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Airborne Lidar  

Airborne laser altimetry technology (lidar, Light Detection And Ranging) provides high-

resolution topographical data, which can significantly contribute to a better representation of 

land surface. A valuable characteristic of this technology, which marks advantages over the 

traditional topographic survey techniques, is the capability to derive a high-resolution Digital 

Terrain Model (DTM) from the last pulse LiDAR data by filtering the vegetation points (Slatton 

et al., 2007). 
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Topographic Lidar 

Green LiDAR 
λ = 532 nm + λ =1064 nm  

λ = 1064 nm 

 

It is important to remember that the 

deep water surfaces normally do not 

reflect the signal: however this is not 

true in case of presence of floating 

sediments or when using bathymetric 

lidar. The bathymetric lidar, that is 

based on the same principles as 

topographic lidar, emits laser beams 

in two wavelengths: an infrared (1064 

nm) and a green one (532 nm). The 

infrared wavelength is reflected on the 

water surface, while the green one 

penetrates the water and is reflected 

by the bottom surface or other objects 

in the water. Due to this reason the 

bathymetric lidar is also called green 

lidar. 
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Fonte: www.optech.ca 

During optimal environment condition, 

when the water is clear, the green lidar 

survey may reach 50 m water depth 

with an horizontal accuracy of ±2.5 m, 

and vertical accuracy of ±0.25 m. This 

technology is growing fast, and some of 

the first applications in rivers are coming 

out (Hilldale and Raff, 2008; McKean et 

al., 2009). 
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Example 1: Le Sueur River basin 

Minnesota 
River 
Basin 

Le Sueur 

Lake Pepin 

Le Sueur River located in south-central Minnesota, 

covers an area of 2880 km2 (87% row-crop 

agriculture) 

Provides ~ 24%-30% of the TSS entering the 

Minnesota River 

Minnesota River major source of sediment for Lake 

Pepin (~85% of TSS load) 

Turbidity and related nutrients levels of Lake Pepin 

are far in excess of EPA standards 

State of Minnesota required to determine the 

sources of pollution and take management and 

policy actions 

NCED Research 



Example 2: Limiting factors analysis of Coho salmon 

River networks produce a highly structured pattern of process and 

morphology downstream. 

This structure can be exploited to predict habitat and carrying capacity of 

species throughout the watershed.  

Ripple: spatially explicit model that links quantitatively topography, 

habitat carrying capacity and population dynamics for an entire 

watershed.  

GEO 

MODULE 

HAB 

MODULE 

POP 

MODULE 

GEO module: uses DEM to 

compute local slope and drainage 

area  

NCED Research 



Example 3: Drainage density as a signature of climate 

The problem of resolution: Strong 

discrepancy between channels as 

mapped in the field and as deduced from 

topographic maps (Morisawa, [1957; 

1961]; Schneider [1961]).  

Schneider, W.J., J. Geophys. Res., 1961 

Melton, M.A., ONR Tech Report, 1957 

• Climate exerts a quantifiable control over the 

degree of channel dissection 

 

• Lithology and relief are important cofactors 



Digital elevation data 

Grigno basin, Italy 

Resolution 30 m x 30 m 

Data source: University of  Padova 

Tanaro basin, Italy 

Resolution 90 m x 90 m 

Data source: University of Padova 

Tirso basin, Italy 

Resolution 100 m x 100 m 

Data source: University of Padova 

Data resolution available until recently 30-100 m.  



Rio Cordon basin, Selva di Cadore, Italy 
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The role of data resolution 

DTM 10x10 m 
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DTM 1x1 m 
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The role of data resolution 



Lidar DTMs: Solving the resolution problem? 

• Availability of meter and sub-meter 

resolution topographic data 

 

• Topographic patterns can be resolved 

over large areas at resolutions 

commensurate with the scale of 

governing processes 

 

• Importance of objective extraction of 

geomorphic feature 

 Opportunity to measure drainage density  



Challenges in geomorphic feature extraction  

• Channel initiation 

 

• Identification of accurate centerline 

 

• Presence of roads and bridges 

 

• Artificial drainage ditches 

 

• Small signal to noise ratio 

 

• Identification of channel banks 

 

• Measurement of bluffs 



GeoNet: NCED toolbox for channel network 

extraction 



GeoNet: Nonlinear filtering 

1. Nonlinear filtering: Enhance features of interest, while smoothing 

small scale features. Perona and Malik [1990] 

    , , , ,th x y t c x y t h  

 2/1

1

h
c




Smooth 

Keep 

Channel 

Bumps 



GeoNet: Statistical signature of geomorphic transitions 

2. Skeleton of likely channelized pixels: Set of pixels with curvature 

above threshold, identified from quantile-quantile plot of curvature.  

thk

The deviation of the pdf from Gaussian can be interpreted as transition 

from hillslope to valley [Lashermes et al,. 2007].  



Channel extraction: geodesics 

b 
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Outlet 

Channel 

head 

The cost function ψ represents the cost of traveling between point a and 

point b in terms of a function of area (A), slope (S), curvature (κ) and 

skeleton (Skel): 
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2. Geodesic minimization: Channels are extracted as paths of 

minimum cost 



Channel initiation and channel disruptions 

Passalacqua, P., P. Tarolli, and E. Foufoula-Georgiou, Water Resour. Res, 2010 



Flat lands and channel morphology 

• Le Sueur River major source of sediment to the Minnesota River. 

 

• Both listed as impaired for turbidity by USEPA.  

 

• Need to identify sediment sources 



Roads and ditches 



Identification of likely channelized pixels in engineered 

landscapes 

Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012 



Curvature analysis to distinguish channels and roads 

𝜅 = 𝛻 ∙
𝛻ℎ

𝛻ℎ
 

𝛾 = 𝛻2ℎ 

Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012 



Differentiating natural versus artificial features 

Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012 



Channel network extraction and bridge crossings 

Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012 



Automatic extraction of channel morphology 

• Automatic extraction of channel cross-section 

 

• Detection of bank location  

 

• Identification of geomorphic bankfull water surface elevation 

 

• Measurements of channel width and of bank and bluff height 

Height 60 m 



Source: P. Belmont 

Source: C. Jennings 

Automatic extraction of channel morphology 

Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012 



Codependence of vegetation and drainage density 

Field mapped channel heads on slope 

gradient map (Imaizumi et al. [2010]). 

GeoNet drainage delineation. 



Preliminary results: Codependence of vegetation and 

drainage density 



Preliminary results: Codependence of vegetation and 

drainage density 



Multi-resolution analysis of landscapes to understand 

landscape forming processes characteristic scales 

The first scaling break represents 

the length scale of the highly 

convex regions(i.e. the ridges) 

The second scaling break 

represents the hillslope length 

scale. 
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Six test sites were studied for 

testing the methodology. 

The data for the test sites was 

obtained from TNRIS  
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Feature extraction from point cloud 



Site 1 has only streams and surrounding farmlands 

dry stream 
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Feature extraction from point cloud 



Site 2 has roads, streams, marshy areas, small culvert and drains by the 

roadside  

road 

stream 

marshy  

area 
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Feature extraction from point cloud 



stream 

Probable 

floodplain 

Detects points around the water gaps and maps the geometry of stream properly 
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Feature extraction from point cloud 



drain 

road 

tree 

farmland 

When the elevation difference is very small in the region, the model identifies all 

low lying areas as water surfaces 

Site 5 
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Feature extraction from point cloud 
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