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Airborne Lidar
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Airborne laser altimetry technology (lidar, Light Detection And Ranging) provides high-
resolution topographical data, which can significantly contribute to a better representation of
land surface. A valuable characteristic of this technology, which marks advantages over the
traditional topographic survey techniques, is the capability to derive a high-resolution Digital
Terrain Model (DTM) from the last pulse LIDAR data by filtering the vegetation points (Slatton
et al., 2007).
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Airborne Lidar
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Airborne Lidar

Discrete Echo
Returns waveform
Amp!itude’

| fae—

outgoing pulse

X,¥,Z :
y return signal

- 1st return 1st level

(canopy)

canopy
structures

2nd return 2nd level (bushes)

= |ast return ground

time time

Slide courtesy of Dr. Paolo Tarolli, University of Padova, Italy



Raw LIDAR
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Topographic Lidar

A=1064 nm

Green LIDAR

A=532nm+A=1064 nm

It is important to remember that the
deep water surfaces normally do not
reflect the signal: however this is not
true in case of presence of floating
sediments or when using bathymetric
lidar. The bathymetric lidar, that is
based on the same principles as
topographic lidar, emits laser beams
in two wavelengths: an infrared (1064
nm) and a green one (532 nm). The
infrared wavelength is reflected on the
water surface, while the green one
penetrates the water and is reflected
by the bottom surface or other objects
in the water. Due to this reason the
bathymetric lidar is also called green
lidar.
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Fonte: www.optech.ca
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Timing and data acquisition electronics

il groen (532 ) ond During optimal environment condition,
near-IR (1064 nm) laser pulses . .
directed towards water surtace when the water is clear, the green lidar

|\ survey may reach 50 m water depth
| Green and near-IR pulses reflected with an horizontal accuracy of +2.5 m,
and vertical accuracy of £0.25 m. This
technology is growing fast, and some of
the first applications in rivers are coming
out (Hilldale and Raff, 2008; McKean et
al., 2009).
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Example 1: Le Sueur River basin

Le Sueur River located in south-central Minnesota,
covers an area of 2880 km? (87% row-crop
agriculture)

Provides ~ 24%-30% of the TSS entering the
Minnesota River

Minnesota River major source of sediment for Lake
Pepin (~85% of TSS load)
Le Sueur

Turbidity and related nutrients levels of Lake Pepin
civaton 1) are far in excess of EPA standards
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State of Minnesota required to determine the
sources of pollution and take management and
policy actions
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GEO
MODULE

Example 2: Limiting factors analysis of Coho salmon

River networks produce a highly structured pattern of process and
morphology downstream.

This structure can be exploited to predict habitat and carrying capacity of
species throughout the watershed.

Ripple: spatially explicit model that links quantitatively topography,
habitat carrying capacity and population dynamics for an entire
watershed.

=lslx|
=10/

D& -« BX |5 =& raneu =] &R QAR PES LR O ML 7 | Grppe B ResetPropct Refresh
. )

HAB POP
MODULE |\ MODULE

GEO module: uses DEM to
compute local slope and drainage
area




Example 3: Drainage density as a signature of climate

Drainage Density
T T

Drainage Density

« Climate exerts a quantifiable control over the
degree of channel dissection

« Lithology and relief are important cofactors
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Digital elevation data

Data resolution available until recently 30-100 m.

Grigno basin, Italy
Resolutio

Tirso basin, Italy . s
Resolution 100.m x 100 m s Y m x90 m
Data source: University of Padova *‘@)‘*\ a souree:University of Padova




Rio Cordon basin, Selva di Cadore, Italy
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The role of data resolution

DTM 10x10 m

alluvial channel
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The role of data resolution
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Lidar DTMs: Solving the resolution problem?

* Availability of meter and sub-meter
resolution topographic data

» Topographic patterns can be resolved
over large areas at resolutions
commensurate with the scale of
governing processes

« Importance of objective extraction of
geomorphic feature

Opportunity to measure drainage density




Challenges in geomorphic feature extraction

250 500

Channel initiation

 Identification of accurate centerline
3| ©+ Presence of roads and bridges

« Atrtificial drainage ditches

« Small signal to noise ratio

e |dentification of channel banks

~ « Measurement of bluffs
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Welcome to GeoNet 2.0

GeoNet 2.0 is a MatLab-based computational tool for the automatic extraction of channel networks and geomorphic features
from lidar data. It is the newest version of GeoNet, following GeoNet 1.0 and GeoNet 1.0.1. GeoNet 2.0 has been sustantially
re-coded, but the basic idea behind the tool remains the same.

GeoNet combines nonlinear filtering for data preprocessing and cost minimization principles for feature extraction. The use of
nonlinear filtering achieves noise removal in low gradient areas and edge enhancement in high gradient areas, i.e., near feature
boundaries. After preprocessing, GeoNet extracts channels as geodesics—lines that minimize a cost function based on
fundamental geomorphic characteristics of channels such as flow accumulation and curvature.

GeoNet extracted network
=—=Surveyed network

GeoNet extraction of the Rio Col Duro river basin in the Eastern Italian Alps and comparison to the surveyed network (results
obtained with GeoNet 1.0.1) [Passalacqua, Tarolli and Foufoula-Georgiou, WRR, 2010].

Subpages (2): Acknowledgments Contributors

GeoNet: NCED toolbox for channel network



GeoNet: Nonlinear filtering

1. Nonlinear filtering: Enhance features of interest, while smoothing
small scale features. Perona and Malik [1990]

o:h(x,y,t)=V-(c(x y,t)Vh)

1
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GeoNet: Statistical signature of geomorphic transitions
2.

Skeleton of likely channelized pixels: Set of pixels with curvature
above threshold, identified from quantile-quantile plot of curvature.
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The deviation of the pdf from Gaussian can be interpreted as transition
from hillslope to valley [Lashermes et al,. 2007].
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Channel extraction: geodesics

2. Geodesic minimization: Channels are extracted as paths of
minimum cost

The cost function y represents the cost of traveling between point a and
point b in terms of a function of area (A), slope (S), curvature (k) and
skeleton (Skel):

1 1
= e.g.,
f(A S, k, Skel) J a-A+0- -k
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contour line (10 mint.)
Rio Col Duro basin
channel head

| landslide scar

- colluvial channel

bedrock channel

= alluvial channel

Passalacqua, P., P. Tarolli, and E. Foufoula-Georgiou, Water Resour. Res, 2010




Flat lands and channel morphology

Le Sueur River major source of sediment to the Minnesota River.
« Both listed as impaired for turbidity by USEPA.

* Need to identify sediment sources



Roads and ditches
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|dentification of likely channelized pixels in engineered
landscapes

(@) o4
0.3
0.2
0.1

fm/m?]
]

e 4 2 0 2 4 6 1000 1400 1800 2200
standard normal variate x [m]

1000 1400 1800 2200 1000 1400 1800 2200
x [m] x [m]

Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012
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Curvature analysis to distinguish channels and roads
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Laplacian curvature
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Differentiating natural versus artificial features
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Channel network extraction and bridge crossings
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Automatic extraction of channel morphology

DF Y
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Automatic extraction of channel cross-section

Detection of bank location
|dentification of geomorphic bankfull water surface elevation

Measurements of channel width and of bank and bluff height



Automatic extraction of channel morphology
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Codependence of vegetation and drainage density
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gradient map (Imaizumi et al. [2010]).



Preliminary results: Codependence of vegetation and
drainage density

Vegetation type
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Preliminary results: Codependence of vegetation and
drainage density
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Feature extraction from point cloud

Six test sites were studied for
testing the methodology.

The data for the test sites was
obtained from TNRIS

Slide courtesy of Harish Sangireddy, UT Austin



Feature extraction from point cloud

Site 1 has only streams and surrounding farmlands

dry stre

Slide courtesy of Harish Sangireddy, UT Austin



Feature extraction from point cloud

Site 2 has roads, streams, marshy areas, small culvert and drains by the
roadside

Slide courtesy of Harish Sangireddy, UT Austin



Feature extraction from point cloud

Detects points around the water gaps and maps the geometry of stream properly

Probable
floodplain

Slide courtesy of Harish Sangireddy, UT Austin



Feature extraction from point cloud

When the elevation difference is very small in the region, the model identifies all
low lying areas as water surfaces

farmland

Site 5

Slide courtesy of Harish Sangireddy, UT Austin
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