed a "loca-
tion," and each location is associated with (what 
is usually just) one recorded characteristic such as 
soil type, land value, or population.  Each of the 
distinct conditions depicted on a layer is termed 
a "zone," and each zone is represented by way of 

a numerical value that may relate to a nominal, 
ordinal, interval, ratio, or cyclical scale of measure-
ment. Every map algebra operation accepts one or 
more of these variables as input and generates a 
single new variable as output. Just as conventional 
algebra operations such as addition and subtrac-
tion can be combined to form complex equations, 
map algebra operations can also be combined by 
repeatedly using the output from one as input to 
another. Thus, while individual operators are nar-
rowly defined, the range of possibilities for com-
bining these operations is entirely open ended.    

Several dozen primitive operations have been 
defined, and these are typically organized into 
three major groups referred to as "local," "focal," 
and "zonal" functions (DeMers 2002). Local func-
tions compute a new value for every location as a 
function of that location’s value(s) on one or more 
existing layers. Focal functions compute each 
location’s new value as a function of the existing 
values, distances, and/or directions of neighboring 
locations on an existing layer. These focal functions 
can be applied to neighborhoods that are defined in 
terms of travel costs or lines of sight as well as physi-
cal separation. Note that we include "incremental" 
functions—which were originally assigned to their 
own separate group—within focal functions as they 
are algorithmically very similar. Zonal functions 
compute each location’s new value as a function of 
the values from one existing layer (the value layer) 
which are associated with that location’s zone on 
another existing layer (the zone layer).  

Three-Dimensional Map Algebra
To extend map algebra into a three-dimensional 
world (i.e., one in which each X,Y location is 
also associated with a full range of Z positions) is 
conceptually straightforward. Locations that had 
been associated with squares are now associated 
with cubes, and this results in cubic forms of zones, 
neighborhoods, and layers. Figure 1 demonstrates 
how each of the conventional local, zonal, and 
focal map algebra functions can be transformed 
into three-dimensional form.  

The three-dimensional extension of local functions 
presents few difficulties except, perhaps, for the 
need to envision the combination of multiple cubes 
as a process by which those cubes are "blended into" 
one another rather than "superimposed" (Figure 1a). 
In the case of the focal functions, the addition of a 
third spatial dimension means that neighborhoods 
are now a bit more interesting (and challenging 
computationally) in terms of their geometry, but 
the existing functions are quite amenable to this 
extension (Figure 1b). For example, whereas the 
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original FocalProximity func-
tion would have generated a 
series of concentric rings of 
distance around specified X,Y 
locations, it now generates 
concentric shells of distance 
around locations in X,Y,Z 
space. Or, consider a focal 
function that computes the 
slope at each location given 
a grid of elevations. In the 
three dimensional case, 
that surface is replaced by 
what might be envisioned 
as a smoky room in which 
smoke intensity varies from 
one location to another. The 
analogous three-dimensional 
focal function wouldn’t mea-
sure slope, per se, but rather 
the rate at which smoke 
intensity (as opposed to 
elevation) varies between 
neighboring locations. Such 
focal functions are similar in 
principle to filter operations 
in three-dimensional image 
processing (Nikolaidis and 
Pitas 2000). For three-dimen-
sional zonal functions, zones 
might be thought of more 
in terms of polyhedra than 
polygons. Instead of operat-
ing on a value layer and a 
zone layer, a three-dimen-
sional zonal function would 
operate on a value cube and 
a zone cube (Figure 1c).  

Map Algebra in the 
Temporal Dimension
Given these map algebra 
functions on X,Y,Z space, a 
number of temporal carto-
graphic modeling capabili-
ties can be realized by simply 
regarding the Z dimension as 
temporal in nature. On the 
other hand there are impor-
tant differences between a third spatial dimension 
(Z) and the temporal dimension (T). Whereas the 
Z dimension often embodies a directional bias 
associated with gravity, the T dimension always 
embodies a directional bias as, inevitably, time 
marches on.  Since the units of T will also differ 

from those of X and Y, these too must now be inde-
pendently specified.  

For local functions, the introduction of a T dimen-
sion raises the prospect of combining values by spatio-
temporal correspondence, spatial correspondence 
only, or temporal correspondence only. In the first 
case, the combination of two X,Y,T cubes would be 

Figure 1. Comparisons between conventional and three-dimensional local (a), focal (b), 
and zonal (c) map algebra functions.  In (b), the conventional map algebra drawing shows 
a 3x3 focal neighborhood centered on the [row column] position (2,4), which is colored 
black. The analogous three-dimensional map algebra drawing shows a 3x3x3 focal neigh-
borhood centered on the [row,column,timestep] position (2,4,2), which is obscured by 
outer cube elements.
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identical to the combination of two X,Y,Z cubes as 
shown in Figure 1a: the values of one cube would be 
combined with those of the corresponding values in 
the other cube, and the output would be an X,Y,T 
cube of similar dimensions. In the second case, an 
X,Y,T cube could be combined with an X,Y layer 
by matching each X,Y,T cube element with its X,Y 
layer counterpart based solely on the X,Y coordinate 
values of each element. Likewise, an X,Y,T cube could 
be combined with a time series data set having no 
spatial dimension, by matching each X,Y,T cube 
element with its time series counterpart based solely 
on the T coordinate value of each element.  

Local functions on X,Y,T cubes may also support 
the ability to summarize a subset of the dimensions 
by another. For example, given a single X,Y,T input 
cube, one may wish to combine all the values in the 

T dimension associated with each individual location, 
and the output would be an X,Y layer. Analogously, 
one may wish to combine all the values in the X 
and Y dimensions associated with each individual 
moment in time, and the output would be a time 
series of values.  

Perhaps the most fundamental distinction between 
an X,Y,Z and an X,Y,T environment from the perspec-
tive of map algebra, however, is the need to define 
both zones and neighborhoods not only in terms of 

space-time units but also in terms of units that relate 
solely to the spatial or temporal dimension. These 
neighborhoods could also be anisotropic in space 
and time, so that, say, the value of a spatio-tempo-
ral X,Y,T position is calculated as a function of the 
values that have previously occurred at that location. 
Consider, for example, a form of FocalMaximum in 
which the value of an X,Y,T position is calculated as 
the maximum precipitation value that has occurred 
in the last year.

For zonal functions, spatio-temporal data also 
present several new opportunities. If we assume 
the value cube in a zonal function is spatio-temporal, 
the zone cube may be spatial (varying in space but 
not time) (Figure 2a), temporal (varying in time but 
not space) (Figure 2b), or spatio-temporal (varying 
over both space and time) (Figure 2c). If the zone 

cube is spatial, the output would 
report a summary of the spatio-
temporal values in the value 
cube for each spatial zone. If 
the zone cube is temporal, the 
output would report a summary 
of the spatio-temporal values in 
the value cube for each tempo-
ral zone. Similarly, for a spatio-
temporal zone cube, the output 
would report a summary for each 
spatio-temporal zone.  

Implementation of 
Cube Functions

As a first step toward the 
implementation of the tem-
poral map algebra described 
above, we have implemented 
a number of new functions 
that operate on a three-
dimensional data model in 
which two dimensions rep-
resent planimetric position 
and the third dimension 
represents time.  These are 
called "cube functions" and 

are referred to by adding the prefix "cube" to the 
conventional function’s name, e.g., FocalMean 
becomes cubeFocalMean. We will describe the 
cube function versions of LocalSum, FocalSum, 
and ZonalSum as examples. These were imple-
mented using the Interactive Data Language (IDL) 
(Research Systems, Inc.), which was selected as a 
rapid prototyping tool because of its high-level 
array-handling capabilities.  

Figure 2. Types of zone cubes used in spatio-temporal zonal functions: a zone cube that 
varies over space but not time (a), a zone cube that varies over time but not space (b), 
and a zone cube that varies over both space and time (c).
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The spatio-temporal data structure we developed 
is an implementation of the space-time cube concept 
as described above. For the purpose of prototyping 
the cube functions, a spatio-temporal "data cube" 
was encoded as a simple three-dimensional array 
of the form [row, column, timestep] where the row 
and column array positions imply location in the 
spatial dimensions and the timestep array position 
implies "location" in the temporal dimension. One 
thematic value was encoded for each unique posi-
tion in the three-dimensional array. An individual 
position in the three-dimensional array is referred 
to as an "element" of the data cube.  

Local cube functions were implemented by using 
the basic mathematical operators (e.g., +, -, /, *) of 
IDL, which supports their application to multi-dimen-
sional arrays. Focal and zonal cube functions were 
implemented by extending the looping programming 
structures that iterate over two-dimensional arrays 
in conventional map algebra to three dimensions. 
We illustrate focal and zonal cube functions using 
synthetic spatio-temporal data sets which are small 
enough to be validated graphically. Focal functions 
are demonstrated using the [5,5,5] data cube shown 
in Figure 3. These data could be air temperatures 
sampled over time or any field-like geographic phe-

Figure 3. A [5,5,5] data cube.
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nomena regularly sampled over two-dimensional 
space and time. Figure 4 reports the results pro-
duced by applying a cubeFocalSum function using 
a [3,3,3] element focal neighborhood, i.e., the focal 
neighborhood extends over a three-row-by-three-
column-by-three-timestep "cube" that is centered 
over the focal kernel.

Although not demonstrated in this example, 
cube focal neighborhoods can also be delineated 
in purely spatial or purely temporal dimensions. 
Thus, a focal function can be applied to its spatial 
surroundings, its temporal context, or its vicinity 
in both time and space. To illustrate the zonal cube 
functions, a cubeZonalSum function was applied 

using the zone data cube shown in Figure 5 and the 
value data cube shown in Figure 3. Table 1 reports 
the results where each row in the table shows the 
sum of the values of all elements in the value cube 
that lie within each of the spatio-temporal zones 
defined in the zone cube.  

Case Study: Analysis of Spatio-
Temporal Remote Sensing Data

Overview
To demonstrate the utility of temporal map alge-
bra, we conducted an analysis of 1982-1992 El 

Figure 4. Results of the cubeFocalSum function, when applied to the value cube shown in Figure 3.
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Niño/Southern Oscillation (ENSO)-related veg-
etation change over different land covers in the 
southeast USA, including North Carolina, South 
Carolina, and Georgia. Cube functions were used 
to manipulate, integrate, and analyze data that are 
spatial (land cover data), temporal (ENSO phase 
data), and spatio-temporal (vegetation change data). 
Vegetation "greenness," or intensity, was indicated 
using Normalized Difference Vegetation Index 
(NDVI) data derived from the Advanced Very High 
Resolution Radiometer (AVHRR), a satellite-borne 
earth sensor. These eight-km-resolution data were 
transformed prior to the analysis by first calculating 

the monthly mean for each pixel and then subtract-
ing that monthly mean from each pixel’s observed 
NDVI value (Figure 6), a common approach taken 
in climatological analyses. Vegetated land cover 
data for the study regions were acquired from the 
U.S. Geological Survey’s Geographic Information 
Retrieval and Analysis System (GIRAS) program 
(Figure 7). These data record land cover using 
the two-stage hierarchical Anderson classification 
system (Anderson et al. 1976), denoted here as 
Land Cover 1 and Land Cover 2 (Table 2).  

Data concerning ENSO were acquired from the 
National Oceanic and Atmospheric Administration 

Figure 5. A [5,5,5] zone cube. Each element’s value encodes membership in a particular zone.
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(NOAA) (Smith and Sardeshmukh 2000). These data 
indicate whether each month of the study period is 
classified as being associated with an ENSO warm 
phase (El Niño), cold phase (La Niña), or neutral 
phase. This classification was derived using standard-
ized anomalies of both the Southern Oscillation Index 
(SOI) and AVHRR-derived Sea Surface Temperature 
(SST) data from Nino 3.4, a region of the equato-
rial Pacific Ocean that indicates ENSO phase. Two 
ENSO-phase classifications were used, ENSO 1 
(Table 3) and ENSO 2; the former incorporates 
a slightly more restrictive definition of a warm or 
cold phase event.  

Analysis
The NDVI anomaly, ENSO 1, ENSO 2, Land 
Cover 1, and Land Cover 2 data were used to 
populate six individual data cubes: NDVI, ENSO1, 
ENSO2, LC1, and LC2, respectively. For the NDVI 
cube, each element encodes the NDVI anomaly 
from the monthly climatologic mean.  These 
values are unitless and range from approximately 

-0.50 to 0.50. For the 
ENSO1 and ENSO2 
cubes, each element 
encodes a -1, 0, or 1, 
indicating whether 
that month is associ-
ated with an ENSO 
cold phase, neutral 
phase, or warm 
phase, respectively. 
Elements in the 
LC1 and LC2 cubes 
encode the numeric 
IDs of the Land 
Cover 1 and Land 
Cover 2 land cover 
classes, respectively 
(e.g., "4" for forest 
land and "41" for 
deciduous forest).

Two cubeZonalMean 
functions were then 
applied using NDVI 
as the value data cube 
and ENSO1 and 
ENSO2 as the zone 
data cubes, respectively, 
in order to investigate 
whether different 
ENSO phases have 
different mean NDVI 
anomaly values. This 
analysis demonstrates 
the adaptation of 

the conventional map algebra zonal function for 
spatio-temporal analysis, as described above, where 
zones vary in time but not space (Figure 2b).  Such a 
function therefore produces a table where each row 
summarizes the NDVI anomaly data for a different 
temporal zone.  

Results are presented in Table 4. For both ENSO 
phase classifications, an ENSO warm phase is 
associated with a negative NDVI anomaly and 
an ENSO cold phase is associated with a positive 
NDVI anomaly. Of the two ENSO phase classifica-
tions, ENSO 1 captures the greater magnitude in 

Zone Sum
66 2175
77 1335
88 2800
99 1440

Table 1. The results of the cubeZonalSum function applied to 
the value cube shown in Figure 3, summarized by the zone cube 
shown in Figure 5.

Figure 6. Southeast USA NDVI anomaly for May 1983, an ENSO warm phase month with associ-
ated strongly negative NDVI anomalies, particularly in the southern part of the study region.
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the NDVI anomaly 
associated with ENSO 
warm and cold phase 
events.  

In order to investigate 
the response of vegeta-
tion to ENSO over dif-
ferent land covers, each 
of the ENSO phase clas-
sification data cubes 
(ENSO1 and ENSO2) is 
combined with each of 
the land cover data cubes 
(LC1 and LC2) to create 
four new data cubes: 
ENSO1_LC1, ENSO2_LC1, 
ENSO1_LC2, and ENSO2_
LC2. The ENSO phase 
classification and land-
cover data cubes were 
combined using a local 
function that multiplied 
the ENSO data cube’s 
value (i.e., -1, 0, or 1) 
by 100 and then added 
the numeric land-cover 
code ID to the result 
to produce a unique 
numeric identifier for 
each land cover/ENSO 
phase combination. 

For example, consider 
a cube element position 
with an ENSO1 value of 
1 (ENSO warm phase) 
and a LC1 value of 4 
(forest land). In the 
cube resulting from the 
local function used here 
that element would have 
a value of 104 (1*100+4). 
The value of 100 was used 
because none of the land-
cover code values exceed 
100, thus ensuring a unique value for each land 
cover–ENSO phase combination. This adaptation 
of the conventional map algebra local function was 
discussed initially above and is shown diagrammati-
cally in Figure 1a, where two data cubes are combined.  
Note that whereas the ENSO phase data only vary 
temporally (such as that depicted as in figure 2B), 
and the land cover data only vary spatially (such as 
that depicted in Figure 2a), the new combined data 
cubes contain zones that extend over both space and 
time (such as that depicted as in Figure 2c).  

A series of cubeZonalMean functions were then 
applied using NDVI as the value cube and each of 
the four combined ENSO phase/land cover data 
cubes as the zone cubes. As discussed above, because 
these zone cubes are spatio-temporal, the result of 
each of these functions is a table in which each 
row summarizes the NDVI anomaly data for each 
spatio-temporal zone.  

Table 5 reports the results of these cubeZonalMean 
functions where the ENSO1_LC1 and ENSO2_LC1 
cubes were used as the zone cubes. All of the indi-
vidual land covers maintained the same general 

Figure 7. Southeast USA land cover. Only level 1 of the Anderson land cover classification is 
shown for simplicity.

ID Land Cover 1 Count ID Land Cover 2 Count
2 Agricultural Land 1,698 21 Cropland and Pasture 1,696*
4 Forest Land 3,274 41 Deciduous Forest 796

42 Evergreen Forest 1,079
43 Mixed Forest 1,399

6 Wetland 440 61 Forested Wetland 371
62 Non-Forested Wetland 69

Note: ID is the numeric code for each land cover.  Count indicates the number of grid cells with that land 
cover. * Two out of 1,698 agricultural land grid cells are assigned to a different Land Cover 2 class and 
are not considered in the analysis.
Table 2. Vegetated land cover classes analyzed in the case study.
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ENSO phase-NDVI anomaly pattern as exhibited in 
Table 4 where the ENSO warm (cold) phase exhibits 
a negative (positive) NDVI anomaly. Wetlands exhibit 
the greatest ENSO warm and cold phase anomalies 
from the long-term mean, followed by forest land and 
then agricultural land. Table 6 presents the results 
of the cubeZonalMean functions where ENSO1_LC2 
and ENSO2_LC2 cubes were used as the zone cubes. 
The results show that of the two wetlands sub-classes, 
it is the non-forested wetlands that are contributing 
the most to the negative vegetation response during 
ENSO warm phase events. Non-forested wetlands 
also have by far the highest positive anomaly associ-
ated with ENSO cold-phase events.  

In addition to the mean of the NDVI anomaly 
within each ENSO phase/land cover class, it is also 
instructive to consider variance as an indication 
of consistency in vegetation response to ENSO; a 
small variance indicates a consistent response while 

a large variance indicates a less consistent response. 
To investigate this, we applied a series of cubeFocal-
Variance functions on the NDVI anomaly data cube. 
Recall that the user has the ability to set the spatial 
and temporal parameters for the three-dimensional 
X,Y,T neighborhood used in cube focal functions. 
We experimented with four different neighborhood 
configurations: a [3,3,1] spatial-only neighborhood; 
a [1,1,3] temporal-only neighborhood; a [3,3,3] 
spatio-temporal neighborhood; and a [11,11,11] 
spatio-temporal neighborhood. Note that while the 
use of a [1,1,3] neighborhood calculates the vari-
ance of just three values (the element upon which 
the function is centered in addition to the elements 

that immediately precede and follow it), such 
a neighborhood provides information on the 
nature of the temporal variation in a NDVI 
anomaly value over a three month period. A 
series of cubeZonalMean functions was then 
used to summarize the resulting NDVI anomaly 
variance data cubes using the ENSO1_LC2 
data cube.  

Results are reported in Table 7. The wetlands 
sub-classes had the highest mean NDVI anomaly 
variance by far, with non-forested wetlands having a 
much greater value than forested wetlands.  Generally, 
the ENSO neutral phase had the greatest mean 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1982 0 0 0 0 0 0 1 1 1 1 1 1

1983 1 1 1 1 1 0 0 0 0 0 0 0

1984 0 0 0 0 0 0 0 0 0 0 0 0

1985 0 0 0 0 0 0 0 0 0 0 0 0

1986 0 0 0 0 0 0 0 0 0 0 0 0

1987 0 0 0 1 1 1 1 1 1 1 1 0

1988 0 0 0 0 0 0 0 0 -1 -1 -1 0

1989 0 0 0 0 0 0 0 0 0 0 0 0

1990 0 0 0 0 0 0 0 0 0 0 0 0

1991 0 0 0 0 0 1 1 1 1 1 1 1

1992 1 1 1 1 1 1 0 0 0 0 0 0
Note: ENSO warm phase = ‘1’, ENSO cold phase = ‘-1’, and ENSO neutral phase = ‘0’.
Table 3. ENSO 1 Classification of months into ENSO phase.

ENSO Classification Warm Phase Neutral Phase Cold Phase

ENSO 1 -0.024 0.008 0.034

ENSO 2 -.0019 0.010 0.024
Table 4. Results of the cubeZonalMean function applied to the NDVI data cube 
and ENSO1 and ENSO2 data cubes.

Land Cover 1 Warm Phase Neutral Phase Cold Phase
ENSO 1: Agricultural Land -0.019 0.007 0.034

Forest Land -0.025 0.009 0.033
Wetland -0.029 0.010 0.039

ENSO 2: Agricultural Land -0.016 0.009 0.020
Forest Land -0.020 0.010 0.025

Wetland -0.023 0.011 0.035
Table 5. Results of the cubeZonalMean function applied to the NDVI data cube and the ENSO1_LC1 and ENSO2_LC1 data 
cubes.
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NDVI anomaly variance, with the noted exceptions 
of the two wetlands sub-classes, in which the cold 
phase produced the highest values. Results derived 
from using the [1,1,3] neighborhood to generate the 
NDVI anomaly variance data cube were similar to 
those using the [3,3,1] neighborhood, though mean 
NDVI anomaly variance values of the former were 
generally higher. This suggests that NDVI anomaly 
tends to vary more from one month to the next in 
a given location than from one location to an adja-
cent neighbor at a given point in time. As expected, 
mean NDVI anomaly variance was lower for the 
NDVI anomaly variance data cube generated using 
the [3,3,3] spatio-temporal neighborhood than for 
that generated using the [11,11,11] spatio-temporal 
neighborhood.  

Discussion
Although the focus of this paper is the extension of 
map algebra for spatio-temporal analysis, and not 
ENSO-related vegetation dynamics, it is enlight-
ening to offer a brief interpretation of the results 
of the case study to demonstrate the utility of the 
techniques described here. This analysis agrees 
with previous research (Mennis 2001) in finding 
that in the southeast USA the colder and wetter cli-
mate associated with ENSO warm phases tends to 
suppress vegetation greenness, while the warmer 
and dryer conditions associated with ENSO cold 
phases enhance vegetation greenness. This pat-
tern is expected, given the association of ENSO 
warm phase events with lower temperatures and 
greater precipitation than is typical in the south-
east USA (Ropelewski and Halpert 1986; Mote 
1996). The amplified ENSO signal observed for 
non-forested wetlands may be due to the flooding 
of these areas as a result of increased precipitation 
associated with an ENSO warm phase. This tends 
to suppress NDVI values. In addition, biomass in 

non-forested wetlands is concentrated in more 
transitory vegetation that is more prone to disrup-
tion by weather events than, say, woodlands. This 
interpretation is supported by the analysis of the 
NDVI anomaly variance, which demonstrates high 
spatial and temporal variability in the vegetation 
character of non-forested wetlands.  

Note that the case study analysis, while certainly 
possible without the use of cube functions, would 
otherwise demand significant manual operations 
and preprocessing that would be both cumbersome 
and time consuming. Consider, for instance, how 
the case study may have been undertaken using 
conventional GIS techniques. For this task, we 
assume the spatial data are in a standard raster 
format, as they were prior to being imported to the 
spatio-temporal data structure we developed. The 
NDVI anomaly data were initially stored as a set of 
individual spatial data layers, each layer represent-
ing a particular month and year. The Land Cover 1 
and Land Cover 2 data were stored as two individual 
spatial data layers, and the ENSO 1 and ENSO 2 
data were stored as two text files.  

Table 4 could thus be derived without using cube 
functions by extracting those NDVI anomaly data 
layers corresponding to the different ENSO phases, 
exporting and aggregating those data from the vari-
ous layers into a single table for each ENSO phase, 
and then calculating the mean NDVI anomaly for 
each ENSO phase. Tables 5 and 6 could be gener-
ated without using cube functions by overlaying each 
NDVI anomaly data layer with the land-cover data 
layer, encoding the ENSO phase for each NDVI 
anomaly observation (though all observations within 
each layer would have the same ENSO phase value), 
and generating a unique identifier for each ENSO 
phase/land cover classification. The data from 
each NDVI anomaly data layer would then need 
to be either exported and appended, or somehow 
combined in a single file, so that the mean of each 

Land Cover 2 Warm Phase Neutral Phase Cold Phase
ENSO 1: Cropland and Pasture -0.019 0.007 0.034

Deciduous Forest -0.026 0.009 0.026
Evergreen Forest -0.027 0.009 0.041

Mixed Forest -0.024 0.008 0.031
Forested Wetland -0.026 0.009 0.031

Non-Forested Wetland -0.043 0.014 0.082

ENSO 2: Cropland and Pasture -0.016 0.009 0.020
Deciduous Forest -0.020 0.010 0.022
Evergreen Forest -0.021 0.011 0.026

Mixed Forest -0.019 0.010 0.025
Forested Wetland -0.020 0.011 0.025

Non-Forested Wetland -0.034 0.010 0.089
Table 6. Results of the cubeZonalMean function applied to the NDVI data cube and the ENSO1_LC2 and ENSO2_LC2 data 
cubes.
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unique ENSO phase and land cover class combina-
tion could be calculated.

Generating Table 7 without cube functions would 
require perhaps the most intensive GIS user input as 
compared to the cube function approach. In order 
to complete the cubeFocalVariance function using 
a spatio-temporal neighborhood, the set of NDVI 
anomaly observations within a neighborhood would 
have to be extracted from the appropriate NDVI 
anomaly data layers and the variance calculated. 
Such an operation would have to be performed for 
every iteration of the focal function, and it would be 
particularly cumbersome for neighborhoods with 
large temporal extents. Once the variance for the 
neighborhood of each NDVI anomaly observation 
has been calculated and used to populate a new 
set of spatial data layers, the procedure specified 
above could be used to summarize the mean vari-
ance for each unique ENSO phase and land-cover 
class combination.  

There are perhaps other approaches to perform-
ing the case study analysis without cube functions, 
such as by combining the time series of NDVI 
anomaly values into a single data layer.  However, 
all conventional GIS approaches to the case study 
analysis would require extensive processing in which 
the GIS analyst must perform a series of data and 
file manipulation operations. With cube functions, 
however, the entire case study analysis may be 
completed using just a few simple cube function 
statements. Of course, it takes some effort to import 
the data into the spatio-temporal data structure to 
which the cube functions are applied. We developed 
a file reader script that reads in spatio-temporal 
data formatted in a text file, where each row in the 
file represents a single-element spatial location and 
each column represents a moment in time. An inline 
header encodes the number of rows and columns, 
as well as a value for indicating if a particular ele-
ment has a "no data" value. Generating this input 
file demanded some preprocessing in a commercial 
GIS package, though far less than the preprocessing 
necessary to perform the analysis without the use 
of cube functions.

We note that one could write scripts to automate 
some of the manual file manipulations and other 
data processing required were the analysis done 
using a commercial GIS package. In essence, the 
idea of cube functions is that they are such scripts 
already written and made available to the GIS user. 
However, it is important to note that were a GIS user 
to script a solution to the case study analysis presented 
above, the scripts would likely be specific to the task 
at hand, and not generalizable to other application 
domains or data sets. Cube functions, on the other 

hand, are intended to be generic and applicable to 
a wide variety of data that can be encoded within 
a three-dimensional data structure such as the one 
we have implemented here. And like conventional 
map algebra, temporal map algebra functions can 
be accessed via simple statements that can be com-
bined to produce more sophisticated modeling and 
analysis for a variety of application domains.  

Conclusion
We recognize that the cube data structure and 
functions implemented in this research are algo-
rithmically relatively straightforward. Their pur-
pose, however, is to provide an algorithmic and 
syntactic framework for the development of a rich 
library of temporal map algebra functions.  Given 
this framework, many of the other conventional 
map algebra functions can be extended to their 
cube function analogs. For example, though the 
current implementation of the cube functions 
supports only a handful of basic statistical opera-
tors such as sum and mean, more sophisticated 
operators can be incorporated without any major 
revision of the basic code.  Likewise, though the 
current implementation of the focal function only 
supports a "cubic" spatio-temporal neighborhood 
(with user-defined spatial and temporal extent), a 
variety of neighborhood options, such as spatio-
temporal cones or "doughnuts," can easily be 
implemented and incorporated into the structure 
of the algorithm.

Like the conventional map algebra, our approach 
to temporal map algebra and prototype imple-
mentation of the cube functions engenders certain 
assumptions and limitations. We discuss four of these 
issues in this paper. First, just as conventional map 
algebra is intended to work with two-dimensional 
raster grids and not vector data, cube functions are 
intended to handle three dimensional raster data 
cubes. While the raster data model can be used to 
represent nearly any kind of geographic phenom-
ena, it is typically used for field-like geographic 
phenomena (Goodchild 1992). While it is certainly 
possible to represent moving objects, such as cars, 
in the spatio-temporal data cube, the cube functions 
are not intended to analyze this type of phenomena, 
except in situations where such phenomena may 
be easily represented as individual zones in a cube 
zonal function.

Second, just as conventional map algebra assumes 
uniform intervals between grid cells in a raster, cube 
functions assume uniform spatial and temporal inter-
vals between elements in the spatio-temporal data 
cube. In addition, cube functions assume that the 
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spatial and temporal extent and resolution of all the 
data sets that are entered into a given function are 
identical.  Meeting these assumptions would likely 
demand significant data preprocessing for many 

"real-world" applications, in which the integration 
of data from diverse sources, and hence various 
extents and resolutions, is the norm. In most GIS 
packages which support map algebra it is up to the 
user to ensure the algorithms are being applied 
appropriately; and our approach to the implementa-
tion of cube function places the same onus on users. 
However, we acknowledge that the introduction of 
a temporal component complicates users’ ability to 
meet these assumptions.  For instance, spatial inter-
polation and re-sampling algorithms available in a 
variety of GIS packages may be used to transform 
multiple two-dimensional raster data sets to a single 
resolution for entry into conventional map algebra 
functions. However, the spatio-temporal analogs of 
these algorithms are not widely available.

Third, the utility of cube functions is dependent 
on the ability of users to transform their spatio-
temporal data into the data structure on which the 
cube functions operate. The approach we used in 
the prototype implementation was to develop a file 
reader script for a particular format which we found 
to be of use because of our own experiences and 
software expertise.  However, spatio-temporal data 
may be stored in a variety of formats. Therefore, it 
is essential to ultimately develop a file reader that 
can ingest many different file formats to populate 
the spatio-temporal data structure. 

The fourth limitation of the cube function approach 
implemented here concerns related issues of data 
storage efficiency and algorithm performance. Raster 
encoding of continuous data is typically costly in 
terms of data storage because of the need to store 
an individual value for each location in the raster. 
The problem is exacerbated in spatio-temporal raster 
data where data sets of even moderate spatial extent 
can place significant data storage demands. One 
approach to this problem is to adapt conventional 
raster compression methods, such as run-length 
encoding and quadtrees (Samet 1990; Worboys 
1995), to three dimensions (Samet 1990; Peuquet 
and Duan 1995). Data volume also has an impact on 
algorithm performance, as cube function algorithms 
are often required to iterate over all elements in a 
data cube and are thus computationally intensive 
for very large data sets. This is particularly true for 
cube focal functions, which can require data retrieval 
in the spatial and/or temporal dimensions at each 
iteration of the algorithm.  

As a related problem, the current prototype imple-
mentation of certain cube functions require that 

multiple blocks of memory, each equal to the size 
of the input data cube, be assigned simultaneously. 
This can severely limit the size of data sets that 
can be handled by the cube functions, particularly 
when using a desktop computer, as we were for this 
research. This latter performance issue may poten-
tially be addressed using "out-of-core" computing 
in which computation is applied to data residing 
on disk as opposed to in memory (Kandemir et al. 
1997), and which has been applied to handling very 
large spatial data sets (Ferreira et al. 2000; Pitas and 
Cotsaces 2000). This approach should work well 
for cube function algorithms in which algorithmic 
calculations may be easily compartmentalized by 
space and/or time. 
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