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Sivakumar, Bhat, and Ökten 

ABSTRACT 

This paper numerically compares the overall performance of the quasi-Monte Carlo (QMC) 
sequences proposed by Halton and Faure, and their scrambled versions, against each other and 
against the Latin Hypercube Sampling sequence in the context of the simulated likelihood 
estimation of a Mixed Multinomial Logit model of choice. In addition, the efficiency of the 
QMC sequences generated with and without scrambling across observations is compared, and 
the performance of the Box-Muller and Inverse Normal transform procedures is tested. The 
numerical experiments were performed in 5 dimensions with 25, 125 and 625 draws, and in 10 
dimensions with 100 draws. The results of our analysis indicate that the Faure sequence 
consistently outperforms the Halton sequence, and the scrambled versions of the Faure sequence 
show the best performances overall. 
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1. INTRODUCTION 
The incorporation of behavioral realism in econometric models helps establish the credibility of 
the models outside the modeling community, and can also lead to superior predictive and policy 
analysis capabilities. Behavioral realism is incorporated in econometric models of choice through 
the relaxation of restrictions that impose inappropriate behavioral assumptions regarding the 
underlying choice process. For example, the extensively used multinomial logit (MNL) model 
has a simple form that is achieved by the imposition of the restrictive assumption of independent 
and identically distributed error structures (IID). But this assumption also leads to the not-so-
intuitive property of independence from irrelevant alternatives (IIA).  

The relaxation of behavioral restrictions on choice model structures, in many cases, leads 
to analytically intractable choice probability expressions, which necessitate the use of numerical 
integration techniques to evaluate the multidimensional integrals in the probability expressions. 
The numerical evaluation of such integrals has been the focus of extensive research dating back 
to the late 1800s, when multidimensional polynomial-based cubature methods were developed as 
an extension of the one-dimensional numerical quadrature rules. These quadrature-based 
methods, however, suffered from the “curse of dimensionality”; and so Monte-Carlo (MC) and 
pseudo-Monte Carlo (PMC) simulation methods were proposed in the 1940s to overcome this 
problem. The MC simulation approach has an expected integration error of N-0.5, which is 
independent of the number of dimensions ‘s’ and thus provides a great improvement over the 
quadrature-based methods. Several variance reduction techniques (example, Latin Hypercube 
Sampling or LHS) have since been developed for the MC methods, which potentially lead to 
even more accurate integral evaluation with fewer draws. Despite the improvements achieved by 
these variance reduction techniques, the convergence rate of MC and PMC methods is generally 
slow for simulated likelihood estimation of choice models.  

Extensive number theory research in the last few decades has led to the development of a 
more efficient simulation method, the quasi-Monte Carlo (QMC) method. This method uses the 
basic principle of the MC method in that it evaluates a multidimensional integral by replacing it 
with an average of the values of the integrand computed at N discrete points.  However, rather 
than using random sequences, QMC methods use low-discrepancy, deterministic, quasi-Monte 
Carlo (or QMC) sequences that are designed to achieve a more even distribution of points in the 
integration space than the MC and PMC sequences. 

Over the years, several different quasi-random sequences have been proposed for QMC 
simulation. Among these are the reverse radix-based sequences (such as the Halton sequence) 
and the (t,s)-sequences (such as the Sobol and Faure sequences). The even distribution of points 
provided by these low-discrepancy sequences leads to efficient convergence for the QMC 
method, generally at rates that are higher than the MC method. In particular, the theoretical upper 
bound for the integration error in the QMC method is of the order of N-1 for one-dimensional 
integration1. Despite these obvious advantages, the QMC method has two major limitations. 
First, the deterministic nature of the quasi-random sequences makes it difficult to estimate the 
error in the QMC simulation procedure (while there are theoretical results to estimate integration 
error via upper bounds with the QMC sequence, these are much too difficult to compute and are 
very conservative upper bounds). Second, a common problem with many low-discrepancy 
sequences is that they exhibit poor properties in higher dimensions. The Halton sequence, for 
example, suffers from significant correlations between the radical inverse functions for different 

                                                 
1 In s-dimensions the upper bound for the integration error is . ]/)[(log NNO s
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dimensions, particularly in the larger dimensions. A growing field of research in QMC methods 
has resulted in the development, and continuous evolution, of efficient randomization strategies 
(to estimate the error in integral evaluation) and scrambling techniques (to break correlations in 
higher dimensions). 

Research on the generation and application of randomized and scrambled QMC 
sequences clearly indicates the superior accuracy of QMC methods over PMC methods in the 
evaluation of multidimensional integrals [see Morokoff and Caflisch (1,2)].  In particular, the 
advantages of using QMC simulation for such applications in econometrics as simulated 
maximum likelihood inference, where parameter estimation entails the approximation of several 
multidimensional integrals at each iteration of the optimization procedure, should be obvious. 
However, the first introduction of the QMC method for the simulated maximum likelihood 
inference of econometric choice models occurred only in 1999, when Bhat tested Halton 
sequences for mixed logit estimation and found their use to be vastly superior to random draws. 
Since Bhat’s initial effort, there have been several successful applications of QMC methods for 
the simulation estimation of flexible discrete choice models, though most of these applications 
have been based on the Halton sequence [see, for example, Revelt and Train (3); Bhat (4); Park 
et al. (5); Bhat and Gossen (6)]. Number theory, however, abounds in many other kinds of low-
discrepancy sequences that have been proven to have better theoretical and empirical 
convergence properties than the Halton sequence in the estimation of a single multidimensional 
integral. For instance, Bratley and Fox (7) show that the Faure and Sobol sequences are superior 
to the Halton sequence in terms of accuracy and efficiency. There have also been several 
numerical studies on the simulation estimation of a single multidimensional integral that present 
significant improvements in the performance of QMC sequences through the use of scrambling 
techniques (8,9). It is, therefore, of interest to examine the performances of the different QMC 
sequences and their scrambled versions in the simulation estimation of flexible discrete choice 
models, which is the focus of the current paper. 

The rest of this paper is organized as follows. Section 2 discusses the specific objectives 
of this study. Section 3 presents the background for the generation of alternative sequences. 
Section 4 describes the evaluation framework used in this study. Section 5 presents the 
computational results and Section 6 concludes the paper. 

 
2. OBJECTIVES 
As described in the previous section, the broad goal of this paper is to compare the performance 
of different kinds of low-discrepancy sequences, and their scrambled and randomized versions, 
in the simulated maximum likelihood estimation of the mixed logit class of discrete choice 
models. Specifically, we selected the extensively used Halton sequence and a special case of 
(t,m,s)-nets known as the Faure sequence. The choice of the Faure sequence was motivated by 
two reasons. First, the generation of the Faure sequence is a fairly straightforward and non-time 
consuming procedure. Second, it has been proved that the Faure sequence performs better than 
the Halton sequence in the evaluation of a single multidimensional integral (8). 

In this paper, we compare the performance of the Halton and Faure sequences against the 
performance of a stratified random sampling PMC sequence (the LHS sequence) by constructing 
numerical experiments within a simulated maximum likelihood inference framework. Further, 
the numerical experiments also include a comparison of scrambled versions of the QMC 
sequences against their standard versions to examine potential improvements in performance 
through scrambling. The performances of the various non-scrambled and scrambled sequences 
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are evaluated based on their ability to efficiently and accurately recover the true model 
parameters. 

The total number of draws of a QMC sequence required for the estimation of a Mixed 
Multinomial Logit (MMNL) model can be generated either with or without scrambling across 
observations (see section 3.5 for a description of these methods), and both these approaches are 
compared in this paper. Another important point to note is that the standard and scrambled 
versions of the QMC and the LHS sequences are all generated as uniformly-distributed 
sequences of points. In this study we test and compare the Box-Muller and the Inverse Normal 
transformation procedures to convert the uniformly-distributed sequences to normally-distributed 
sequences that are required for the estimation of the random coefficients MMNL model. 

To summarize, the objectives of this paper are three-fold. The first objective is to 
experimentally compare the overall performance of the Halton and Faure sequences (and their 
scrambled versions) against each other and against the LHS sequence2. The second objective is 
to compare the efficiency of the QMC sequences with and without scrambling across 
observations. The third objective is to compare the Box-Muller and the Inverse Normal 
transform procedures for translating uniformly-distributed sequences to normally-distributed 
sequences. 

 
3. BACKGROUND FOR GENERATION OF ALTERNATIVE SEQUENCES 
This section describes the various procedures to generate PMC and QMC sequences. 
Specifically, the following sections discuss the generation of PMC sequences using the LHS 
procedure (Section 3.1), and the generation of the QMC sequences proposed by Halton and 
Faure (Section 3.2); the scrambling strategies (Section 3.3) and randomization techniques 
(Section 3.4) applied in this study; the generation of sequences with and without scrambling 
across observations (Section 3.5); and basic descriptions of the Box-Muller and Inverse Normal 
transforms (Section 3.6). 
 
3.1. PMC Sequences 
A typical PMC simulation uses a simple random sampling (SRS) procedure to generate a 
uniformly-distributed PMC sequence over the integration space. An alternate approach known as 
Latin Hypercube sampling (LHS), that yields asymptotically lower variance than SRS, is 
described in the following section. 
 
3.1.1. Latin Hypercube Sampling 
The LHS method was first proposed as a variance reduction technique within the context of 
PMC sequence-based simulation (11). The basis of LHS is a full stratification of the integration 
space, with a random selection inside each stratum. This method of stratified random sampling in 
multiple dimensions can be easily applied to generate a well-distributed sequence. The LHS 
technique involves drawing a sample of size N from multiple dimensions such that for each 
                                                 
2 Sandor and Train (10) perform a comparison of four different kinds of (t,m,s)-nets, the standard Halton, and 
random-start Halton sequences against simple random draws. They estimate a 5-dimensional mixed logit model 
using 64 QMC draws per observation, and compare the bias, standard deviation and RMSE associated with the 
estimated parameters. In this study we have conducted numerical experiments both in 5 and 10 dimensions in order 
that the comparisons may capture the effects of dimensionality. For the 5-dimensional mixed logit estimation 
problem, we also examined the impact of varying number of draws (25, 125 and 625). Finally, we examine the 
performance of the Faure sequence and LHS method, along with the Halton sequence, and consider different 
scrambling variants of these sequences. 
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individual dimension the sample is maximally stratified. A sample is said to be maximally 
stratified when the number of strata equals the sample size N, and when the probability of falling 
in each of the strata equals N-1. 

An LHS sequence of size N in K dimensions is given by 
),/)(()( NpN

lhs ξψ −=                             (1) 
where, )( N

lhsψ  is an NxK matrix consisting of N draws of a K-dimensional LHS sequence; p is an 
NxK matrix consisting of K different random permutations of the numbers 1,…,N; ξ  is an NxK 
matrix of uniformly-distributed random numbers between 0 and 1; and the K permutations in p 
and the NK uniform variates ijξ  are mutually independent. 

In essence, the LHS sequence is obtained by slightly shifting the elements of an SRS 
sequence, while preserving the ranks (and rank correlations) of these elements, to achieve 
maximal stratification. For instance, in a 2-dimensional LHS sequence of 6 (N) points, each of 
the six equal strata in either dimension will contain exactly one point [see Sivakumar et al. for an 
illustration (12)]. 

 
3.2. QMC Sequences 
QMC sequences are essentially deterministic sets of low-discrepancy points that are generated to 
be evenly distributed over the integration space. Many of the low-discrepancy sequences in use 
today are linked to the van der Corput sequence, which was originally introduced for dimension  
s = 1 and base b = 2. Sequences based on the van der Corput sequence are also referred to as the 
reverse radix-based sequences. To find the nth term, , of a van der Corput sequence, we first 
write the unique digit expansion of n in base b as: 

nx

1

0

  and  1)(0    where,)( +
∞

=

≤≤−≤≤= ∑ JJ
j

j

j
j bnbbnabnan .                      (2) 

This is a unique expansion of n that has only finitely many non-zero coefficients . 
The next step is to evaluate the radical inverse function in base b, which is defined as 

)(na j

∑
∞

=

−−=
0

1)()(
j

j
jb bnanφ .               (3) 

The van der Corput sequence in base b is then given by )(nx bn φ= , for all . This 
idea that the coefficients of the digit expansion of an increasing integer n in base b can be used to 
define a one-dimensional low-discrepancy sequence inspired Halton to create an s-dimensional 
low-discrepancy Halton sequence by using s van der Corput sequences with relatively prime 
bases for the different dimensions. 

0≥n

An alternative approach to the generation of low-discrepancy sequences is to start with 
points placed into certain equally sized volumes of the unit cube. These fixed length sequences 
are referred to as (t,m,s)-nets, and related sequences of indefinite lengths are called (t,s)-
sequences. Sobol suggested a multidimensional (t,s)-sequence using base 2, which was further 
developed by Faure who suggested alternate multidimensional (t,s)-sequences with base . 
For a detailed description of the various QMC sequences see Niederreiter (13). 

sb ≥

The following sub-sections describe the procedures used in this paper to generate the 
standard Halton and Faure sequences. 
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3.2.1. Halton Sequences 
The standard Halton sequence in s dimensions is obtained by pairing s one-dimensional van der 
Corput sequences based on s pairwise relatively prime integers,  (usually the first s 
primes) as discussed earlier. The Halton sequence is based on prime numbers, since the sequence 
based on a non-prime number will partition the unit space in the same way as each of the primes 
that contribute to the non-prime number. Thus, the nth multidimensional point of the sequence is 
as follows: 

Sbbb ,...,, 21

))(),...,(),(()(
21

nnnn
sbbb φφφφ = .              (4) 

The standard Halton sequence of length N is finally obtained as  
])(,...,)2(,)1([)( ′′′′= nN

h φφφψ .              (5) 
The Halton sequence is generated number-theoretically as described above rather than 

randomly and so successive points of the sequence “know” how to fill in the gaps left by earlier 
points, leading to a more even distribution within the domain of integration than the randomly 
generated LHS sequence [see Sivakumar et al. for an illustration (12)]. 

 
3.2.2. Faure Sequences 
The standard Faure sequence is a (t,s)-sequence designed to span the domain of the s-
dimensional cube uniformly and efficiently. In one dimension, the generation of the Faure 
sequence is identical to that of the Halton sequence. In s dimensions, while the Halton sequence 
simply pairs s one-dimensional sequences generated by the first s primes, the higher dimensions 
of the Faure sequence are generated recursively from the elements of the lower dimensions. So if 
b is the smallest prime number such that  and , then the first dimension of the s-
dimensional Faure sequence corresponding to n can be obtained by taking the radical inverse of 
n to the base b: 

sb ≥ 2≥b

∑
=

−−=
J

j

j
jb bnan

0

111 )()(φ                 (6) 

The remaining dimensions are found recursively. Assuming we know the coefficients  
corresponding to the first (k–1) dimensions, the coefficients for the kth dimension are generated 
as follows: 

)(na j

∑
≥

−=
J

ji

k
ij

ik
j bnaCna ,mod)()( 1                (7) 

where  is the combinatorial function. Thus the next level of coefficients 
required for the kth element in the s-dimensional sequence is obtained by multiplying the 
coefficients of the (k–1)th element by an upper triangular matrix C with the following elements. 

)!(!/! jijiC j
i −=

  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

M

K

3
3

2
3

2
2

1
3

1
2

1
1

0
3

0
2

0
1

0
0

000
00

0

C
CC
CCC
CCCC

C

These new coefficients  are then reflected about the decimal point to obtain the kth element 
as follows: 

)(nak
j
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               (8) skbnan
J

j

jk
j

k
b ≤≤= ∑

=

−− 2  ,)()(
0

1φ

This recursive procedure generates the s points corresponding to the integer n in the Faure 
sequence based on b . Thus the nth multidimensional point in the sequence is )( s≥
  ))(),...,(),(()( 21 nnnn S

bbb φφφφ =
The standard Faure sequence of length N is then obtained in the same manner as the standard 
Halton sequence: 

])(,...,)2(,)1([)( ′′′′= nN
f φφφψ                (9) 

Faure sequences are essentially (t,m,s)-nets in any prime b with  and t = 0. A Faure 
sequence of bm points is generated to be evenly distributed over the integration space, such that if 
we plot the sequence in the integration space together with the elementary intervals of area b-m, 
exactly one point will fall in each elementary interval [see Ökten and Eastman (14)]. It must be 
noted, however, that in order to obtain an even distribution of points over an s-dimensional 
integration space a Faure sequence of bm (b prime, b s, m = 1, 2, 3…) points is required. 

sb ≥

≥
Earlier studies have shown that for higher dimensions, the properties of the Faure 

sequence are poor for small values of n in Equation 9 (15). We overcome this in our study by 
dropping the first 100,000 multidimensional points for all the standard and scrambled Faure 
sequences generated. 
 
3.3. Scrambling Techniques Used With QMC Sequences 
Research has shown that finite parts (for moderate sizes) in higher dimensions of many QMC 
sequences have poor properties, which can be alleviated using suitable scrambling techniques. 
The standard Halton sequence, for instance, suffers from significant correlations between the 
radical inverse functions at higher dimensions. For example, the fourteenth dimension 
(corresponding to the prime number 43) and the fifteenth dimension (corresponding to the prime 
number 47) consist of 43 and 47 increasing numbers, respectively. This generates a correlation 
between the fourteenth and fifteenth coordinates of the Halton sequence as illustrated in Figure 
1a. The standard Faure sequence, on the other hand, forms distinct patterns in higher dimensions 
that also cover the unit integration space in diagonal strips, thus showing significantly higher 
discrepancies in the higher dimensions. Figure 1b illustrates this in a plot of the fifteenth and 
sixteenth coordinates of the Faure sequence. 

Several scrambling techniques have been suggested to redistribute the points and thus 
improve the uniformity of the QMC sequences in higher dimensions. In this study, we have 
implemented the Braaten-Weller scrambling for Halton sequences, and the Random Digit and 
Random Linear scrambling for Faure sequences. Each of these methods is described in greater 
detail in the following sections. 

 
3.3.1. Braaten-Weller Scrambling 
Braaten and Weller (16), describe a permutation of the coefficients  in Equation 3 that 
minimizes the discrepancy of the resulting scrambled Halton sequence. Their method suggests 
different permutations for different prime numbers, thus effectively breaking the correlation 
across dimensions. Braaten and Weller have also proved that their scrambled sequence retains 
the theoretically appealing N-1 order of integration error of the standard Halton sequence. 

)(na j
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Figure 2a presents the Braaten-Weller scrambled Halton sequence in the fourteenth and 
fifteenth dimensions. The effectiveness of this scrambling technique in breaking correlations is 
evident from a comparison of Figures 1a and 2a. 

To illustrate the Braaten-Weller scrambling procedure, take the 5th number in base 3 of 

the Halton sequence, which in the digitized form is 0.21 (or
9
7 ). The suggested permutation for 

the coefficients  for the prime 3 is , which when expanded in base 3 translates to )1,2,0(   )2,1,0(   

9
53231 21 =×+× −− . The first 8 numbers in the standard Halton sequence corresponding to base 3 

are ⎟
⎠
⎞

⎜
⎝
⎛

9
8 ,

9
5 ,

9
2 ,

9
7 ,

9
4 ,

9
1 ,

3
2 ,

3
1 . The Braaten-Weller scrambling procedure yields the following 

scrambled sequence: ⎟
⎠
⎞

⎜
⎝
⎛

9
4 ,

9
7 ,

9
1 ,

9
5 ,

9
8 ,

9
2 ,

3
1 ,

3
2 . 

 
3.3.2. Random Digit Scrambling 
The Random Digit scrambling approach for Faure sequences is conceptually similar to the 
Braaten-Weller method, and suggests random permutations of the coefficients  to scramble 
the standard Faure sequence [see Matoušek for a description (17)]. 

)(nak
j

Figure 2b presents the Random Digit scrambled Faure sequence in the fifteenth and 
sixteenth dimensions. A comparison of Figures 1b and 2b indicates that the Random Digit 
scrambling technique is very effective in breaking the patterns in higher dimensions and 
generating a more even distribution of points. 

The Random Digit scrambling technique uses independent random permutations for each 
coefficient in each dimension of the sequence. For example, consider the following 5-
dimensional Faure sequence, 

)}}.0,4,4(),4,4,0(),4,2,0(),1,2,3(),0,0,1{()},4,0,1(),3,2,4(),2,4,2(),1,3,2(),0,1,2{{(  
In each of the 5 dimensions, the vector’s base 5 expansion has 3 digits, which implies that 

we need 15 independent random permutations ),.....,( 151 πππ = . 1π , for example, could be the 
following permutation 

.3)4(;1)3(;0)2(;4)0( 1111 ==== ππππ     
So when all 15 permutations are applied to the sequence, we obtain the scrambled Faure 

sequence as follows: 

))}}.0(),4(),4(()),4(),4(),0((
)),4(),2(),0(()),1(),2(),3(()),0(),0(),1({(

))},4(),0(),1(()),3(),2(),4((
)),2(),4(),2(()),1(),3(),2(()),0(),1(),2({{(

151413121110

987654321

151413121110

987654321

ππππππ
πππππππππ

ππππππ
πππππππππ

                                              
  

                                              
 

 
3.3.3. Random Linear Scrambling 
The Random Linear Scrambling technique for Faure sequences proposed by Matoušek is based 
on the concept of cleverly introducing randomness in the recursive procedure of generating the 
coefficients for each successive dimension (17). 

Figure 2c presents the Random Linear scrambled Faure sequence in the fifteenth and 
sixteenth dimensions. A comparison of Figures 1b and 2c indicates that the Random Linear 
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scrambling method results in a much more even distribution of points in the fifteenth and 
sixteenth coordinates than the Random Digit scrambling method (Figure 2b)3. 

The Random Linear scrambling approach of Matoušek is easily implemented by 
modifying the upper triangular combinatorial matrix C used in generating Faure sequences (see 
Section 3.2.2). A linear combination AC+B is used in the place of the matrix C, where A is a 
randomly generated matrix and B is a random vector, both consisting of uniform random variates 
U[0, b–1]. 
 
3.4. Randomization of QMC Sequences 
QMC sequences, such as the standard Halton sequence described in Section 3.2, are 
fundamentally deterministic and do not permit the practical estimation of integration error. Since 
a comparison of the performance of these sequences necessitates the computation of simulation 
variances and errors, it is necessary to randomize these QMC sequences. Randomization of 
QMC sequences is a technique that introduces randomness into a deterministic QMC sequence 
while preserving the equidistribution property of the sequence [see Shaw (18); Tuffin (19)]. 

In the numerical experiments in this paper, we use Tuffin’s randomization procedure [see 
Bhat (20) for a detailed explanation of the randomization procedure] to perform 20 estimation 
runs for each test scenario. The results of these 20 estimation runs are used to compute the 
relevant statistical measures. 
 
3.5. Generation of Draws With and Without Scrambling Across Observations 
The simulated maximum likelihood estimation of an MMNL with a K-dimensional mixing 
distribution involves generating a K-dimensional PMC or QMC sequence for a specified number 
of draws ‘N’ for each individual in the dataset. Therefore estimating an MMNL model on a 
dataset with Q individuals will require an N×Q K-dimensional PMC or QMC sequence, where 
each set of N K-dimensional points computes the contribution of an individual to the log-
likelihood function. A PMC or QMC sequence of length N×Q can be generated either as one 
continuous sequence of length N×Q or as Q independent sets of length N each. In the case of 
PMC sequences, both these approaches amount to the same since a PMC sequence is identical to 
a random sequence with each point of the sequence being independent of all the previous points. 
In the case of QMC sequences, Q independent sets of length N can be generated by first 
constructing a sequence of length N and then scrambling it Q times, which is known as 
generation with scrambling across observations. The other alternative of generating a continuous 
QMC sequence of length N×Q is known as generation without scrambling across observations. 
QMC sequences generated with and without scrambling across observations exhibit different 
properties [see Train (21); Bhat (20); Sivakumar et al. (12)]. 

In this study we examine the performance of the various scrambled and standard QMC 
sequences generated both with and without scrambling across observations. 

 
3.6. Box-Muller and Inverse Normal Transforms 
The standard and scrambled versions of the Halton and Faure sequences, and the LHS sequence 
are generated to be uniformly distributed over the multidimensional unit cube. Simulation 
                                                 
3 The behavior of the Random Linear scrambling technique seemed to not always be predictable in terms of 
uniformity of coverage. In particular, the results of the Random Linear scrambling method for the nineteenth and 
twentieth dimensions of the Faure sequence were observed to be rather poor as the redistribution of points occurs in 
a fixed pattern. 
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applications, however, may require these sequences to take on other distributional forms. For 
example, the estimation of the MMNL model described in Section 4 of this paper requires 
normally-distributed multivariate sequences that span the multidimensional domain of 
integration. The transformation of the uniformly-distributed LHS and QMC sequences to 
normally-distributed sequences can be achieved using either the inverse standard normal 
distribution or one of the many approximation procedures discussed in the literature, such as the 
Box-Muller Transform, Moro’s method and Ramberg and Schmeiser approximation. In this 
paper we compare the performances of the inverse normal and the Box-Muller transforms. 

If Y is a K-dimensional matrix of length N*Q containing the uniformly-distributed LHS 
or QMC sequence, the inverse normal transformation yields , where X is a 
normally-distributed sequence of points in K-dimensions. The Box-Muller method approximates 
this transformation as follows. The uniformly-distributed sequence of points in Y are transformed 
to the normally-distributed sequence X using the equations 

)(1 YX −Φ=

ijjiijjiij YYYYX log2)2sin(X  and  log2)2cos( )1(1)i(j)1( −=−= +++ ππ ,        (10) 
for all i = 1, 2, … N*Q, and j = 1, 3, 5, … K–1, assuming that K is even. If K is odd, then we 
simply generate an extra column of the sequence and perform the Box-Muller transform with the 
K+1 even columns. The (K+1)th column of the transformed matrix X can then be dropped. 
 
4. EVALUATION FRAMEWORK 
We evaluate the performance of the sequences discussed earlier in the context of the simulated 
maximum likelihood estimation of an MMNL model using simulated datasets. This section 
describes in detail the evaluation framework used in our numerical experiments. All the 
numerical experiments in this study were implemented using the GAUSS matrix programming 
language. 
 
4.1. Simulated Maximum Likelihood Estimation of the MMNL Model 
In the numerical experiments in this paper, we use a random-coefficients interpretation of the 
MMNL model structure. However, the results from these experiments can be generalized to any 
model structure with a mixed logit form. The random-coefficients structure essentially allows 
heterogeneity in the sensitivity of individuals to exogenous attributes. The utility that an 
individual q associates with alternative i is written as: 

qiqiqqi xU εβ += '               (11) 
where,  is a vector of exogenous attributes, qix qβ  is a vector of coefficients that varies across 
individuals with density )(βf , and qiε  is assumed to be an independently and identically 
distributed (across alternatives) type I extreme value error term. With this specification, the 
unconditional choice probability of alternative i for individual q, Pqi, is given by the following 
mixed logit formula: 

)()|()()( βθββθ d fLP qiqi ∫
∞

∞−

= ,   
∑

=

j

x

x

qi
qj

qi

e
eL '

'

)(
β

β

β ,         (12) 

where, β represents parameters which are random realizations from a density function f(.) called 
the mixing distribution, and θ  is a vector of underlying moment parameters characterizing f(.). 
While several density functions may be used for f(.), the most commonly used is the normal 
distribution with θ  representing the mean and variance. 
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The objective of simulated maximum likelihood inference is to estimate the parameters 
‘θ ’  by numerical evaluation of the choice probabilities for all the individuals using simulation. 
Using ‘N’ draws from the mixing distribution f(.), each labeled β n, n = 1,…,N,  the simulated 
probability for an individual can be calculated as 

∑
=

=
Nn

n
qiqi LNSP

,...,1

)()/1()( βθ .             (13) 

)(θqiSP  has been proved to be an unbiased estimate of )(θqiP  whose variance decreases as the 
number of draws ‘N’ increases. The simulated log-likelihood function is then computed as 

)),(ln()(
,...,1

θθ qi
Qq

SPSLL ∑
=

 

where i is the chosen alternativ
simulated log-likelihood function are then calculated. Properties of this estimator have been 

he data for the numerical experiments conducted in this study were generated by simulation. 
generated containing 2000 observations (or individuals q in Equation 

=               (14) 

e for individual q. The parameters ‘θ ’ that maximize the 

studied, among others, by Lee (22) and Hajivassiliou and Ruud (23). 
 
4.2. Experimental Design 
T
Two sample data sets were 
11) and four alternatives per observation. The first data set was generated with 5 independent 
variables to test the performance of the sequences in 5 dimensions. The values for each of the 5 
independent variables for the first two alternatives were drawn from a univariate normal 
distribution with mean 1 and standard deviation of 1, while the corresponding values for each 
independent variable for the third and fourth alternatives were drawn from a univariate normal 
distribution with mean 0.5 and standard deviation of 1. The coefficient to be applied to each 
independent variable for each observation was also drawn from a univariate normal distribution 
with mean 1 and standard deviation of 1 ( 4,,1  and  2000,,2,1  ),1,1(~ .,. KK == iqNei qiβ ). The 
values of the error term, qiε , in Equation 11 were generated from a type I extreme value (or 
Gumbel) distribution, and the utility of eac ith the 
highest utility for each observation was then identified as the chosen alternative. The second data 
set was generated similarly but with 10 independent variables to test the performance of the 
sequences in 10 dimensions. 
 
4.3. Test Scenarios 

h alternative was computed. The alternative w

his study uses the simulated datasets described above to numerically evaluate the performance 
ce, and the standard and scrambled versions of the Halton and Faure 

 Linear Scrambled Faure, and LHS 
sequen

T
of the LHS sequen
sequences within the MMNL framework. We first estimated random-coefficients mixed logit 
models, in 5 and 10 dimensions, using a simulated estimation procedure with 20,000 random 
draws (N = 20,000 in Equation 13). The resulting estimates were declared to be the “true” 
parameter values. We then evaluated the various sequences by computing their abilities to 
recover the “true” model parameters. This technique has been used in several simulation-related 
studies in the past [see Bhat (4); Hajivassiliou et al. (24)]. 

We tested the performance of the standard Halton, Braaten-Weller scrambled Halton, 
standard Faure, Random Digit Scrambled Faure, Random

ces. For each of these six sequences we tested cases with 25, 125 and 625 draws (N in 
Equation 13) for 5 dimensions and with 100 draws for 10 dimensions. The number of draws in 
the test cases was limited by the requirement that Faure sequences must contain bm points 
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, prime, ( sbb ≥   s = number of dimensions, m = 1,2,3…). So in 5 dimensions we can generate 
Faure sequences in base b = 5 containing 25, 125, 625, 3125 points and so on. 

5. COMPUTATIONAL RESULTS 
 

The estimation of the ‘true’ parameter values served as the benchmark to compare the 
es. The performance evaluation of the various sequences 

tributed sequences 
resulted

, the first column specifies 
the typ

ses; and then finally examine the overall 
trends i

nd 25 Draws 
Table 1a indicates that the standard and scrambled Halton sequences generated with scrambling 

SE and MAPE bias and total error than the corresponding 

(a) 
quence. 

performs at about the same level as all other 
sequences except the standard Faure. 

                                                

performances of the different sequenc
was based on their ability to recover the true model parameters accurately. Specifically, the 
evaluation of the proximity of estimated and true values was based on two performance 
measures: (a) root mean square error (RMSE), and (b) mean absolute percentage error (MAPE). 
Further, for each performance measure we computed two properties: (a) bias, or the difference 
between the mean of the relevant values across the 20 runs and the true values, and (b) total 
error, or the difference between the estimated and true values across all runs4. 

One general note before we proceed to present and discuss the results. The Box-Muller 
transform method to translate uniformly-distributed sequences to normally-dis

 in higher bias and total error than the inverse normal transform method almost 
universally for all the scenarios we tested [this is consistent with the finding of Tan and Boyle, 
(25)]. In this paper we therefore present only the results of the inverse transform procedure to 
save on space (the Box-Muller results are available from the authors). 

The computational results are divided into four tables (Tables 1a-1d), one each for 25, 
125, 625 (5 dimensions) and 100 draws (10 dimensions). In each table

e of sequence used. The second column indicates whether the sequence is generated with 
or without scrambling across observations. The remaining columns list the RMSE and MAPE 
performance measures for the estimators in each case. 

In the following sections we first examine and interpret the results separately for each of 
the 25 draws, 125 draws, 625 draws and 100 draws ca

n the results. 
 

5.1.  5 Dimensions a

across observations yield lower RM
sequences generated without scrambling across observations. A similar result holds for the 
standard Faure sequence. However, for the scrambled Faure sequences, the sequences without 
scrambling across observations yield about equal or lower RMSE and MAPE total error than the 
sequences with scrambling across observations. 

Overall, we can make the following inferences regarding the performance of the 
sequences in 5 dimensions and with 25 draws: 

The standard Halton sequence yields lower RMSE and MAPE bias and total errors than 
the Braaten-Weller scrambled Halton se

(b) The standard Faure sequence also yields lower RMSE and MAPE bias and total errors 
than the corresponding scrambled versions. 

(c) The standard Faure sequence performs better than the corresponding standard Halton 
sequence on all counts. The LHS sequence 

 
4 We also computed the simulation variance, i.e.; the variance in relevant values across the 20 runs and the true 
values. However, we chose not to discuss the results of those computations here in order to simplify presentation 
and also because the total error captures simulation variance. 
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(d) The standard Faure sequence with scrambling across observations provides the best 
results in the overall. 

 
5.2
Table 1b indicates that, for the standard Halton sequence, the case without scrambling across 
bservations provides lower bias but slightly higher total error. For the scrambled Halton, the 

rvations dominates (this latter result is the reverse of what 

 Braaten-Weller scrambled Halton sequence, in general, does better than the standard 

quence without scrambling across observations 

(c) perform better than the standard Halton, 

(d) across observations 

performs the best, although the 

(e) 
 
5.3.  5 Dimensions and 625 Draws 
Fro  yield lower bias 
nd total error when they are generated with scrambling across observations. The same result 

d Random Linear scrambled Faure sequences, but the case 

d Halton does better than the standard Halton in terms of 

 scrambling across observations. 

 

mbled Faure 

.  5 Dimensions and 125 Draws 

o
case without scrambling across obse
we found in the 25 draws case). For the Faure sequences, no scrambling across observations 
provides better results than scrambling across observations for the standard and Random Digit 
scrambled Faure versions. However, the reverse is the case for the Random Linear Faure 
sequence. 

Overall, we can make the following inferences regarding the performance of the 
sequences in 5 dimensions and with 125 draws: 

(a) The
Halton, a reversal from the case with 25 draws. 

(b) The Braaten-Weller scrambled Halton se
is the “winner” across all standard and scrambled Halton sequences. 
The scrambled versions of the Faure sequence 
the scrambled Halton, and the standard Faure sequences. 
The Random Linear scrambled Faure sequence with scrambling 
performs the best in terms of total error. In terms of bias, the Random Digit scrambled 
Faure sequence without scrambling across observations 
Random Linear scrambled sequence with scrambling across observations comes a close 
second. 
The LHS yields the highest bias and total error across all the sequences 

m Table 1c, we observe that the standard and scrambled Halton sequences
a
also extends to the standard Faure an
without scrambling across observations does better than with scrambling across observations for 
the Random Digit scrambled Faure. 

The following inferences can be made regarding the overall performance of the 
sequences in 5 dimensions and with 625 draws: 

(a) The Braaten-Weller scramble
bias. But in terms of total error, the Braaten-Weller scrambled Halton is better than the 
standard Halton only for the case without

(b) Curiously, the standard Halton with scrambling across observations does the best among 
the many Halton sequences in terms of total error. However, the Braaten-Weller 
scrambled Halton with scrambling across observations does almost as well.

(c) The standard Faure performs better than the scrambled versions in terms of total error. 
However, the bias associated with the standard Faure is generally higher than the best 
alternatives among the scrambled Faure sequences. Among the scra
sequences, the Random Digit scrambled Faure without scrambling across observations 
has the lowest bias and total error values. 
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(d) 

clearly pick a “winner” among the many Faure sequences, we do note that the 

 
5.4.  10

he results in Table 1d indicate that the standard Halton sequence exhibits a better performance 
ss observations, whereas the scrambled Halton sequence 

 standard Halton without scrambling across observations; however, the reverse is the 

(b) 
ence, which 

(c) 

without scrambling across observations clearly performs the 

 
5.5.  G

he different test scenarios of the QMC sequences in 5 dimensions clearly indicate that a larger 
er bias, and total error. However, the margin of improvement 

tter than the scrambled versions. However, the bias and total error of the estimates is 

2. 
sions at 125 draws (for 5 dimensions) and 100 draws (for 10 dimensions). At 

All the Faure sequences clearly perform better than the Halton sequences in terms of 
yielding lower bias and total error. 

(e) The LHS shows the worst performance across all test scenarios, with the highest bias and 
total error. 

(f) The standard and scrambled Faure sequences exhibit the best performance. While it is not 
possible to 
Random Digit scrambled Faure without scrambling across observations has the lowest 
bias among all the sequences. The standard Faure yields the lowest total error across all 
the alternatives, but also yields rather high bias values. 

 Dimensions and 100 Draws 
T
when generated with scrambling acro
performs better when generated without scrambling across observations. The standard and 
scrambled Faure sequences generally exhibit better performances when they are generated 
without scrambling across observations. 
We draw the following conclusions regarding the overall performance of the sequences from 
Table 1d: 

(a) The standard Halton sequence with scrambling across observations performs better than 
the
case for the Braaten-Weller scrambled Halton sequence. Overall, the Braaten-Weller 
scrambled Halton without scrambling across observations appears to do best. 
Among the standard and scrambled Faure sequences, the Random Linear scrambled 
Faure sequence performs better than the Random Digit scrambled Faure sequ
in turn performs better than the standard Faure sequence. 
Interestingly, in 10 dimensions, the LHS sequence performs comparably with the 
standard Halton sequence. 

(d) There is no clear winner in this case. In terms of total error, the Random Linear 
scrambled Faure sequence 
best. In terms of bias, on the other hand, the Braaten-Weller scrambled Halton without 
scrambling across observations performs the best. The Random Linear scrambled Faure 
without scrambling across observations is, however, close on its heels. 

eneral Trends 
T
number of draws results in low
decreases as the number of draws increases. The following are other key observations from our 
analysis. 

1. At very low draws, the standard versions of the Halton and Faure sequences perform 
be
very high and we strongly recommend against the use of 25 or less draws in simulation 
estimation. 
The scrambled versions of both the Halton and Faure sequences perform better than their 
standard ver
625 draws for 5 dimensions, the standard versions of both the Halton and Faure 
sequences perform marginally better than their scrambled versions in terms of total error 
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but yield much higher bias. Overall, using about 100-125 draws with scrambled versions 
of QMC sequences seems appropriate (though one would always gain by using a higher 
number of draws at the expense of more computational cost). 
The Faure sequence generally performs better than the Halton sequence across both 5 and 
10 dimensions. The only exception is the case of 100 draws

3. 
 for 10 dimensions, which 

4. 
xcept the case with 25 draws for 5 

5. 
dimensions (for 125 and 625 

6. 

tive QMC sequences for simulated maximum 

8. 

 
6. SUM

imulation techniques have evolved over the years, and the use of quasi-Monte Carlo (QMC) 
ng to replace pseudo-Monte Carlo (PMC) methods, as 

nce in the context of the 
simulat

indicates that, in terms of bias, the Braaten-Weller scrambled Halton sequence without 
scrambling across observations performs slightly better than the corresponding Random 
Linear scrambled Faure. However, this difference is marginal and the Random Linear 
scrambled Faure clearly yields the lowest total error. 
Among the Faure sequences, the Random Linear and Random Digit scrambled Faure 
sequences perform better than the standard Faure (e
dimensions, which we anyway do not recommend; see point 1 above). However, between 
the two scrambled Faure versions there is no clear winner. 
The Random Linear scrambled Faure with scrambling across observations performs 
better than without scrambling across observations for 5 
draws). For 10 dimensions, the Random Linear scrambled Faure with scrambling across 
observations performs slightly less well than without scrambling across observations. 
However, this difference is rather marginal. 
The Random Digit scrambled Faure performs better when generated without scrambling 
across observations in all the cases. 

7. Overall, our analysis concludes that the Random Linear and Random Digit scrambled 
Faure sequences are among the most effec
likelihood estimation of the MMNL model. While both the scrambled versions of the 
Faure sequence perform well in 5 dimensions, the Random Digit scrambled Faure 
without scrambling across observations performs marginally better. In 10 dimensions, on 
the other hand, the Random Linear scrambled Faure without scrambling across 
observations yields the best performance both in terms of bias and total error. 
Our study also strongly recommends the use of the inverse transform to convert uniform 
QMC sequences to normally-distributed sequences. 

MARY AND FUTURE WORK 
S
sequences for simulation is slowly beginni
the efficiency and faster convergence rates of the low-discrepancy QMC sequences makes them 
more desirable. There have been several studies comparing the performance of different QMC 
sequences in the evaluation of a single multidimensional integral. The use of QMC sequences in 
the simulated maximum likelihood estimation of flexible discrete choice models, which entails 
the estimation of parameters by the approximation of several multidimensional integrals at each 
iteration of the optimization procedure, is, however, relatively recent. 

In this paper, we have experimentally compared the overall performance of the Halton 
and Faure sequences, against each other and against the LHS seque

ed likelihood estimation of an MMNL model of choice. We have also compared different 
scrambled versions of QMC sequences, and observed the effects of scrambling on the accuracy 
and efficiency of these sequences. In addition, we have compared the efficiency of the QMC 
sequences generated with and without scrambling across observations. The numerical 
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experiments were performed in 5 dimensions with 25, 125 and 625 draws, and in 10 dimensions 
with 100 draws. 

The results of our analysis indicate that the Faure sequence consistently outperforms the 
Halton sequence. The Random Linear and Random Digit scrambled Faure sequences, in 
particular, are among the most effective QMC sequences for simulated maximum likelihood 
estimation of the MMNL model. 
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FIGURE 1a Standard Halton sequence: first 100 points [Source: Bhat (20)]. 
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FIGURE 1b Standard Faure sequence: first 100 points. 
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FIGURE 2a Braaten-Weller Scrambled Halton sequence: first 100 points. 
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FIGURE 2b Random Digit Scrambled Faure sequence: first 100 points. 
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FIGURE 2c Random Linear Scrambled Faure sequence: first 100 points. 
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TABLE 1a Evaluation of Ability to Recover Model Parameters: 5 Dimensions, 25 Draws 
RMSE MAPE Sequence Type Scrambling across 

observations Bias Total error Bias Total error 
No Scrambling 0.2987 0.3275 30.6976 30.6976 Standard Halton Scrambling 0.2817 0.2997 29.7409 29.7409 
No Scrambling 0.3157 0.3515 32.5745 32.5745 Braaten-Weller Scram. Halton Scrambling 0.2948 0.3259 30.4528 30.4544 
No Scrambling 0.2586 0.2869 27.2551 27.2551 Standard Faure Scrambling 0.2374 0.2887 24.0570 24.0937 
No Scrambling 0.2955 0.3332 28.8420 28.8420 Random Digit Scram. Faure Scrambling 0.2947 0.3541 29.8144 29.8144 
No Scrambling 0.2677 0.2978 27.9082 27.9082 Random Linear Scram Faure Scrambling 0.2848 0.3209 29.4035 29.4035 

LHS  N/A 0.2650 0.3059 27.7668 27.7668 

TABLE 1b Evaluation of Ability to Recover Model Parameters: 5 Dimensions, 125 Draws 
RMSE MAPE Sequence Type Scrambling across 

observations Bias Total error Bias Total error 
No Scrambling 0.0538 0.0672 5.6565 6.0881 Standard Halton Scrambling 0.0560 0.0627 5.9892 6.0709 
No Scrambling 0.0383 0.0560 4.0664 5.1062 Braaten-Weller Scram. Halton 
Scrambling 0.0445 0.0646 4.7313 5.9334 
No Scrambling 0.0393 0.0553 4.1668 4.5773 Standard Faure Scrambling 0.0455 0.0630 4.8227 5.3210 
No Scrambling 0.0298 0.0489 3.1551 4.2517 Random Digit Scram. Faure Scrambling 0.0432 0.0563 4.5803 5.0752 
No Scrambling 0.0364 0.0534 3.9041 4.4663 Random Linear Scram Faure Scrambling 0.0310 0.0450 3.2947 4.1762 

LHS N/A 0.0715 0.0789 7.5294 7.6367 

TABLE 1c Evaluation of Ability to Recover Model Parameters: 5 Dimensions, 625 Draws 
RMSE MAPE Sequence Type Scrambling across 

observations Bias Total error Bias Total error 
No Scrambling 0.0088 0.0189 0.8701 1.6096 Standard Halton Scrambling 0.0065 0.0161 0.6021 1.3830 
No Scrambling 0.0069 0.0177 0.7053 1.5221 Braaten-Weller Scram. Halton Scrambling 0.0060 0.0170 0.6013 1.4086 
No Scrambling 0.0070 0.0131 0.7148 1.1309 Standard Faure Scrambling 0.0047 0.0129 0.3596 1.0538 
No Scrambling 0.0025 0.0138 0.2354 1.1987 Random Digit Scram. Faure Scrambling 0.0059 0.0174 0.5914 1.4629 
No Scrambling 0.0049 0.0161 0.4702 1.4698 Random Linear Scram Faure Scrambling 0.0035 0.0152 0.3423 1.2542 

LHS N/A 0.0152 0.0311 1.5890 2.7455 

TABLE 1d Evaluation of Ability to Recover Model Parameters: 10 Dimensions, 100 Draws 
RMSE MAPE Sequence Type Scrambling across 

observations Bias Total error Bias Total error 
No Scrambling 0.2224 0.2692 26.6145 26.8211 Standard Halton Scrambling 0.1953 0.2489 23.5067 23.9490 
No Scrambling 0.1681 0.2500 19.8661 21.4625 Braaten-Weller Scram. Halton Scrambling 0.3297 0.3666 30.2559 30.5939 
No Scrambling 0.1969 0.3114 22.1754 26.5580 Standard Faure Scrambling 0.2337 0.3068 27.7484 29.8256 
No Scrambling 0.1844 0.2577 21.8181 22.4525 Random Digit Scram. Faure Scrambling 0.1998 0.2585 24.5396 24.7051 
No Scrambling 0.1740 0.2266 20.9043 21.2949 Random Linear Scram Faure Scrambling 0.1802 0.2679 20.7861 22.5148 

LHS N/A 0.2213 0.3013 25.6583 26.5579 
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