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Introduction 
 
             Coastal and estuarine primary productivity, as indicated by chlorophyll concentrations, is 
an important part of any estuarine or coastal ecosystem that is often influenced by freshwater 
inflow, nutrient loading, salinity and other environmental conditions (Lohrenz et al., 1999; Kim 
and Montagna, 2009; Arismendez et al., 2009 ).  In particular, eutrophic conditions have become 
a recurring threat to coastal waters in the Gulf of Mexico, largely owing to human land use and 
nutrient loading within watersheds (Boesch et al., 2009).  These anthropogenic impacts, 
combined with projected changes in climate, may have significant impacts upon the health and 
characteristics of estuarine ecosystems along the Texas coast. Even when eutrophic conditions 
are not prevalent, primary producers form the base of the food web and changes in abundance 
result in altered productivity and biomass at higher trophic levels (Kim and Montagna, 2009).  
Given the importance of primary productivity to estuarine ecosystems, it is thus important to 
understand what the controlling factors are and to monitor current and past concentrations.  
             Although chlorophyll has long been sampled by individual researchers and monitoring 
agencies within Texas coastal environments, relatively little of that data is publicly available.  
Remote sensing and digital image processing offers a way to observe current conditions in Texas 
coastal waters and create a record of past primary productivity going back to the 1980s.  In 
addition to the advantage conferred by using a consistent and regularly-acquired dataset, 
remotely sensed data all offers spatially extensive coverage.  Spatial patterns and gradients are 
thus much more easily and cheaply observed using remote sensing than would likely be possible 
using coordinated field campaigns. 
             Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus 
(ETM+) provide a well-calibrated continuous record 30 m multispectral data, collected every 16 
days since 1982 (TM) and 1999 (ETM+) (Rogan and Chen, 2004).  While remote sensing 
platforms, such as the Advanced Land Imager (ALI), Hyperion, or Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensors, provide higher radiometric or spectral resolution, the data 
produced is unsuitable to monitoring purposes.  TM and ETM+ provide both high temporal and 
spatial resolution, a combination not found in these other data products. 
             Landsat sensors, among others, have been used to map chlorophyll-a (chl-a) 
concentrations in a variety of coastal environments (Yang, 2005).  Although Principle 
Component Analysis (PCA) classifications can be used to map regions of clustered chlorophyll 
concentrations (Erkkila and Kalliola, 2004), most studies use regression models to relate field-
measured chl-a to combinations of Landsat bands (e.g, Baban, 1997; Han and Jordan, 2005; 
Kabbara et al., 2008).  Han and Jordan (2005) found that in the Pensacola Bay on the Gulf of 
Mexico, regressing the ratio of Band1/Band3 resulted in an R2=0.67.  Other studies of remote 
sensing of chl-a in Minnesota lakes have had success regressing a combination of one band and a 
band ratio against measured concentrations (Brezonik et al., 2005; Olmanson et al., 2008).  I 
investigate both of these approaches in this papers 



  

Study Area 
 
I chose to use the Matagorda Bay, Lavaca Bay and Tres Palacios Bay as a case study for 
mapping chl-a in Texas bays in estuaries (Figure 1).  The Colorado and Lavaca Rivers are the 
major sources of freshwater inflow and form the system’s estuaries.  The Lavaca-Colorado 
Estuary, which is formed within these bays, is heavily influenced by human land use and many 
upstream dams have contributed to changes in freshwater inflow that may impact the health and 
functioning of estuaries (Kim and Montagna, 2009).  
 

 
 
Figure 1.  Study area of Matagorda Bay and adjacent bays.  Inset Texas map indicates the areas 
of the Colorado River and Lavaca River drainage basins.  Green dots show locations where 
chlorophyll samples used in this study were collected during the 2001-2009 timeframe. 

 



 Data and Methods 

 Field-collected chl-a measurements were obtained from the Texas Commission on 
Environmental Quality (TCEQ) database.  Within the Matagorda-Lavaca Bay system, 59 chl-a 
samples were collected from 6 stations over the 2001-2009 timeframe.  Of these, only 16 
samples corresponded within 7 days of  high quality Landsat scenes (Table 1).  13 Landsat 
scenes were downloaded from the United States Geological Survey (USGS) Global Visualization 
Viewer (GloVis) website. 
  
Station Description Latitude Longitude Date Chl-a 

(ug/L) 
Landsat Correspondent 

Tres Palacios Bay at CM 38 28.649517 -96.251663 1/8/2002 11.60 LE70260402002006EDC00 
Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 1/8/2002 16.00 LE70260402002006EDC00 

Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 1/7/2003 15 LT50260402003001LGS01 

Matagorda Bay NE 
Quadrant 

28.6 -96.316673 12/1/2004 27.20 LE70260402004332EDC00 

Lavaca Bay at CM 22 28.679722 -96.582222 5/25/2005 11.20 LE70260402005142EDC00 
Lavaca Bay at CM 22 28.679722 -96.582222 5/22/2006 12.10 LT50260402006137EDC00 
Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 9/13/2006 5.53 LE70260402006257EDC00 

Lavaca Bay at CM 22 28.679722 -96.582222 11/28/2006 4.86 LT50260402006329EDC00 
Lavaca Bay at CM 22 28.679722 -96.582222 2/27/2007 16.5 LT50260402007060EDC00 
Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 11/8/2007 6.97 LE70260402007308EDC00 

Lavaca Bay at CM 22 28.679722 -96.582222 2/6/2008 26.20 LE70260402008039EDC00 
Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 2/7/2008 25.90 LE70260402008039EDC00 

Matagorda Bay NE 
Quadrant 

28.6 -96.316673 7/9/2008 3.35 LT50260402008191EDC00 

Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 7/9/2008 8.29 LT50260402008191EDC00 

Lavaca Bay at CM 22 28.679722 -96.582222 10/28/2008 8.32 LT50260402008303EDC00 
Tres Palacios Bay at 
Harbor 

28.695936 -96.226036 6/23/2009 13.90 LT50260402009177CHM01 

Table 1.  Field data used in regression models to find the best relationship between remotely 
sensed data and chlorophyll concentrations, and Landsat scenes that correspond with field 
samples. 
 
             In this analysis, I used only Landsat bands 1–4; the blue, green, red, and near infrared 
wavelengths (0.45–0.52 µm, 0.52–0.60 µm, 0.63–0.69 µm, 0.76–0.90 µm, respectively) (Rogan 
and Chen, 2004).  The remotely sensed data were atmospherically corrected and converted into 
reflectance values (mW cm-2 sr-1 µm-1) using the Cos(t) dark-body subtraction algorithm 
(Chavez, 1996).  I performed this by utilizing the AtmosC module in the raster-based GIS 
software, IDRISI (Figure 2).  Once this was done, all subsequent GIS manipulations were 
performed in ArcGIS 10. 
 



 
Figure 2. 
Figure 2.  The Atmospheric Correction module in IDRISI.  This module uses satellite positioning 
and configuration information, in conjunction with a “haze” value obtained from dark body 
objects within a Landsat scene to correct for possible atmospheric effects.  

At each sampling station, an Area of Interest (AOI) 4 pixels by 4 pixels was digitized.  
These polygons were used as an input feature in Zonal Statistics as Table tool to extract mean 
reflectance values in each Landsat band from the AOI. 
            Several series of multiple linear regressions were performed to find the optimal band 
combination relating remotely sensed reflectance data to field measurements (Table 2). 

Regression Model Best 
Combination 

R2 p-value 

chl-a = A0 + A1*(bj/bk) b1/b3 0.5 0.002 

ln(chl-a) = A0 + A1*(bj/bk) b1/b3 0.44 0.005 

chl-a = A0 + A1*bl + A2*(bj/bk) b3, b1/b3 0.55 0.005 

ln(chl-a) = A0 + A1*bl + A2*(bj/bk) b1, b2/b3 0.55 0.005 

  Table 2.  Regression models performed to find the best empirical relationship between 
measured chlorophyll-a and remotely sensed data.  Ax indicates a coefficient, bx indicates 
reflectance in a given band.   

Having found that several band combinations result in R2 > 0.5, I chose to use the following 
Equation 1: 

Chl-a = 37.0806375 + (-94.76752 * b3) + (-29.944702 *(b1/b3)  (1) 

I applied Equation 1 to 6 cloud-free Landsat scenes, using the Raster Calculator.  All land cover 
classes except for water bodies were masked out of the Landsat imagery using the National 
Oceanic and Atmospheric Administration (NOAA) Gulf Coast Land Cover Map.  In areas where 
reflectance was very low, this algorithm produced negative values.  I used the Conditional Tool 

https://webspace.utexas.edu/cgg293/www/AtmosCmodule.png?�


in Raster Calculator to remove all values less than 0.  Finally, Texas shoreline and county 
polygons were obtained from TCEQ GIS data catalog. 

Results and Discussion 

The relationship between measured and satellite-derived chl-a concentrations is presented in 
Figure 3.  The correlation between the two variables is not as strong as those found in literature, 
where R2 frequently exceeds 0.65 (e.g., Brezonik et al., 2005; Olmanson et al., 2008; Han and 
Jordan, 2005).  However, I did find that using a ratio of bands 1/3 often results in the best 
correlation, similar to these papers.  A combination of band 1 and band 2/3 also gave a high R2, 
but a review of literature shows that the ratio of band 2/3 is often associated with concentrations 
of dissolved organic matter (e.g., Kutser et al., 2009).  I chose not to use this ratio to reduce the 
likelihood that of accidentally the wrong water quality component. Given that only 16 field 
measurements were available that closely corresponded with Landsat imagery over the past 10 
years, the low R2 may easily be improved with additional data.  A more robust relationship could 
also be produced by sampling multiple locations on the same day, to ensure that sampling 
methods are consistent and effects such as weather and atmospheric haze are not unduly 
influencing the data.   

 

Figure 3.  The relationship between measured and satellite derived chl-a concentrations, using 
Equation 1 (Chl-a = 37.0806375 + (-94.76752 * b3) + (-29.944702 *(b1/b3); R2 = 0.55). 
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Although the correlation between remotely sensed data and chl-a concentrations is not as high as 
found in other studies, it is still possible to gain a first-order glimpse of both the spatial and 
temporal variability using Landsat data, as seen in Figure 4.  These 8 Landsat scenes were 
chosen to be mapped as they were the only ones available that had little to no cloud interference 
across the entire study area and corresponded with field measurements.  Through visual 
inspection, we can clearly see that there is significant spatial variability within the Matagorda 
Bay and surrounding water bodies.  In all cases, estuarine regions closest to rivers tend to be 
more productive than open bay waters.  This is in accordance with the hypothesis that river 
fluxes of nutrients are important drivers of primary productivity within coastal environments.  
Additionally, chl-a concentrations vary through time.  It is not clear, given the current data set, 
whether these temporal variations are linked to discrete weather events, seasonal patterns, or 
yearly climate, all of which may have large impacts on freshwater inflow to coastal 
environments. 

Conclusions and Future Work 

These results show that mapping chlorophyll in Texas estuaries using Landsat imagery is 
feasible, given adequate field samples.  Unfortunately, I had access to relatively little data and 
the empirically-derived algorithm presented here is not as a robust as would be ideal.  However, 
even given this limitation, it is clear that significant variability is observable using remote 
sensing within Matagorda Bay.  These results may be improved with access to additional 
chlorophyll data.  Once a these relationships have been established, the causes of such variability 
may be evaluated using regional climate and weather data.  Indeed, my goal is to use these 
methods to contribute to regional land-sea coupling models to improve our understanding of 
ecosystem responses to climate change and land use change. 



 

 

Figure 4.  Mapped chl-a concentrations made by applying Equation 1 to Landsat Imagery. 
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