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Abstract 

In this paper, a method of analyzing the pattern of error when classification was done 

from remotely sensed data by using spatial autocorrelation analysis will be introduced. 

Various sites were picked (water, tree, grass, sand, and urban region) and corresponding 

reference data were supplied for comparison after classification. Classified images were 

compared to the reference data to assign white color (0) to the pixels that agree and grey to 

black color (1, 2, 3, 4; depending on the degree of disagreement) to the pixels that disagree. 

Thus black and white images (difference image) were produced and spatial autocorrelation 

was performed within grey and black pixels in difference images. Several methods of 

classification were applied including maximum likelihood, ISODATA and minimum distance 

to find out the most suitable classification after measuring spatial autocorrelations of 

difference images.  

 

- Some of the important keywords are in bold case. 

 

1. Introduction 
 

Remote sensing might be an area that has been developed fastest along with 

advancement of other scientific technologies. Constant improvements of 4 dimensions of 

resolution (spatial, spectral, temporal, radiometric resolution) and quality of product 

increased the accuracy of measurement as well as convenience of using remote sensing data 

by making other ancillary data unnecessary which were indispensable in the past. Thus, 

remote sensing application field is stretching out quickly; however, there is an intrinsic 

problem that could not be solved even field of remote sensing progresses in a great scale 

which is also an inherent limitation that raster has. Every image is a grid based raster format 

so, pattern of error is exhibited which is different from the real and this could not be solved 

fundamentally no matter how much high the resolutions are. Since remote sensor calculates 

and defines brightness value (BV) of each pixel by weighted mean, ‘smoothed’ 

representation is shown in remotely sensed imagery whether it is continuous landscape or 

discrete object. To overcome this phenomenon, various trials are being made and giving an 

edge effect by filtering of pixels is one of the methods used most commonly.
1
 Another 
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commonly used method is a sub-pixel unmixing (spectral mixture analysis) which divides 

each proportion for various features mixed in a pixel. However there are some 

cumbersomeness in this method that analyst should have knowledge about the corresponding 

region, every feature and endmember characteristic in order to do this. Also through this 

method, it is possible to figure out each feature’s proportion within a pixel; however, analyst 

still has to make an educational guess for the location of features
2
. Finally pixel based 

analysis like this sub-pixel unmixing is quite limited to small region which is most of the time 

not a proper method for classification of land cover type. Thus efforts to get over these 

limitations of resolutions should focus more on assessing accuracy along with various image 

enhancements.
3
 

Smoothing effect of spatially varying landscapes appears on image and this effect 

creates the mutuality (dependency) between adjacent pixels. This is called in another word 

spatial autocorrelation and this mutuality between pixels is clearly exhibited at the boundary 

of classes when compared to real shaped feature that is delineated correctly. Spatial 

autocorrelation is the tendency for like things to occur near one another in geographic space 

(Slocum et al., 2009). The concept of spatial autocorrelation could sound general, conceptual 

and subjective. Because visual interpretation could be different from person to person and 

pattern discovered could not be a significant pattern across region only to be a chance factor 

in some cases. Thus there have been strong motivations for producing objective measure of 

spatially autocorrelated pattern. 

In this study, SAC will be applied to see how accuracy of land cover type 

identification changes when various classification methods were used over a certain area. 

Congalton (1988) mentioned that the aspect of remote sensing most affected by spatial 

autocorrelation is in the analysis of classification error. Land cover type identification using 

remotely sensed image has been a major practice in this field therefore, there has been a lot of 

efforts finding out proper algorithm to improve the accuracy of land cover classification (Lu, 

et al., 2003). Starting from Campbell (1981), endeavors to measure the error of spatial pattern 

from remotely sensed data have been made. Verbyla et al. (1995) performed the accuracy 

assessment after classification using reference grid, and Henebry (1993) and Bruzzone (2000) 

have done analysis on multi-temporal change detection using spatial dependency while Chou 

(1991) and Qi et al. (1996) studied the changing pattern of spatial autocorrelation depending 

on spatial resolution. As getting toward recently, there were more researches applying spatial 

autocorrelation to see the changing pattern in certain regions in the world than developing 

methodologies. Elobaid et al. (2006) analyzed the changing pattern of tree’s diameter in 

Malaysian forest using spatial autocorrelation and Lu et al. (2003) compared the results of 

changing pattern of spatial autocorrelation depending on various classification methods in 

Amazon basin. Other than these, there have been numerous studies applying the measure of 

spatial dependency to land cover change or classification whether directly or indirectly. 

However, this is the first time to compare the results of various classification methods to the 

hand digitized reference image and apply spatial autocorrelation to the quantified degree of 

difference.
4
 I set my study area where there are both continuous fields and discrete objects to 

extend the applicable realm compared to Congalton (1988) who relatively focused on 

                                                                                                                                   

filtering respectively.  
2
 Especially in my research looking at the spatial distribution of error pattern induced by resolution, location of 

feature is also important as its proportion within pixel. 
3
 If it is impossible to eradicate the error anyway, the best way is to understand the error completely and know 

the limitations of it. 
4
 Congalton (1988) only used maximum likelihood method which is used most commonly and binary decision 

(0 or 1) which only tells agreement or disagreement. 



continuous landscape only. Through this study, it is expected to find out the proper classifier 

in multi-dimensions of land cover type.  

 

 

2. METHOD 
 

2.1 Description of Study Area and Data Sources 

 Pattern of spatial autocorrelation was applied to the Cypress Creek Arm region of 

Lake Travis in Austin, Texas. There was a malfunction of scan line correction in ETM+; 

however, as seen in Figure 3 the study area is at the satellite path along nadir which is not 

affected by the malfunction. I chose the datum of NAD 1983 and Universal Transverse 

Mercator (UTM) zone 14 for the projection which the standard line exactly goes through the 

study region providing the highest accuracy of representation.  

 

 
Figure 1. Study Area: Cypress Creek Arm from Google Earth (approximately 2km*1.5km). Extent: 

30.433 (N), 30.415 (S), -97.877 (E), -97.906 (W). 

 

Table 1. Imagery Data Sources 

 
Image 

Date 
Scene ID Path Row 

Spatial 

Resolution 

(m) 

Cloud 
(%) 

Bands 

Used 

Satellite 

Image 

Feb-1. 

2009 

LE70270392009032EDC

00 
27 39 30 10 

RGB, 

NIR 

Aerial 

Photo 

Feb-10. 

2009 

TOP0809_50cm_3097_3

3_4_CIR_10032009 
  0.5 0 

GB, 

NIR 

Feb-10. 

2009 

TOP0809_50cm_3097_3

3_4_NC_1032009 
  0.5 0 

GB, 

NIR 

Feb-3. 

2009 

MANSFIELD_DAM-

SEB1~4 (mrsid) 
  0.15 0 RGB 

 

 

 

 

 

 

 

 

Figure 2 (left). Aerial photo seems to be taken in the afternoon around 3 (left) while the 

Landsat image (right screen shot) was taken at 4:52 pm (underlined red).  
Figure 3 (right). My study area lies under the nadir of whisk broom sensor of Landsat 7 

which is not affected by the malfunction of scan line correction. I have learned that scan line 

moves toward east as going from band 1 to 8.  

 
 



2.2 Data Preprocessing 

 After deciding which data to use and proving relevance of those data, data 

preprocessing was started in earnest by digitizing. Since already made land cover products 

usually does not match the date with Landsat imageries and even I found some relevant land 

cover products that is in a close date with Landsat imageries, defined classes were not 

relevant for this type of analysis. In this case, I considered reclassifying them; however, there 

were difficulties finding proper reference data. Therefore I decided to make my own 

reference data. Digitizing was done in ArcGIS and reference vector image was rasterized into 

10 meter grid cells using maximum area condition because it is thought to be the most 

appropriate for land cover mixed with continuous field and discrete objects. I maintained 

1:300 scales when digitizing to apply same precision across the image. The threshold for 

digitizing was 7.5 meter and this is an arbitrary number I set because the BV from remote 

sensor is calculated based weighted mean and my assumption was that it would be classified 

correctly when at least it has width and height longer than 7.5 meter especially for urban 

structures which was the trickiest part. As hand digitizing takes a lot of time, I could not set 

larger region than this at this time. However, for my future research I will be applying this 

method to a wider and variety range of area.  

 TBC image was resampled into 10 meter using bilinear resampling method. The 

reason for choosing bilinear method is because it seemed to be the one most appropriate. 

Since there was no need to maintain pixel value as before classification, nearest neighbor 

method was not needed. Cubic convolution smoothes quite much and diminishes the contrast 

between objects which is necessary for classification so it is not considered to be proper as 

preprocessing before classifying. For these reasons it bilinear resampling seemed to the most 

proper method in this type of landscape where discrete object and continuous field coexist. 

After unifying the resolution for every image, I clipped out the study area using ERDAS 

Imagine AOI (area of interest), so that every image have 279x198 pixels.  

 

2.3 Classification 

 Classification starts by defining each class scheme. In this study (for both reference 

and TBC images) classes were defined relatively generally (water, tree, grass, urban (house, 

paved road), sand) and these classes are assigned from 1 to 5 based on the order of spectral 

values (data type: short integer): water = 1, tree = 2, grass = 3, urban = 4 and sand = 5.  

Classification is broadly divided into supervised and unsupervised classification. 

Supervised classification is used with other references or field data when analyst knows the 

identities and location of classes. Then sample training sites from TBC images are picked to 

form a character signature to be used to classify pixels. To maximize the differentiation 

between features, combination of visible and near infrared band was used. There are hundreds 

of classification methods (decision rule) those are being used; however in this study, only 

several most commonly used types of classification offered by ERDAS Imagine and ArcGIS 

will be evaluated. In unsupervised classification, computer automatically creates signature of 

feature based on spectral value and classify pixels (usually ISODATA clustering), therefore 

analyst only need to define number of classes. Admittedly, we can guess that there should be 

a certain type of classifer suitable for particular land cover which will be more precise than 

others and this kind of study was first performed by Congalton (1988) and he proved the 

change of classification precision depending on the land cover type. However, Congalton 

only used the maximum likelihood
5
 and did not compare between classification methods. 
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In this study, 8 supervised and 2 unsupervised classifications methods were used and 

these are organized in table 2. Three parametric classifications were performed using 

different decision rules (Maximum likelihood, Mahalonobis, Minimum distance) which 

assume normal distribution of each class. One of the Non-parametric classifications I used 

was the classifications using parallelepiped decision rule. The reason of using parallelepiped 

decision rule is that it is good for broad classification since the separabilities between classes 

were very high enough.
6
 Another non parametric classification rule was using feature space 

which normally gives a great insight of pixel distribution across image. However, feature 

space using multiple bands (more than 3, 4 bands in this case: RGB and NIR) could not be 

represented on screen. Choosing correct training sites greatly affects the result of supervised 

classification. Hence it is important to confirm that the average brightness value of each 

training sites actually agree with the corresponding class. For this, I spatially linked reference 

and TBA images in ERDAS to choose training sites by visually inspecting.  

However there are fine references, it is always possible to miss something when 

analyst only sees the sites through photographs. 5 classes are fairly big and general divisions 

and even though they look distinct from each other some features are not clear just by looking 

at the photograph. Classes of water
7
, tree, urban and sand are quite clear but a lot of time 

indistinct feature was grass. Grass is normally differentiated with urban which is upper 

adjacent class most of the time; however, sometimes confused with adjacent lower class tree 

depending on its type and occasionally looks similar to sand especially when it is wet. 

Therefore I did a brief field trip to the most accessible couple of grass sites to see and confirm 

that there actually is grass field. After confirming the correspondence of grass between 

reference image and actual field, I compared 11 other training sites I picked by visual 

inspection for grass with the actually visited sample sites in figure 4 which is located at 

30º24’55.26”N 97 º53’09.85”W. For this comparison I first calculated the average of 

correlation coefficients of RGB values between the sample site and other 11 sites. The 

correlation coefficients ranged from 0.56296 to 0.98411 and average of them was 0.80019 

which is quite high enough to assume that the changing pattern of each of RGB based on the 

sample training site is similar. The average value of RGB between the sample site and other 

training sites is compared to see how much their degree of spectral range agree to each other. 

Average RGB value for the sample site was 895 while the counterpart of other training sites 

was 700.21 which is quite lower than the sample one. Since the lower RGB average will set 

the classification standard darker than actual, my concern was that if there would be any 

overlap with its lower adjacent class (decreasing the separability between the tree class). So I 

looked at the average values for tree and it turned out to be 420 which is still greatly 

                                           

6  separability of cell array from ERDAS Imagine. 
7
 Sometimes I got confused between shade and water however, it is easy to figure out when zoomed out from 

300:1 scale and use backup reference image for comparison.  



separable from grass class
8
. Through this process the definition of grass class which was a 

little bit confused initially became clear and accurate. 

 
 

 

Figure 4. Typical grass site (location: 30º24’55.26”N 97 º53’09.85”W, mid-lower part of 

image). 
 

 
Figure 5. From left: water, tree, urban. 

 

 
Figure 6. Final reference map after classified. 
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 Only looking at the average doesn’t justify the high separability; however, along with high correlation 

between every training sites makes it relevant to assume as correctly defined classes.  



 
Figure 7. Training sites for supervised classification from ERDAS Imagine signature editor. 

 

ISODATA (Iterative Self-Organizing Data Analysis) clustering was used for 

unsupervised classification which doesn’t require training sets and automatically group pixels 

based on spectral similarity. I did two classifications using ISODATA clustering: first one was 

producing 5 classes and assigning class values (1~5) to each of the corresponding classes and 

for the second one, it created 30 classes automatically and I reclassified them into 5 classes 

and used maximum likelihood method for land cover classification. For the later one, class 

signature was created by automatic computer process and I determined the classification 

method which is not normal. Figure 8 below is TBC images after classification.  

 

 
Figure 8. from upper-left clockwise: none-parametric MLH, parallelepiped MND, 

parallelepiped MLH, feature space MLH, mixed, ISODATA 5 classes, feature space MND, 

parallelepiped MHN, none-parametric MHN (center). Only 9 maps were included since I 

could not find any good layout to put 10 maps in a rectangular frame. 
 

2.4 Difference Image 

  After creating 1 to 5 scaled reference image and TBC images, next step was to make 

difference image which is the last part of data preprocessing before actually starting the 

analysis. Difference image is a raster image that is made of the difference value between 

reference image and TBC images for each grid. Table 3 below shows the possible values of 

difference image. Different values of 0, 1, 2, 3, and 4 depending on the degree of 

disagreement is assigned to each of the pixels in difference image in a white (0) to grey color 

scale (1, 2, 3, 4). Color scheme in table 3 is assigned to the corresponding pixel. For example, 

if C2 (tree) is classified as C4 (urban) then 2 (grey 40%) will be assigned to the corresponding 

pixel in difference image. This is performed using raster calculator and all the negative 



numbers are converted to absolute numbers.
9
 Figure 9 is difference images created.  

 

Table 3. Difference Image Table 
 

ETM+ 

 

Reference 

C1 C2 C3 C4 C5 

C1 0 1 2 3 4 

C2 1 0 1 2 3 

C3 2 1 0 1 2 

C4 3 2 1 0 1 

C5 4 3 2 1 0 

 

 
Figure 9. Difference images. From upper-left clockwise: none-parametric MLH, 

parallelepiped MND, parallelepiped MLH, feature space MLH, mixed, ISODATA 5 classes, 

feature space MND, parallelepiped MHN, none-parametric MHN (center). 
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2.5 Spatial Analysis 

 Spatial autocorrelation is the 1
st
 rule of geography that ‘everything is related to 

everything else, but near things are more related than distant things’ said by Waldo Tobler in 

1970. As the name describes it is the measure of how variable correlates with itself through 

the space therefore if there is any systematic pattern in spatial distribution between variables, 

it is considered to be spatially autocorrelated (whether positively or negatively). This is what 

makes geography meaningful that if everything is distributed in a random pattern, there is no 

need to do any kinds of spatial analysis. As I mentioned in the beginning of this paper, there 

were strong necessities to measure this conceptual pattern numerically and the most 

commonly used indexes which are Moran’s I, General G and LISA (Local Indicator of 

Spatial Association)
10

. 

 Moran’s I is basically a measure of distribution of density that takes in account of 

both feature’s location and value at the same time. Using these two variables this index 

evaluates whether the pattern of density distribution is clustered, dispersed, or random. 

Positive Moran’s I index indicates the positive spatial autocorrelation while negative means 

negative spatial autocorrelation. The Moran’s I index ranges from -1 to 1 where it means 

dispersion as the value of index gets close to -1 while it mean clustering toward 1. Value of 0 

indicates the random distribution. Moran’s I function in ArcGIS also calculates the z-score 

and p-value to see the significance of the index. Analyst could set an arbitrary significant 

threshold and decide whether the hypothesis is acceptable or rejectable (ArcGIS Resource 

Center). Moran’s I function was performed for every difference image and the index, z-score 

(also p-value) and distance were calculated (Table 5). There are many options and parameters 

to set in performing this function such as conceptualization of spatial relationship. Fixed 

distance, zone of indifference and polygon contiguity were three most relevant options in this 

case and I chose the zone of indifference to be used. Polygon contiguity makes sense that 

takes every adjacent polygon into account; however, it failed to differentiate well enough 

between features. Fixed distance performs the calculation only for features within certain 

distance but not for features outside the distance; while zone of indifference also calculates 

the features outside the certain distance based on inverse distance weights. Since the zone of 

indifference still counts the features outside the distance, though not much but it looked to be 

the most proper method of conceptualization especially when I did simulation using same 

difference image only changing this condition (Figure 11). Also it was possible to determine 

the existence of geographical effects among features to support the choice of zone of 

indifference. For example sand (C5) is naturally distributed alongside the coastline (C1) which 

means they are physically adjacent and characteristically dependent to each other. As seen in 

the figure 10, the magnified diagram of coastline, difference feature (value from 1 to 4) is 

created fiducially from standard value of 0 induced from the necessity of being adjacent; it is 

relevant to tell that there is a potential effect to each other.  

 Next step was to see whether the local spatial autocorrelation exists in difference 

image by using LISA. Unlike the global Moran’s I which measures the spatial autocorrelation 

across the whole image, LISA calculates spatial autocorrelation index as well as z-score and 

p-value for every polygon in an image with the cluster and outlier type. The cluster and 

outlier type (COType in attribute table of newly created output feature class) assigns HH for 

cluster of high values, LL for cluster of low values, HL for the outliers which is a high value 

surrounded by low values and LH for outliers which is the a low value surrounded by high 

values. This new output feature class gives good visual interpretation of the density of 
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(http://help.arcgis.com/en/arcgisdesktop/10.0/). 



distribution. Figure 11 shows the results of LISA performed for every difference image to see 

the local spatial autocorrelation pattern. I maintained the same condition for 

conceptualization of spatial relationship as Moran’s I.  

 There is another method of measuring the spatial clustering of features based on its 

location and value which is using the General G statistic that calculates the concentrations of 

high or low values over the study area. Same as Moran’s I this General G index gives 

information about whether the values are clustered or not and particular distance between 

each other affects the result in a great scale. Likewise, since z-score is an important indicator 

of evaluating the relevance of the General G index and this varies depending on the distance, 

it is the most significant job to find the highest z-score to reject the null hypothesis that is 

assuming random distribution. Because the highest clustering occurs at the highest z-score. 

Zone of indifference was used for the conceptualization of spatial relationship by the same 

reason as Moran’s I, and after finding the initial distance band, General G tool is ArcGIS is 

used several times by difference distance bands to find the pick of z-score which corresponds 

to the point of maximum clustering. As mentioned above to look at the compactness of 

grouping distance was significant and to find out the optimal distance, there was a necessity 

to set the relatively high clustered region as a standard distance. I first looked through some 

of the region that has grouping by visual inspection and then zoomed in to see the number of 

features are in that region to operate the ‘calculate distance band from neighbor’ tool in Arc 

Toolbox and obtained the average value of 68.69 (meter). This value is the length of band 

measured to find 8 nearest neighbor features of relatively high clustered region within entire 

map that should be bracketed high and low to determine the value to be used in General G 

calculation. To include less clustered region in the calculation, I decided to start from distance 

of 30 meter and increase by 5 meter to see how the z-score and measure of General G statistic 

changes depending on the various distances. For the calculation on the difference image 

produced by none-parametric maximum likelihood classification, the highest z-score was 

6.23235 when the distance was 40 meter. Positive (and highest) z-score which is statistically 

significant and the larger observed General G index than expected General G index indicate 

the pattern of clustering of high valued features in the study area (Getis, 1992; Allen, 2010). 

The optimal distances which provides the most significant clustering for every 10 

classification and the corresponding highest z-score, observed and expected General G 

indexes are organized in the table 4 below.  

 

 
Figure 10. Magnified some boundary of coastline. 

 

 



 
Figure 11. Simulation of using different conceptualization of spatial relationship (LISA).  
 

 

RESULTS 

 Until now, using the most commonly used spatial autocorrelation indexes, I have 

looked at the classification induced spatial pattern of error and saw the clustering pattern of 

error. As seen in table 5, z-score (or p-value) for every classification is small enough to reject 

the null hypothesis which is assuming the random distribution to present the statistical 

significance. Hence the interpretation could be made that there are clustering patterns across 

the image entirely as it shows in the left adjacent Moran’s I column. Moran’s I is a relative 

measure and the significance based on z-score or p-value determines whether the index 

would be meaningful or not (Mitchell, 2005). Moran’ I values range from 0.1087 to 0.174 

and the minimum is when ISODATA classification is used while the maximum is when 

parallelepiped minimum distance classification is used. The average of them is 0.1485 and 

standard deviation is 0.0226 which is quite small that the difference of errors all-round is not 

big between classifications. Thus, global spatial autocorrelation tells about the general idea of 

distribution; however, it has certain limitation in representing the various complex features 

spread out in an unknown way (even though there is a certain spatial pattern). Therefore 

along with global spatial autocorrelation, looking at how the spatial aspect of error 

distribution of every feature is locally autocorrelated is meaningful and the result is shown in 

figure 12. 

 As mentioned in previous section, running LISA on ArcGIS creates a new feature 

class map looks like figure 12 and this provides an intuitive visual interpretation. Above all, 

this has a strong advantage of ability to look at both global error distribution pattern and 

autocorrelation of each feature at a time. As seen in figure 12, general pattern of LISA is 

similar for every classification method. The most obvious local autocorrelation pattern was 

exhibited at the boundary of water and sand which are two extremes in terms of spectral 

value. All of the LISA output images showed the high value’s clustering along the water 

boundary (though some differences in degree exist). High valued features surrounded by low 

values (HL) were shown in a least amount that it wasn’t shown in most of the classification 

method but only at the urban region in mixed classification. As mentioned above, 

characteristic signature was produced based on spectral reflectance automatically by 

computer for mixed classification, separability between classes should be smaller than the 



training sites picked directly by analyst in supervised classification.
 11

 Like all other remote 

sensing applications, urban is the most complex and ambiguous region which is affected by 

spatial resolution in a greatest manner so it was first expected to have the most pattern of 

errors. On the other hand, there was a classification method which exhibited the low value’s 

clustering in urban region which was the feature space maximum likelihood. This potentially 

means that the classification in this region has been done relatively correctly. Another 

classification method which had quite a lot of LL in urban region was the same maximum 

likelihood but using parallelepiped for decision rule. The most accurately classified feature 

over all difference images is water. It is easy to check in figure 9 that all water features are 

assigned by white color (0, agreement) and blue color (LH) for most of the LISA output 

images. 

 For General G statistics, ranges of distance bands that provides the peak z-score were 

not showing any significant differences which ranged from 20 to 60 as seen in the table 4 and 

the corresponding z-score also were not much different from each others. This tells that the 

distribution of pattern of errors within difference images were not that different. All cases 

were statistically significant and had positive z-score. Also all of the observed General G 

values were higher than the expected General G values which meant there were pattern of 

clusterings of high valued features across the image. The result of General G is quite 

correlated with the LISA output image in figure 12. Thus results from three spatial 

autocorrelation indexes showed the positive autocorrelation of pattern of errors.  

 

Table 5. Moran’s I index for difference images. 
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 Signature of each class produced by computer tends to have a linear relationship between classes; therefore 

the separability should be lower than other classifications.  



 
Figure 12. Local Indicator of Spatial Association (LISA) for every difference image. From 

upper-left: none-parametric MLH, parallelepiped MND, parallelepiped MLH, feature space 

MLH, mixed, ISODATA 5 classes, feature space MND, parallelepiped MHN, none-

parametric MHN (center) 
 

 



CONCLUSIONS and LIMITATIONS 

  Although remote sensing is applied to variety of fields for its many strength, 

it possesses intrinsic limitations induced from various dimensions of resolutions. Hence, 

correctly understanding this drawback when studying and applying remote sensing is 

significant and this study showed one aspect of this by evaluating the error pattern when land 

cover was classified by using computerized process. Idea of using difference image was 

variously applied to many fields in remote sensing and other related fields and proven to be 

useful in understanding pattern of error as well through this study. It became possible to see 

the spatial pattern of error by applying spatial autocorrelation and also easy to be understood 

when visualized through difference image. Pattern of errors in image appears from various 

reasons that it may be affected by high variability if landscape, computer process, or 

characteristics of the remote sensor (Congalton, 1988). To reduce these errors scientists make 

effort developing more complicated algorithm and improve sensor’s resolution; however, this 

increases the accuracy but cannot eradicate the error. Therefore as mentioned above, it is 

always important to know this unavoidable limitation of pattern of error. 

  By this time, we saw that the pattern of error appears for any kinds of 

classification method. Hence we should remind ourselves the incompleteness of 

computerized classification and become more critical about the process. In fact, computer and 

geospatial spatial softwares dealing with remote sensing or GIS have been developing fast, 

and accordingly users are given preference of doing complicated analysis in such a simple 

way. However, this phenomenon often times made analysts unnecessary to possess the 

thorough backgrounds of fundamental principles to perform analysis only increasing the 

dependency on computer unprecedentedly high. Because of this phenomenon, analysts often 

do not realize the incompleteness of human-made algorithms and computer’s simplified (in 

user’s perspective) automatic process in geospatial analysis and even they are conscious of 

this imperfection, most of the time people don’t really have a chance to consider how much 

they are different from real world. Through this study precision was estimated by applying 

spatial autocorrelation to classified images using various methods, and with this it was 

possible to see the limits of human made classifications.  
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