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1. Introduction

Brackish water is defined as groundwater with salinity levels higher than fresh water, but lower
than salt water. Brackish groundwater originates from a mixture of fresh and sea water or rainfall that
seeps into the ground where minerals within the subsurface react with water, thus increasing Total
Dissolved Solids (TDS). The moderately salinity of brackish water makes it a prime resource to apply
desalination, especially now that membrane technology has improved enough to become economically
viable with water costs ranging from $1.50/Kgal to $2.75/Kgal (LBG-Guyton Associates, 2003.

Texas entities have recently taken an interest in brackish water, with the Texas Water
Development Board having already identified brackish groundwater production zones in a few aquifers in
2016 and the state having already legislatively mandated identification in the rest of the aquifers by 2022.
Austin has also acknowledged brackish water desalination as an option in the near future since the Water
Forward program has suggested using desalination in the next water treatment as part of the 100 year
water plan. An estimated 880 trillion gallons of brackish water exists underneath the surface of Texas,
However, it is important to note that reverse osmaosis in desalination involves flushing a waste stream of
brine, effectively flushing a large portion of water away. The increased interest is a direct result of the
increasing Texas population and depleting fresh water supplies.

Groundwater in general has already been a major challenge for the state of Texas to manage and
regulate as a “mysterious and occult” natural resource. It is difficult to understand what truly occurs
beneath the surface, but using information from multiple sources can provide a prediction of how
groundwater can be sustained for human consumption. Brackish groundwater in particular is a new
regulatory challenge as interest grows, and must be mapped and characterized to help future decision
regarding this potential water supply for human consumption and minimal environmental impact. For
instance, determining water rights for water below a property is difficult due to The lack of direct
measurements to characterize groundwater raises the importance to define the resource as extensively as
possible. In this project, | collect and create maps with datasets describing different variables for
groundwater recharge potential such as slope, land cover, lithology, drainage density, and precipitation.
Each variable is weighted based on relative importance and summed to obtain a value describing recharge
potential in Texas areas known to have wells of brackish water. With this information, evaluation of
groundwater potential for every city in Texas becomes possible.

2. Methods

To produce project deliverables, ArcGis Pro, Microsoft Excel, and Python are used for their data
processing, calculation, analysis, and visualization applications. A detailed walkthrough of project
procedures is described in the following subsections and depicted in Figure 1 below.
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Figure 1. Project Procedure for Objective 1
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Figure 2. Project Procedure for Objective 2

The study region is the entire state of Texas, but the target area can be narrowed by selecting
wells containing moderately saline water between 1000 and 10,000 mg/L of total dissolved solids (TDS).
The defined brackish groundwater area of Texas if depicted in Figure 3. The map bears close similarities
to the brackish water area defined by TWDB, except for the area along the Gulf Coast. It is assumed that
this is an error in the map produced here since the Gulf Coast Aquifer is supposed to be the largest
groundwater sink in Texas. This makes sense since seawater contact is another means by which brackish
groundwater is produced. Perhaps the upper part was excluded due to high salinity.
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Figure 3. Brackish Water Coverage in Texas
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Figure 4. Brackish Water Coverage from TWDB

The weighted model used to determine the groundwater recharge potential comes from literature
(Shaban et al., 2006). Converting values of significant variables to represent a new dataset describing
trends on a map is a common practice in GIS. The particular weighted model used to describe brackish
groundwater recharge is shown in Table 1, factoring in lithology, land cover, lineament density, slope,

and drainage density.

Table 1. Weighted Model of Groundwater Recharge

Factor Domain of Effect Assigned Weight
Lineaments Density |5-6 (km-1) 20
4-5 16
3-4 13
2-3 10
0-2 6
0 0
Drainage Density 6-10(km-1) 9.75
4-6 s
2-4 5.25
0-2 =
0 0
Lithology Gravelly Sand 30
Slate /Schist 24
Other Metamorphic Rock 15
Marble/Dolomite 6
Ilgneous Rock 3
Slope Gradient 0-10 15
10-20 12
20-35 9.75
35-60 7
Land use/Cover Water 16.25
Agriculture 12.5
Bare Land 8.75
Forest 5
Building 2.5




Lithology plays a role in the percolation of water as different rock formations with varying
porosities can influence how water travels in the subsurface. Although there are investigations that
consider lithology negligible by referring to lineament and drainage density as functions of primary and
secondary porosity, including the data provides greater certainty. From Table 1, it is clear that the impact
of lithology on groundwater recharge potential increases with porous and permeable media, such as
gravel, but decreases with smooth and cohesive rocks such as igneous rock. As show in Figure 1 the
lithology shapefile was retrieved from the Geologic Atlas of Texas (GAT) by the Texas Natural
Resources Information System as a joint project with USGS Texas Water Science Center. Figure 3
presents the raw geology dataset and the resulting assigned weight of geology towards recharge potential.
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Figure 3. Geology in Groundwater Recharge

Land cover data gives an impression of the soil deposits, residential area distribution, water
demand, and vegetation in an area and how these factors affect the ability for water to enter the
subsurface. All these factors impact the evapotranspiration, runoff, and surface permeability. For
instance, Table 1 suggests developed areas greatly reduce groundwater recharge potential; likely because
infrastructure is designed to drain water into city water systems rather than lost to the subsurface. On the
other end of the spectrum, areas with water greatly increase recharge potential due to the large availability
of water that can permeate the surface. The land cover raster was obtained from the National Land Cover
Database (NLCD) that was obtained from the United States Geologic Survey (USGS).
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Lineaments are linear geologic formations and are commonly faults where water can easily pass
into, thus supplementing groundwater recharge. However, some cases can slow the flow of groundwater.
Overall, the model used in this project suggests that faults create a net increase in the ability for water to
enter the ground. The lineaments were taken from the Geologic Atlas of Texas. In addition to lineament
density and recharge potential weight, Figure 5 includes the lines of the original lineament polylines.
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Figure 5. Lineaments
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in Groundwater Recharge

Slope mainly impacts recharge as steep terrain results in less time for water to permeate the
surface. Table 1 shows how greater slopes result means lower recharge potential. The slope was
calculated with the Slope geoprocessing tool with the National Elevation Dataset from USGS as the input.
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Figure 6. Slope in Groundwater Recharge

According to Table 1, the weighted recharge potential is directly proportional to drainage density.
This correlation results from an increase in the amount of rivers, similar to bodies of water increase
potential from land cover. Furthermore, a larger drainage density means less distance is required for
rainfall to travel to a stream, meaning less time spent as runoff just as lower slope resulted in less time as
runoff. Additionally, drainage density can indicate how prone to flooding an area is and floods can pick
up clay sediment, thus increasing permeability. Like slope, drainage density calculation started with the
Digital Elevation Model (DEM) for Texas, which then fed into the flow direction and flow accumulation
geoprocessing tools to yield delineation of flow streams. The polylines were then broken at the
boundaries of all watersheds and the length of polylines within were divided by the respective watershed

area.
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Figure 7. Drainage Density in Groundwater Recharge

3. Results

Once all the recharge potentials from each contributing factor are rasterized and mapped, the total
groundwater recharge potential can be calculated from the model equation (Yeh et al., 2009):

P. =LD,, + DD,, + LG,, + SG,, + LC,,



Where LDy, is lineament density, DDy, is drainage density, LGy is lithology, SGy is slope, and LCy is land

cover. The entire data processing can effectively be described by Figure 8, where each square is one cell
of the raster with a corresponding value. Figure 9 displays the final result of the model.
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Figure 9. Total Recharge Potential




Based on the map, West appears to have the greatest potential for groundwater recharge, which is
good since that area struggle with water issues. However, this raises the question of why precipitation was
not included in the literature model since rainfall is generally where groundwater originates. Another
interesting point was the low recharge potential around the San Antonio area, which relies heavily on
groundwater and even utilizes desalination. However, further research revealed that recharge in the area is
primarily from groundwater underflow from the west (Arnow, 1963). The biggest contributors that
differentiated between high and low potential areas were land cover and lithology, whereas slope
contributed to the final potential value but did not vary greatly across the state except for small areas.
lineaments and drainage density appeared to minimal impact on final values, despite having the same
magnitude as densities calculated in past exercises. Although lineament density only contributed up to 1.3
units of recharge potential, | believe it influenced the value of lithology, as the Trans-Pecos Texas area
has high permeability earth overlain the lineaments.

After converting city coordinate data from a text file into Excel and again into ArcGIS Pro, the
points were used to create Thiessen polygons. The groundwater potential can then be averaged within
each polygon to describe the extent a city could use brackish groundwater as a water supply. Figure 10
displays the Thiessen polygons overlaid across Texas and Figure 11 displays the polygon representing
Austin. The bar chart shown in Figure 12 displays the groundwater potential for a select few cities that
may have the water demand to tap into this resource. This secondary objective of determining recharge
potential needs refinement as the project was done with the Texas raster as the top priority. Mainly, the
areas need to be defined in a broader way, instead of having Round Rock and Austin as two separate
water users. Initially, the plan was to find GIS data for water municipalities or some other representation
to define a metropolitan area. However, the cities were the easiest since a text file with coordinate data
was available and would supply enough cities to create Thiessen polygons of reasonable sizes.
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Figure 10. Groundwater Recharge Potential for Individual Cities
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4. Conclusions

As said before, groundwater alone has proven a difficult resource to manage and regulate, so it is
difficult to draw conclusions about how to move forward with the massive resource that is brackish
groundwater. However, it is clear that the resource is there when needed. Austin has a moderately high
recharge potential so the next brackish water desalination plant that Austin Water plans to construct
should be a good buffer to the water supply. EIl Paso will also have the opportunity to access brackish
water as it has a relatively high recharge potential and may need to rely on it heavily in an area that is arid
and has a competing water user across the border.

With regards to the primary objective of building the brackish groundwater recharge potential
raster, future work will involve considering more variables that may also impact recharge such as
precipitation or soil. For the secondary objective, refinement of the Thiessen polygons for Texas cities
will be necessary, either by finding another data set to apply the recharge raster or potentially by merging
and averaging city polygons of interest, like Austin, with adjacent polygons to be more representative of
the coverage that Austin Water utility provides.

Appendix A. Code

Land Cover Reclassify

Recharge =

Reclass( !Value!)

Code Block
def Reclass(Value):
if (Value == 11 or Value == 98 or Values == 95):
return 16.25
elif (Value == 81 or Value == 82):
return 12.5
elif (Value == 31 or Value == 71):
return 8.75
elif (Value == 52 or Value == 41 or Value == 42 or Value == 43):
return 5
elif (Value == 21 or Value == 22 or Value == 23 or Value == 24):
return 2.5

Lithology Reclassify

def ReClass(!RockUnit!):

a=("Qqg", "Qd", "Qap", "QT", "Pvc", "Pw", "KI", "Kw", "Ks" , "Kf", "Ey", "Ej", "Ttr", "Tscg",
"Teg","FS", "Qal", "Qtf", "Qbi", "Qsd", "Qds", "Qs", "Qt", "Qcg", "Qli"

b=("Qu", "T-qu", "Qw", "Qo", "QI","Qh","Qf","Qg", "Qc", "Ke", "Eb", "Ec", "Tsc", "TI", "TIi"
"Qed" , "Qeo")

c=("Qaf", "Py","Ps","Pn","Po", "Pp", "PA","Pa", "Mf", "Mg", "Kt", "Ko", "Kd" ,"Kb" , "IP",
"Ew", "EK","EPA","Eh","“Ei","Ty","Td", "Tgd", "Tmz", "Tcv", "QI","Qa", "Tfo")



d=("Qao", "Pt","Pr","Pq","Pg", "Ph","Pb", "Pc","Pd", "Og", "Oh","Oc" ,"Mo", "MD", "MO"
SKp™, "Ky", "Knt, KT, "Kgt, "Kat, "Es”, "Er, "EQ”, "Ed", "Im", ")z, "Qb", "Qu™, "JIc",
"Kwt", "Kae" , "Km", "Tsi", "Tgd", "Tfo", "Qbf", "Qla" ,"QTu", "Tg", "Qam", "Qas" , "Qbm")
e=("Pj", "PI","Pm", "Pe", "Ot", "Of", "OEdd" ,"Km" , "Mc", "Kh" , "Ki", "kk" , "Kc" , "Esb", "EI",
"Em", "Ee","EO","Tm", "Tla", "Tgc", "Tc", "Tcgl", "Tj", "Tjw")
if any(x in RockUnit for x in a):
return 30
elif any(x in RockUnit for x in b):
return 24
elif any(x in RockUnit for x in c):
return 15
elif any(x in RockUnit for x in d):
return 6
elif any(x in RockUnit for x in e):
return 3

Batch Project Rasters
import arcpy, sys
InFolder = r'"F:\New folder\elevation NED30M_tx 3641694 01\elevation"
OutFolder = r"F:\New folder\texaselevation"
OutSR = arcpy.SpatialReference(26914)
arcpy.env.workspace = InFolder
for Ras in arcpy.ListRasters():
arcpy.AddMessage("'Projecting " + Ras)
arcpy.ProjectRaster_management (InFolder + "\\" + Ras, OutFolder + "\\" + Ras,OutSR)
arcpy.AddMessage(*'Projecting complete™)
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