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Abstract 

The analysis of highway-crash data has long been used as a basis for influencing highway 

and vehicle designs, as well as directing and implementing a wide variety of regulatory policies 

aimed at improving safety. And, over time there has been a steady improvement in statistical 

methodologies that have enabled safety researchers to extract more information from crash 

databases to guide a wide array of safety design and policy improvements.  In spite of the 

progress made over the years, important methodological barriers remain in the statistical analysis 

of crash data and this, along with the availability of many new data sources, present safety 

researchers with formidable future challenges, but also exciting future opportunities. This paper 

provides guidance in defining these challenges and opportunities by first reviewing the evolution 

of methodological applications and available data in highway-accident research. Based on this 

review, fruitful directions for future methodological developments are identified and the role that 

new data sources will play in defining these directions is discussed. It is shown that new 

methodologies that address complex issues relating to unobserved heterogeneity, endogeneity, 

risk compensation, spatial and temporal correlations, and more, have the potential to 

significantly expand our understanding of the many factors that affect the likelihood and severity 

(in terms of personal injury) of highway crashes. This in turn can lead to more effective safety 

countermeasures that can substantially reduce highway-related injuries and fatalities. 

 

Keywords: 

Highway safety, crash frequency, crash severity, econometric methods; statistical methods; 

accident analysis 
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1.  Introduction 

Worldwide, more than 1.2 million people die annually in highway-related crashes and as 

many as 50 million more are injured and, by 2030, highway-related crashes are projected to be 

the 5
th

 leading cause of death in the world (World Health Organization, 2009). In addition to the 

statistics on death and injuries, highway-related crashes result in immeasurable pain and 

suffering and many billions of dollars in medical expenses and lost productivity.  The enormity 

of the impact of highway safety on human societies has resulted in massive expenditures on 

safety-related countermeasures, laws governing highway use, and numerous regulations 

concerning the manufacturing of highway vehicles.  While the success of many of these efforts 

in reducing the likelihood of highway crashes and mitigating their impact cannot be denied, the 

toll that highway crashes continue to extract on humanity is clearly unacceptable. 

Critical to the guidance of ongoing efforts to improve highway safety is research dealing 

with the statistical analysis of the countless megabytes of highway-crash data that are collected 

worldwide every year. The statistical analysis of these crash data has historically been used as a 

basis for developing road-safety policies that have saved lives and reduced the severity of 

injuries.  And, while the quality of data has not always progressed as quickly as many safety 

researchers would have liked, the continual advance in statistical methodologies has enabled 

researchers to extract more and more information from existing data sources.  

With this said, as in most scientific fields, a dichotomy has evolved between what is used 

in practice and what is used by front-line safety researchers, with the methodological 

sophistication of some of the more advanced statistical research on roadway accidents having 

moved well beyond what can be practically implemented to guide safety policy.  However, it is 

important that the large and growing methodological gap between what is being used in practice 
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and what is being used in front-line research not be used as an excuse to slow the methodological 

advances being made, because the continued development and use of sophisticated statistical 

methodologies provides important new inferences and ways of looking at the underlying causes 

of highway-crashes and their resulting injury severities. Continuing methodological advances, in 

time, will undoubtedly help guide and improve the practical application of statistical methods 

that will influence highway-safety policy. Thus, while the intent of this paper is to focus on the 

current frontier of methodological research (after reviewing current methodological issues), it is 

important that readers recognize the different objectives between applied and more fundamental  

research, and the role that sophisticated methodological applications have in ultimately 

improving safety practice and developing effective safety policies. 

The current paper begins by quickly reviewing traditional sources of highway-accident 

data (Section 2) and the evolution of statistical methods used to analyze these data (Section 3).  It 

then moves on to present some critical methodological issues relating to the analysis of highway-

accident data (Section 4). This is followed by a discussion of some emerging sources of crash 

data that have the potential to significantly change methodological needs in the safety-research 

field (Section 5).  The paper concludes with a discussion of some of the more promising 

methodological directions in accident research (Section 6), and a summary and insights for the 

future methodological innovation in accident research (Section 7). 

 

2.  Traditional Highway Crash Data 

Most existing highway-accident studies have extracted their data from police crash 

reports.  These reports are used to establish the frequency of crashes at specific locations and the 

associated injury-severities of vehicle occupants and other involved in these crashes. In the U.S., 

common injury severities are assessed by police officers at the scene of the crash such as: no 
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injury, possible injury, evident injury, disabling injury, fatality (within 30 days of the crash).
1
  

Police-reported data also include a great deal of information that can serve as explanatory 

variables in modeling injury-severity outcomes, including information on time of day, age and 

gender of vehicle occupants, road-surface conditions, weather conditions, possible contributing 

factors to the crash, roadway type, roadway lighting, speed limits, basic roadway geometrics 

(curve, grade, etc.), type of crash (rollover, rear end and so on, type of object(s) struck, driver 

sobriety, safety belt usage, airbag deployment, and so on. This information can be quickly 

expanded further by linking the data with government-provided roadway information (including 

traffic volumes, pavement friction, detailed roadway geometric characteristics, traffic-signal 

details) and detailed weather-related data (including temperature ranges, specific precipitation 

types and accumulations). 

While the occurrence of a crash and the severity levels reported by police data have been 

used in many previous studies to provide insights relating to the factors affect highway safety, 

the inaccuracies of police-reported data are well documented.  For example, it has been well 

established in the literature that less severe crashes are less likely to be reported to police and 

thus less likely to appear in police databases (Yamamoto et al., 2008; Ye and Lord, 2011). With 

regard to the severity of crashes, considerable inaccuracies have been found when comparing 

police severity reports with the severity assessment made by medical staff at the time of 

admission to the hospital (Compton, 2005, McDonald et al., 2009, Tsui et al., 2009).  Also, with 

regard to traditional police data, a study by Shin et al. (2009), showed that the medical costs 

associated with the “no injury” compared to the “evident injury” severity categories were higher 

                                                 
1
 Other types of injury-severity measurement data that have been used include the Abbreviated Injury Scale (AIS) 

which was originally developed by the American Association for Automotive Medicine, the Organ Injury Scales 

(OIS) proposed by the American Association for the Surgery of Trauma and the Injury Severity Score (ISS) used 

by hospitals. 
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due to subsequent hospital admissions (injuries sustained were not reported or observed at the 

scene). Despite the limitations of traditional crash data (such as police-reported data), these data 

have supported countless research efforts that have attempted to improve our understanding of 

the factors that influence the occurrence of crashes and the personal injuries that result. A wide 

variety of methodological approaches have been used to explore traditional crash data, and these 

methodologies have become increasingly sophisticated over time as researchers seek to address 

the many less obvious characteristics of the data in the hope of uncovering important new 

inferences relating to highway safety. 

 

3.  Evolution of Methodological Approaches in Accident Research 

Two relatively recently published papers provide a comprehensive review of current 

methodological approaches for studying crash frequencies, the number of crashes on a roadway 

segment or intersection over some specified time period (Lord and Mannering, 2010), and crash 

severities, usually measured by the most severely injured person involved in the crash 

(Savolainen et al., 2011).  The intent of this paper is not to replicate the detailed discussions of 

the methodological alternatives provided in those papers, but instead to focus on discussing the 

methodological evolution, the current methodological frontier and remaining methodological 

issues (the interested reader is referred to those papers for a review of previously used 

methodological approaches). However, because several important methodological developments 

and applications have been undertaken since those previous review papers were published, 

Tables 1 and 2 are provided to give an update of the literature (by methodological-approach 

category) previously presented in Lord and Mannering (2010) and Savolainen et al. (2011) 

(please see those papers, if necessary, for detailed descriptions of the methodological approaches 
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listed in these tables).  Tables 1 and 2 list the methodological approaches in the approximate 

chronological order that they have first appeared in the accident-research literature. 

With regard to the evolution of methodological alternatives in accident research, the 

frequency of crashes has been studied with a wide variety of methods over the years.  Because 

crash frequencies (the number of crashes occurring on a roadway entity over some time period) 

are count data (non-negative integers), the Poisson regression approach to count data has served 

as a basis for some initial research efforts that have sought to determine factors that influence 

crash frequencies so that effective crash-mitigation designs and policies could be determined.  As 

research progressed, the limitations of the simple Poisson regression model quickly became 

obvious and Poisson variants became the dominant methodological approach. For example, the 

negative binomial model (or Poisson-Gamma) became widely used because it can handle 

overdispersed data (data where the mean of the frequencies is much greater than the variance, see 

Lord and Mannering, 2010).  And, because crash-frequency data bases were often found to have 

many observations with no observed crashes, researchers considered zero-inflated Poisson and 

negative binomial regressions, which attempt to account for the preponderance of zeros by 

splitting roadways into two separate states, a zero state and a normal count state. Similarly, a 

variety of other count-data models and variations have also been considered over the years 

including the Gamma model, Conway-Maxwell-Poisson model, the negative binomial-Lindley 

model, and so on. Still other work has looked at crashes not as count data per se, but instead as 

the duration of time between crashes (duration models), which in turn can be used to generate 

crash frequencies over specified time periods. Recently, a series of studies (see Castro et al., 

2012, Narayanamurthi et al., 2013; Bhat et al., 2013) have recast count models as a restrictive 

case of a generalized ordered-response model, with a latent long-term risk propensity for crashes 
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coupled with thresholds that determine the translation of that risk to the instantaneous probability 

of a crash outcome. Such a generalized ordered-response approach to count data has several 

potential advantages, including making it much easier to extend univariate count models to 

multivariate count models and accommodating spatial and temporal dynamics.  

Other methodological advances models have sought to address what might be considered 

as more subtle issues with crash-frequency data. Issues such as the effect of unobserved factors 

on crash frequencies, spatial and temporal correlations among crash-count data, the possibility of 

roadway segments shifting among multiple crash states – discrete crash situations (states) that 

fundamentally shift roadway safety, and others have all been addressed in the steady progression 

of methodological advances in the field. 

A similar path has been followed by studies that have addressed the severity of crashes 

(see Table 2).  Starting with simple binary discrete outcome models such as binary logit and 

probit models, models evolved to consider multiple discrete outcomes (to consider a variety of 

injury-severity categories such as no injury, possible injury, evident injury, disabling injury and 

fatality). For the multiple discrete outcome models, multinomial models that do not account for 

the ordering of injury outcome (that is, from no-injury to fatality) have been widely applied from 

the simple multinomial logit model, to the nested logit model to the random parameters logit 

model (which can account for the effect of unobserved factors across crash observations).  

Modeling approaches that do consider the ordering of injury severities, such as the ordered probit 

and logit model, have also been applied with increasingly sophisticated forms to overcome 

possible restrictions imposed by traditional ordered-modeling approaches. Also, as with count-

data models, crash-severity models have been extended to consider the existence of multiple 

crash-severity states (discrete crash situations that fundamentally shift injury severity) and 
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unobserved differences in injury severity outcomes across the population using finite-

mixture/latent-class approaches (See Table 2).
2
 

 

4.  Some Important Ongoing Methodological Considerations 

In spite of the steady progression of methodological innovation in the crash analysis field, 

as reflected in the papers presented in Tables 1 and 2, there remain many fundamental issues that 

have not been completely addressed or are often overlooked.
3
  These include issues relating to: 

parsimonious vs. fully specified models; unobserved heterogeneity; selectivity-bias/endogeneity; 

risk compensation; choice of methodological approach; under-reporting of crashes with less 

severe injuries; and spatial and temporal correlations. Each of these can substantially influence 

findings and the inferences drawn from the analysis of data.  Table 3 provides a listing of some 

research efforts that have addressed these issues in the past, and a discussion of these issues is 

provided below. 

 

4.1  Parsimonious vs. Fully Specified Models 

The data available to researchers is often limited, and many variables known to 

significantly affect the frequency and severity of crashes may not be available. There may also 

be a need to develop relatively simplistic models using only explanatory variables that can be 

gathered and projected for use in practice, where municipalities may have access to little data or 

technical expertise.  Given these data limitations or the need to specify models with a few 

                                                 
2
 Most crash-severity models are based on data that are conditional on a crash having occurred.  This permits the use 

of detailed crash data including the age and physical characteristics of people involved in the crash, the possible 

deployment of airbags, and so on. However, there have also been efforts to model crash frequencies and severities 

simultaneously (these efforts have been led by the bivariate/multivariate research efforts listed in Table 1), 

although these approaches cannot use the detailed post-crash data that is available in an injury-severity model that 

is conditioned on the crash having occurred. 
3
 See the review articles by Lord and Mannering (2010) and Savolainen et al. (2011) for some additional discussions 

on fundamental issues in existing crash-frequency and crash-severity research. 
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simplistic explanatory variables, parsimonious models are often estimated.
4
  An example would 

be estimating a model of crash frequency using only the volume of traffic as an explanatory 

variable.  Clearly many other factors affect the frequency of crashes such as environmental 

conditions, roadway geometrics, the vehicle mix of traffic, lane widths, and so on. The problem 

with just using traffic volume as the explanatory variable is that the model will be excluding 

significant explanatory variables and the model-estimated parameter for traffic volume will be 

estimated with bias (this is referred to as an omitted variables bias) and application of the model 

will be fundamentally flawed because changes in the omitted variables (environmental 

conditions, roadway geometrics, etc.) cannot be captured and the predicted crash frequencies will 

be incorrect. In addition, a model with only traffic volume is limited in its value for designing 

countermeasures, precisely because the impacts of design features that can be controlled by 

traffic engineers (such as roadway curvature or pavement surface type) are not considered. In 

summary, the real problem with parsimonious models is that practitioners, and even researchers, 

do not fully grasp, or often conveniently overlook, the limitations of these simplistic models in 

terms of biased parameter estimates and policy value.  For practitioners, the application of such 

models can easily produce erroneous estimates and provide lesser information for 

countermeasure design relative to a more fully specified model that includes variables that are 

amenable to changes in design.  Researchers often extend simplistic parsimonious models with 

more sophisticated statistical methods often not realizing that the omitted variable bias present in 

their model compromises all of the conclusions that they are likely to draw. Thus, it is extremely 

important to recognize the limitations of parsimonious models, avoid them if at all possible, and 

consider more sophisticated statistical approaches to mitigate their adverse consequences. This is 

                                                 
4
 Examples of this include the models in the Highway Safety Manual (2010), where many practical compromises 

have to be made to arrive at usable models of highway safety. 
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particularly important because parsimonious specifications can lead to more susceptibility to the 

econometric considerations listed and discussed below.  

 

4.2  Unobserved Heterogeneity 

Some of the many factors affecting the freq`uency and severity of crashes are not 

observable, or the necessary data may be nearly impossible to collect. If these unobserved factors 

(often referred to as unobserved heterogeneity) are correlated with observed factors, biased 

parameters will be estimated and incorrect inferences could be drawn.  For example, consider a 

statistical model of crash-injury severity that has age as one of the explanatory variables. Age is 

correlated with many underlying factors that are likely to affect crash-injury severity such as 

physical health, susceptibility of bones to breakage, body positioning at the time of crash, 

reaction times that may mitigate the severity of the crash, and so on.  By including only age, age 

is acting as a proxy variable for many underlying factors that are likely to vary considerably 

across crash-injury observations because people of the same age are likely to have differences in 

these unobserved factors.  By assuming that age has the same effect on injury severity across the 

population, the analyst is placing a potentially significant restriction on the model that may affect 

not only the inferences drawn from the age-variable parameter estimate, but also from other 

parameter estimates in the model. There are statistical corrections for dealing with this problem 

(see Table 3), but many researchers have overlooked this issue in the past. 

 

4.3  Selectivity-Bias/Endogeneity 

One of the most often overlooked elements in model estimation can be generally termed 

as selectivity-bias/endogeneity. This can take many forms, some of which are obvious and some 
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of which are more subtle. As an example, consider a model that seeks to determine the 

effectiveness of ice-warning signs in reducing the frequency of crashes during icy conditions. 

The most common approach to studying this problem would be to collect crash-frequency data 

(crashes occurring during icy conditions) for roadway segments with ice-warning signs and 

roadway segments without. Then, using a naïve approach, estimate a model that has the presence 

of an ice-warning sign as an indicator variable – which takes a value of one if an ice-warning 

sign is present and zero otherwise (there are other statistical approaches to evaluating this 

phenomenon including the estimation of completely separate models for ice-warning sign and 

non-ice-warning sign roadway segments). If one were to estimate such a model, it is quite likely 

that the parameter estimate for the ice-warning sign indicator variable would have a substantial 

downward bias – seriously understating the effectiveness of ice warning signs.  This is because 

ice-warning signs are likely to be placed on roadway segments with a history of a large number 

of ice crashes. Thus, the presence of an ice-warning sign (and its indicator variable in the model) 

will be correlated with unobserved factors that affect the frequency of ice-related crashes.  These 

unobserved factors could include things such local micro-climate conditions that make some 

roadway segments more likely to accumulate moisture and freeze relative to others, making them 

more susceptible to high ice-crash frequencies. There have been countless studies that have 

likely arrived at erroneous inferences by ignoring such effects and not undertaking the proper 

statistical techniques for correcting such a selectivity effect. 

Often times, the selectivity-bias/endogeneity can be more subtle.  An example would be a 

study to determine the effectiveness of a new vehicle safety feature (such as side-impact airbags) 

in reducing the injury severity in crashes.  The naïve approach would be to look at vehicles with 

the safety feature and those without, and assess the safety feature’s effectiveness in reducing 
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injury severity by, for example, using an indicator variable (one if the vehicle has the safety 

feature present and zero otherwise).  The problem with this approach is that the drivers owning 

the vehicles with the safety feature are not likely to be a random sample of the driver population.  

In fact, studies have shown that the safest drivers are most likely to own cars with advanced 

safety features (Winston et al., 2006).  Thus, the parameter estimate for the indicator variable for 

the presence of the safety feature will capture all the unobserved heterogeneity relating to its 

driver (which is more likely to be a safe driver) that will tend to result in less severe crashes 

(unobserved factors such as those relating to risk aversion and so on). This in turn will tend to 

impart a serious upward bias in the parameter estimate that would substantially overstate the 

effectiveness of the safety feature in reducing injury severity. Again, there are statistical 

corrections for this (see Winston et al., 2006), but they are often overlooked in model estimation. 

Yet another example would be an attempt to capture the true effect of a posted speed limit 

on the frequency and severity of crashes.  However, again there is a self-selectivity present in 

that speed limits may be set as a function of road classification or may be influenced by past 

crash histories.  For example, a 70 mi/h maximum speed will likely only be observed on full-

access-controlled rural interstates, so all of the unobserved characteristics (unobserved 

heterogeneity) of such roads may end up being captured by the model’s parameter estimate of the 

speed-limit variable, which may then tend to over or under estimate the true effect of the speed 

limit.  Similarly, highways with many crashes (for whatever reason) may be given lower speed 

limits to improve safety, but a poorly specified model (with potentially important missing 

variables that truly explain why the highway is dangerous) may conclude that lower speed limits 

are less safe because the roads with low speed limits will be correlated with a higher than 

expected number of crashes. 
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Resolving the self-selectivity/endogeneity issue can be achieved through various 

statistical corrections, but this is not done nearly enough in accident-related research and there is 

an urgent need for future studies to give full consideration to this issue.
5
 

 

4.4  Risk Compensation 

The likelihood that drivers respond to changing road conditions by altering their behavior makes 

understanding the effect of these changing road conditions extremely difficult.  An example 

would be a model that may find that the frequency of crashes declines during inclement weather.  

There are a number of explanations for this, including the possibility that the drivers self-select 

so that the safest drivers are more likely to drive in inclement weather and less-safe drivers may 

avoid inclement weather.  But there is the very real possibility that each driver will compensate 

for the adverse conditions by altering their driving behavior to keep an acceptable level of risk.  

A simple illustration of this process is given in Figure 1 with approximate speed/crash 

probability curves.
6
 In looking at Figure 1, under normal weather conditions each individual 

driver makes a trade-off between their selected speed and what they consider to be an acceptable 

level of safety (represented by the probability of a crash in this figure), resulting in Point A. 

Under adverse weather conditions, the relationship between speed and the probability of a crash 

shifts the curve upward. If the driver continues at the same speed as driven in normal weather 

conditions, Point B is reached and the probability of a crash increases accordingly.  If the driver 

were to maintain the same crash probability, slowing down to Point C would be required.  It is 

                                                 
5
 It is also worthy to note that a skeptical view of this issue would be that almost every variable can be hypothesized 

to be endogenous in some way, which would make model estimation cumbersome if not impossible.  The key to 

addressing endogneity, then, is to carefully consider the context and potential impact of the endogeneity of specific 

variables in the model. 
6
 In fact, many other elements could easily be considered in this graph (for example, risky behaviors beyond speed 

such as the decision to engage in distracted or impaired driving, following other cars too closely, and so on) but 

only speed and crash probability are used here for illustrative purposes. 
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reasonable to speculate that all drivers will adapt to the adverse weather condition to some 

degree, likely resulting in a speed/crash probability equilibrium somewhere between Points B 

and C on the adverse weather-conditions curve (for example, Point D). There is also the 

possibility that some drivers may over compensate for the adverse weather conditions driving 

much slower resulting in equilibrium at Point E where the probability of a crash is even lower 

than it was before the adverse weather conditions. 

From a statistical perspective, risk compensation presents a very difficult problem 

because the equilibrium point of each driver is not known (some may be at Point B, some at 

Point C, some at Point D, and so on) and the equilibrium point may not be stable over time.  

With regard to time stability, consider driver reactions to snowy weather conditions.  In areas that 

experience snowy conditions frequently, driver experience will enable them to reach a snowy-

condition equilibrium point that is more likely to be stable over time.  However, in regions with 

infrequent snow fall, the spread of driver equilibrium points is likely to be over a much broader 

range of the speed/crash-probability curve because drivers do not have the experience to 

accurately assess crash probabilities under these conditions. And, as the frequency of snowfall 

changes over time, the resulting impacts on the frequency and severity of crashes will also 

change. So the effects of the same adverse weather conditions are likely to be both temporally 

and spatially (across geographic regions) unstable. 

More recently applied statistical and econometric methods such as random parameters 

models and finite-mixture/latent-class/Markov-switching models can potentially provide some 

insight into the effects of risk compensation on the true impact of phenomena such as adverse 

weather conditions, but much additional methodological work is needed to move beyond simple  

statistical applications in order to seek fundamentally new insights. 
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4.5  Choice of Methodological Approach 

Researchers have expended considerable energy in trying to determine which general 

methodological approaches are best suited to crash-related data.  For example, with regard to 

crash-injury severities, there have been countless studies and discussions as to which general 

discrete-outcome approach is most appropriate: models that do not consider the natural ordering 

of injury severity data (ranging from no injury to fatality) such as the multinomial logit, nested 

logit and random parameters (mixed) logit; or models that do consider the natural ordering of 

data such as traditional ordered probit and logit models (see Table 2).  Because the data are 

ordered, many researchers have assumed without much empirical exploration that ordered 

models are the preferred methodological approach (see Washington et al., 2011 for a discussion 

of this point).  However, all methodological approaches have inherent limitations and the 

superiority of one model over another can often not be proven mathematically and, in fact, even 

empirical generalizations cannot be made because the overall model fit may vary from one 

database to the next. 

To provide an illustration of the trade-offs that must sometimes be made in applying 

competing methodological approaches, consider the inherent limitations of the traditional 

ordered probit model when applied to crash-injury data (see for example Eluru et al., 2009, who 

discuss this in detail when proposing a generalized ordered probit model for injury severity). 

Traditional ordered probability models are derived by defining an unobserved variable, z, which 

is typically specified as a linear function of a vector of explanatory variables (X) and the 

associated vector of parameters (β) is estimated by assuming a distribution of is an independently 

randomly distributed disturbance terms (ε).  The probability of specific crash-injury severity 

outcomes is then determined by integration of the area under the density function as shown in 

Figure 2, with the vertical lines in this figure (the vertical dash-dot lines) being thresholds 
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separating discrete injury-severity categories and these are also determined as part of the 

estimation process.  In standard ordered probability models, the effect of explanatory variables is 

to shift the thresholds as shown in Figure 2 (from the dash-dot vertical lines to the dot vertical 

lines). A visual inspection of this figure reveals a severe limitation of ordered probability models 

in that is impossible for an explanatory variable to simultaneously increase or decrease the both 

the extreme severity categories (no injury and fatality). 

To see how this is a problem, consider the following example provided in Washington et 

al. (2011). Suppose that one of the explanatory variables in determining injury severity is 

whether or not an airbag was deployed in the crash.  The airbag-deployment indicator variable in 

a standard ordered model would move the thresholds shown in Figure 2 to either increase the 

probability of a fatality (and subsequently decrease the probability of no injury) or decrease the 

probability of fatality (and subsequently increase the probability of property damage only).  But 

the reality may be that the deployment of an airbag not only reduces the probability of a fatality 

but also reduces the probability of no-injury since airbag deployment itself could cause minor 

injuries.  If this situation exists, a traditional ordered probability model is not appropriate because 

it does not have the flexibility to allow the extreme categories to simultaneously increase or 

decrease.
7
 Estimation with a standard ordered model in this case will produce biased parameter 

estimates that could easily lead to incorrect inferences. 

In an unordered discrete-modeling framework (such as a multinomial logit, nested logit 

or random parameters logit), accounting for the fact that an explanatory variable can 

simultaneously increase or decrease extreme severity categories is a total non-issue since this can 

be readily handled by including the airbag-deployment indicator in specific equations that 

                                                 
7
 In recognition of this important limitation, there has been a body of recent work using generalized ordered outcome 

models which relax this restriction (see, for example, Eluru et al., 2008; Castro et al. 2013). 
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determine individual severity-category probabilities.  Thus, in choosing between ordered and 

unordered models, researchers often must make a tradeoff between considering the ordered 

nature of the data and restricting how explanatory variables affect outcome probabilities.
8
 

Developing a general rule that establishes the superiority of one methodological approach 

over another has understandably eluded both crash-frequency and injury-severity researchers.  

Empirical evidence from many studies suggest that the superiority of one methodological 

approach over another can be very data-dependent
9
 and, even with the same data, comparison of 

models which are often non-nested (such as is the case for ordered and unordered probability 

models) can leave much to be desired in terms of defensible statistical evidence. With this said, 

there have been a number of recent efforts that have undertaken empirical comparisons of 

alternate injury-severity model structures (Abay, 2013; Yasmin and Eluru, 2013; Ye and Lord, 

2014) and, although there will always be questions relating the generalizability of the results 

across multiple databases, these studies provide at least some evidence for model comparisons. 

 

4.6  Under-Reporting of Crashes with Less Severe Injuries 

It is well documented that crashes resulting in no injuries, or less severe injuries, are 

more likely to be under-reported and thus do not appear in crash databases (Yamamoto et al., 

2008; Ye and Lord, 2011; Yasmin and Eluru, 2013). In the presence of such under-reporting, the 

observed distribution of crashes (from reported crashes) among the injury-severity categories 

                                                 
8
 Similar issues arise when considering how best to model crash-frequency analysis.  For models that can be 

statistically compared, such as the simple Poisson and negative binomial models, a specific model can be justified 

using simple statistical tests such as the likelihood ratio test.  However, models that do not lend themselves to 

direct statistical comparison, such as modeling frequencies as a count process versus modeling them as duration 

data using the time between successive crashes, often lead to ambiguous statistical justifications. 
9
For example, in injury-severity models that are nested and can be directly compared statistically (such as the 

standard fixed-parameters multinomial logit and nested logit models), depending on the source of the injury-

severity data have studies have found the simple multinomial logit model to be justified whereas others have found 

the more involved nested logit model to be justified (see, for example, Savolainen and Mannering, 2007). 
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will differ from the actual distribution of crashes among the severity categories. For modeling 

crash-injury severities with traditional model-estimation techniques, the consequence will be a 

potentially severe bias in model-estimated parameters that could lead to incorrect inferences.
10

 

The matter of under-reporting has been extensively studied in discrete-outcome model literature, 

and is just a variation of outcome-based sampling.  There are numerous corrective estimation 

techniques such as the weighted conditional maximum likelihood estimator and others (Ye and 

Lord, 2011; Patil et al., 2012). While several researchers have addressed the under-reporting 

problem in crash-severity analyses, there is a need to continue work in this area, particularly with 

more advanced methodologies such as random parameters and multiple-state models. 

Under-reporting of less severe crashes obviously also affects crash-frequency models, but 

the effect of under-reporting on crash frequencies has been studied less often than it has been 

studied on crash severities. The consequence of omitting minor crashes from frequency models 

can be problematic in that locations with a large number of minor crashes may not show up as 

the safety hazard that they are, and minor changes in conditions (weather events, traffic volumes, 

etc.) could quickly move a roadway location with seemingly no major safety concern, into a very 

serious safety-deficient location as many of the unreported minor crashes become more severe 

reported crashes. The complexity of issues involved with under-reporting in count-data models 

can be formidable, but ignoring under-reporting in these models can also lead to erroneous 

inferences. 

 

  

                                                 
10

An exception to this is the multinomial logit model.  If the restrictive assumptions of the fixed-parameters 

multinomial logit model hold (the independence of irrelevant alternatives), in the presence of such under-reporting 

all parameters will be correctly estimated except the constants, and these can be readily corrected if the extent of 

under-reporting is known (see Washington et al., 2011). 
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4.7  Spatial and Temporal Correlation 

Both crash frequency and severity data often have observations that are in close spatial or 

temporal proximity. All data are likely to have unobserved factors that may influence the 

frequency and/or severity of crashes and, because these unobserved factors are likely to be 

correlated over space and time, ignoring the spatial and temporal correlation of data will almost 

certainly result in inefficient and possibly inconsistent parameter estimates. Examples of such 

unobserved factors could be pavement irregularities that may not be observed but may extend 

over time or space, micro-climate effects that may result in reduced friction over time and space, 

local sight-distance restrictions that again may extend over time and space. There have numerous 

efforts that have begun to explicitly address spatial and temporal correlation (see the Section on 

methodological frontiers later).  

 

5.  Emerging Data Sources 

Traditional crash frequency and severity are based on data that is collected after a crash 

has occurred. This is highly restrictive in many ways.  First, there are many near-crashes that 

contain potentially important information regarding crash generation and severity that do not 

appear in traditional crash data bases.  Second, as discussed above, many minor crashes are not 

recorded through traditional sources leading to a loss of potentially important information. Third, 

many important contributing factors to crash occurrence and resulting severity are not collected 

(for example, vehicle speed, driver braking and maneuvering responses, etc.) leading to 

considerable unobserved heterogeneity that complicates modeling and precludes important 

information that could be used to make significant new inferences. Fourth, police-reported 

measures of injury severity (no injury, possible injury, evident injury, disabling injury, fatality) 
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are based on observations at the crash scene and can change as further medical diagnosis is 

undertaken. 

There are several important emerging sources of data that could address some of these 

data concerns.  One example is the recent availability of CODES (Crash Outcome Data 

Evaluation System) data in select U.S. states has permitted researchers to assess crash severity 

with significantly greater detail.  These data provide detailed information on injury levels, 

location of injuries, cost of injuries, and so on, but they rely on the linkage of police-reported 

crash records with medical records which is itself often a difficult and imprecise task.
11

  

However, when police crash reports are successfully matched with corresponding medical data, 

the level of detail available in CODES data goes well beyond police-reported injury assessment 

and includes details on injury types (fractures, dislocations, internal organ damage, crushing, 

burns, etc.) and locations body (head and neck, spine and back, torso, extremities).  CODES data 

can also allow for more detailed analysis of cost data (another potential but underutilized 

assessment of severity) with information on medical costs (professional, hospital, emergency 

department, drugs, rehabilitation, long-term care), other associated costs (police/ambulance/fire, 

insurance administration, loss of wages, loss of household work, legal/court costs, property 

damage) and possible quality-of-life costs in terms of quality-adjusted life years (Blincoe et al., 

2002). 

Another emerging source of data is that collected from specially equipped cars to gather 

so-called naturalistic driving data. In these cases, cars are equipped with video-recording 

technologies, onboard vehicle sensors that record a wide array of data including lateral and 

longitudinal acceleration, yaw rate, brake and accelerator applications, and radars to measure 

                                                 
11

CODES data may also help with some of the under-reporting of crashes if those involved in a non-reported crash 

subsequently seek medical attention. 
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proximities to other vehicles and objects. Such an instrumented car generates an incredible 

amount of data, but many issues arise in using such data including: 1) the infrequent occurrence 

of crash and near-crash events results and the need for very long observation periods to generate 

enough truly useful data; 2) drivers knowing that they are driving in an instrumented vehicle may 

alter their behavior; and 3) the sheer volume of data makes managing and statistically modeling a 

cumbersome task.  Even with these issues considered, the emergence of naturalistic data offers 

the potential greatly expand the scope of statistical modeling and the inferences that can be 

drawn in years to come. 

Still another promising source of data is information gathered from vehicles’ Event Data 

Recorders (EDR’s), often referred to as a “black boxes”, which record significant amount of data 

prior and during the crash. Currently, EDR’s are not mandatory, but many automakers include 

them in their cars and it has been estimated that even as early as the 2005 model year, 64% of 

passenger vehicles sold had the device (Insurance Institute for Highway Safety, 2013). In 

December of 2012, the National Highway Traffic Safety Administration (NHTSA) proposed a 

rule requiring the devices in all 2015 and later model vehicles. Most EDRs are built into a 

vehicle's airbag control module and record information about airbag deployment. However, some 

also record pre-crash data, like engine throttle and vehicle speed from the engine control module. 

For the 2013 model year, EDR’s must record: change in forward crash speed; maximum change 

in forward crash speed; time from beginning of crash at which the maximum change in forward 

crash speed occurs; speed vehicle was traveling; percentage of engine throttle, percentage full 

(how far the accelerator pedal was pressed); whether or not brake was applied; whether or not 

driver was using safety belt; whether or not frontal airbag warning lamp was on; driver frontal 

airbag deployment; and number of impact events.  Some more advanced EDR’s currently record 
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additional information such as sideways acceleration, forward or rearward acceleration, engine 

speed, driver steering input, right front passenger safety belt status, engagement of electronic 

stability control system, antilock brake activity, side airbag deployment time for driver and right 

front passenger and seat track positions for both the driver and right front passenger. Occupant 

size and position for drivers and right front passengers may also be recorded. Clearly 

accessibility to such information could greatly improve the specification of crash injury-severity 

models. 

 

6.  The Methodological Frontier 

Given the limitations of traditional data, there have been substantial methodological 

developments in recent years that have led to important new inferences in the study of crash 

frequency and severity.  Perhaps some of the most important methodological advances have dealt 

with ways of dealing with (a) unobserved heterogeneity, and have included random parameters 

and multi-state models such as Markov switching and finite-mixture/latent-class models, (b) 

multivariate models, including spatial and/or temporal dependence effects, and (c) self-selection 

or endogeneity issues. Finally, there has been little effort to incorporate “soft” measures of driver 

personalities and attitudes in safety modeling. Each one of these issues is discussed in turn in the 

subsequent sections. 

  

6.1  Unobserved Heterogeneity 

As shown in Tables 1 and 2 (see also the references listed in the unobserved 

heterogeneity category of Table 3), there has been great interest in recent years in models that 

incorporate unobserved heterogeneity. These modeling approaches provide important ways to 
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address issues relating to unobserved heterogeneity. Random parameters models can potentially 

capture unobserved heterogeneity by allowing parameters to vary across observations (such as a 

roadway segment) or be fixed within group of observations but vary across groups that are 

specified by the analyst (such as roadway segments on the same highway route).  The 

disadvantage of random parameters models is that the distributional assumption required to 

estimate the random parameters may not adequately capture unobserved group-specific features 

within the population (in contrast to groups of observations that the analyst may specify, there 

may exist homogeneous groups of data which may not be known to the analyst). 

Finite-mixture/latent-class models take a somewhat different approach to addressing 

unobserved heterogeneity by identifying distinct subgroups of data with homogeneous attributes. 

In contrast to traditional random parameters models, finite-mixture/latent-class models consider 

unobserved heterogeneity by using a finite and specified number of mass points to identify 

homogeneous subgroups of data (as opposed to having the analyst identify subgroups based on 

some observed characteristics, such as grouping roadway segments that are along the same 

route). The potential advantage of this is that it does not require, as in the case of traditional 

random parameters models, a distributional assumption relating how parameters vary across 

observations (or groups of observations) or analyst determination of observation groups. The 

disadvantage is that it does not account for the possibility of within-group variation due its 

restrictive homogeneity assumption on characteristics of the within-group observations. 

The combination of finite-mixture/latent-class and random-parameters models 

(incorporating random parameters within a finite-mixture/latent-class model) to more fully 

capture the unobserved heterogeneity has been considered in a number of research efforts in 

statistics (Verbeke and Lesaffre, 1996), econometrics (Lenk and DeSarbo, 2000), marketing 
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research (Allenby et al., 1998), and recently in accident research (Xiong and Mannering, 2013). 

This hybrid modeling idea considers the possibility of observational random parameters sampled 

from an assumed continuous distribution within each of the groups within a finite-mixture 

framework. Hence it can account for group-specific heterogeneity and individual-observation 

heterogeneity within each group. 

Models that have multiple states of safety also have the potential to address unobserved 

heterogeneity in exciting new ways. The idea is that fundamentally different states of safety exist 

and that highways may shift between these over time.  This has given rise to the application of 

Markov switching models, in crash-count and crash-severity applications (see Tables 1 and 2), 

which assume highway segments switch over time, according to a Markov process, among 

multiple states of highway safety. The logic behind addressing unobserved heterogeneity in this 

way is unobserved multiple states may exist because of different environmental conditions, 

driver reactions and other factors that may not necessarily be available to the analyst and that 

these may change over time, and that these states can be identified as part of the model-

estimation process.
12

  

 

6.2  Multivariate Models 

Multivariate models refer to cases where there are multiple dependent variables that are 

inter-related with each another. In the context of crash frequencies, a simple example of a 

multivariate count model is the case of analyzing intersection crash-related injuries by crash type 

(head-on, rear-end, angular, collision with a stationary object, etc.). Analyzing crash-related 

                                                 
12

The empirical success of zero-inflated count-data models (see Table 1) to model crash frequencies provides some 

empricial evidence of the presence of unobserved safety states. Multi-state models (Markov switching models) 

have also been successfully estimated in the safety field by Malyshkina et al. (2009), Malyshkina and Mannering 

(2009, 2010a) and Xiong et al. (2013). 
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injuries by type is important because of differential impacts of relevant exogenous variables on 

different crash types. For instance, intersections with stop signs may lead to more rear-end 

crashes relative to intersections controlled by signal lights, as drivers may brake suddenly when 

arriving at the stop sign and do not leave adequate time for the following driver to stop in time 

(relative to the case of a signal light), as has been observed by Kim et al. (2006). However, there 

may be relatively little difference between stop sign controlled intersections and signal controlled 

intersections in the number of head-on collisions. This is an example of a case where the control 

type at the intersection has a differential effect on different crash types, and ignoring this will, in 

general, lead to inconsistent estimates for the count of crashes of each type as well for the total 

count of crashes. A possible approach to consider this heterogeneity in variable effects is to 

estimate separate univariate count models for each crash type, but the problem is that unobserved 

factors are likely to impact multiple crash counts simultaneously. This necessitates the 

consideration of multivariate count models.  

There are other motivations that also lead to multivariate models. Thus, the frequency of 

crashes at a particular intersection may be inter-linked with those at other intersections over 

space because of unobserved factors (such as land-use design features, and local variations in 

driver behavior) that can cause a dependence between crash occurrences at proximately located 

intersections. At the same time, if data are collected at each intersection over multiple years, and 

the unit of analysis is the annual number of crashes, intersection-specific unobserved factors 

(such as pedestrian walkway continuity) will cause a temporal correlation in the number of 

crashes at the same intersection over time. Such spatial and temporal dependencies result in 

multivariate models of very large dimension. 
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From a methodological standpoint, the field has long since matured in the area of 

univariate count models, but this has not been the case with multivariate count data. Current 

methods to deal with multivariate data are either too restrictive, relatively cumbersome and time-

consuming, and/or literally infeasible in the case of high dimensionality (as often is the case 

when accommodating spatial and temporal dependencies). One promising approach that has been 

recently applied for multivariate models involves the recasting of traditional count models as a 

special case of a generalized ordered-response model. In this recasting, the count is the result of a 

latent risk propensity that gets mapped into the observed count outcomes through thresholds that 

are themselves functions of exogenous variables. In this formulation, the linkage across count 

categories is generated through the latent risk propensity, and excess probability masses (such as 

excess zero values) are easily handled without the need for zero-inflated and hurdle-count type 

devices that get very cumbersome in multivariate count settings (see the last row in Table 1).  

Multivariate issues also readily arise in crash injury-severity data, such as the case of 

vehicle crashes in which multiple vehicles are involved, with each vehicle having one or more 

occupants. In such cases, the different occupants of each vehicle may experience different levels 

of injury severity, based on observed factors (such as seat belt use, vehicle type, and position of 

the occupant in the vehicle) and unobserved factors (such as vehicle condition and maintenance 

record, and mental and physical state of the vehicle occupant). Some of the unobserved factors 

may play a role in the injury severity sustained by multiple individuals. For example, the vehicle 

condition should affect the injury severities of all occupants of each vehicle, while the pavement 

condition at the location of the crash should affect the injury severities of all individuals involved 

in the crash. The presence of these common unobserved elements points to the need for a 

multivariate injury-severity model that characterizes the severity levels of all individuals 
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involved in the crash. In contrast, most crash-related injury severity studies in the safety 

literature either pool all individuals across all crashes and estimate an individual-level injury 

severity model that completely severs the link between individuals involved in the same crash 

(which leads to inefficient econometric estimation at the very least, and potentially inconsistent 

estimation in many situations; see Abay et al., 2013), or model the injury severity of the most 

severely injured individual in a crash (which does not provide a comprehensive view of the 

nature and severity of all injuries sustained in the crash). Recently, there have been a few safety 

studies that have formulated and employed a multivariate injury severity model (see Table 2). 

These include copula-based models as introduced by Bhat and Eluru (2009) in the general 

transportation literature and Eluru et al. (2010) in the safety literature that allow a flexible 

dependency structure in the unobserved factors influencing injury risk across individuals (see, 

for example, Rana et al., 2010 and Yasmin et al., 2013c). The concept of copulas is discussed in a 

little more detail in the next section.   

As in the case of crash counts, a multivariate injury-severity model also arises when 

taking account of spatial and temporal dependencies. For example, consider the case of crashes 

at proximally located intersections. It is certainly possible that observed design elements at one 

crash location (say, for example, the presence of an island at an intersection) not only influences 

injury risk propensity at that location, but also have a “spatial spillover” effect on the injury 

propensity at proximally located crash sites. In addition, there may be common unobserved (to 

the analyst) location factors that may lead to a spatial-correlation effect in the error terms of the 

injury-risk propensity at proximally located crash locations. Ignoring such spatial dependencies 

will, in general, result in inconsistent and inefficient parameter estimation in non-linear models 

(see LeSage and Pace, 2009). There have been some recent efforts to address this concern in 
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general, and in the safety literature in particular. For example, Castro et al. (2013) use Bhat’s 

(2011) maximum approximate composite marginal likelihood (MACML) approach to estimate a 

multivariate model with spatial dependency, and the approach holds considerable potential for 

application in a variety of multivariate contexts.  

Another related area where multivariate models should be useful is in the analysis of 

naturalistic driving data. Indeed, the sheer volume of the naturalistic driving data makes 

statistical modeling an interesting and challenging task. There are several opportunities to 

enhance currently used analytic methods (or even venture into alternative approaches) to deal 

with such massive data sets. For instance, statistical pattern recognition and machine learning 

may offer avenues for combination with more traditional multivariate statistical methods to deal 

with high dimensional data and recognize/model patterns from large data streams (National 

Academies, 2013).  

 

6.3  Selectivity Bias/Endogeneity 

The issue of selectivity bias/endogeneity has been discussed earlier in Section 4.4, and 

falls under the general framework of treatment-outcome models in econometrics (see Heckman 

and Vytlacil, 2005), with the treatment (for example, ice-warning signs and posted speed limits) 

and the outcome (crash frequency or injury severity) being modeled jointly. The method used in 

almost all of the very few earlier safety analysis studies to accommodate endogeneity is based on 

the use of an instrumental variable approach that involves computing the predicted probability of 

the treatment, and replacing the treatment variable in the outcome equation by the predicted 

probability. Unfortunately, the two stage estimation as just discussed is not appropriate for non-

linear outcome models such as count models and injury severity models (see Greene, 2009).  
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There are two possible (and correct) approaches to accommodate endogeneity in non-

linear models. The first, control function or two stage residual inclusion (2SRI), approach 

involves (a) estimating the treatment or endogenous variable (which can itself be a continuous 

variable or a limited-dependent variable) using appropriate techniques (with one or more 

instrumental variables as predictors), (b) obtaining predictions of the endogenous variable, (c) 

computing residuals from this first stage, and then (d) including these first stage residuals (in 

addition to the endogenous variable).  In the case when both the first stage and second stage 

equations are linear relationships as opposed to one or both being non-linear relationships, this 

2SRI approach is equivalent to two stage least squares or 2SLS. Terza et al. (2008) show that 

2SRI is consistent for non-linear models, while other two stage approaches are not. But it can be 

a challenge in this 2SRI approach to find good instruments, and the approach also constitutes a 

limited information approach that can be fraught with econometric efficiency and collinearity 

problems (Puhani, 2000). In addition, the analytic correction or a bootstrapping empirical 

estimator for obtaining the correct standard errors can be cumbersome.  

The second approach is a full information maximum likelihood (FIML) approach. When 

using the traditional count formulations for crash frequency, the FIML approach includes a 

random error term in the parameterization of the expected value of the count discrete distribution 

(so that the expected value is not only a function of exogenous variables and the treatment 

variable, but also includes a random term). A dependence structure is then specified between this 

random term and the random term involved in the treatment model. Then, conditional on the 

error term in the count model, the probability of the treatment and of the outcome can be written 

as the product of the individual probabilities of the treatment and of the outcome. The 

unconditional probability of the treatment and outcome may be obtained by integrating out the 
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error term of the count model (see Greene, 2009 for a discussion). Similarly, in the case of an 

injury severity outcomes, and assuming a binary treatment variable, one needs to have a 

propensity equation for the treatment (this propensity translates to the observed treatment 

indicator, in the usual binary model fashion) and an appropriate specification for injury severity 

with the treatment as an indicator variable (in the form of either a single injury-severity 

propensity equation that is related to the observed injury severity levels through thresholds in the 

ordered-response or generalized ordered-response formulation, or in the form of multiple 

propensity equations, one for each injury severity category, in the unordered-response 

formulation). The error terms in the treatment and outcome propensities are then specified to 

have a dependency structure. After accommodating this dependency structure, the structural 

parameter on the treatment in the outcome model may be viewed as the “cleansed” and “true” 

causal effect of the treatment. In this formulation, the joint probability of the treatment and the 

outcome takes a bivariate truncated distribution (if an ordered-response or generalized ordered-

response model is used for injury severity) or a multivariate truncated distribution (if an 

unordered model is used for injury severity).  

A methodological frontier issue in safety analysis is then first to accommodate 

endogeneity considerations appropriately. For the count model outcome, the recasting as a 

generalized ordered-response model may be particularly effective in capturing endogeneity 

issues, and should open up a suite of possibilities for specifying and testing endogeneity effects. 

Further, there is substantial room for exploring a variety of copula structures for the error 

dependency between the treatment and outcome variables. A copula is a device or function that 

generates a stochastic dependence relationship (a multivariate distribution) among random 

variables with pre-specified marginal distributions (see Bhat and Eluru, 2009). The precise 
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definition of a copula is that it is a multivariate distribution function defined over the unit cube 

linking uniformly distributed marginals.  There are several different types of copulas, each of 

which provides a different probability density function for the stochastic dependence 

relationship. Using a copula approach, an analyst can make use of the full information content 

available in the data through the FIML approach, while also alleviating misspecification 

problems in the dependence structure.
13

  

 

6.4  Accommodating soft psychometric measures in safety analysis 

Safety analysis research, for the most part today, uses “hard” observed variables as 

explanatory variables in crash frequency and injury-severity modeling. However, there are many 

examples where “soft” attitude measures and related “values” also may be important 

determinants. Understanding the impact of such “soft” measures can be very helpful for the 

design of information campaigns and behavioral modification considerations. For example, 

consider the effect of driver aggressiveness on crash occurrence and injury-severity levels. The 

analyst can obtain indicators of aggressiveness through surveys that elicit information on self-

reported frequency (per month or per week) of participating in such acts as “excessive speeding”, 

“making threatening maneuvers with the car”, and “failure to signal”, or through personality 

inventories such as the Driver Anger Expression Inventory and the Driver Angry Thoughts 

Questionnaire (see Benfield et al., 2007), or through naturalistic driving data. Unfortunately, 

these indicators typically get combined and converted into a single binary indicator of 

aggressiveness, and are then occasionally studied as a function of demographic/situational 

attributes. Rarely has there been an examination of the effect of driver aggressiveness on crash 
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Another useful research frontier is to extend consideration to treatments that are not binary (see, for example, Bhat 

et al., 2013).  
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occurrence and injury severity. One area that would certainly benefit the safety literature is to 

consider soft latent constructs (such as driver aggressive personality in general and when driving 

in particular), and relate these not only to relevant demographic/situational attributes, but also to 

the outcome of interest in safety analysis. A useful approach for this is the integrated choice and 

latent variables (ICLV) framework that expands typical econometric models to allow latent 

constructs representing “soft” psychometric considerations (see Bolduc et al., 2005 and 

McFadden, 2012). The ICLV approach not only can provide a deeper understanding into safety 

determinants, but can also potentially enhance the predictive ability of current safety models. A 

typical ICLV model includes a latent variable structural equation model that specifies latent 

constructs of safety-related personality traits and attitudes (such as aggressiveness, responsibility, 

nervousness under pressure, etc.) as a function of observed covariates. Further, the latent 

constructs (or variables) themselves are viewed as being manifested through the attitudinal and 

perception indicator variables in a latent measurement equation model, which recognizes the 

presence of measurement error in capturing the intrinsic latent constructs. . Finally, the “soft” 

latent variables and the “hard” observed variables are used together to explain safety-relate 

outcomes. The ICLV approach has substantial potential for use in safety analysis, particularly 

with recent developments that make the estimation and application of the approach much more 

practical (see Bhat and Dubey, 2013).
14
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Another important issue is to accommodate multiple of the econometric considerations discussed in earlier 

sections. For example, accommodating the multivariate nature of counts or injury-severity levels does not alleviate 

the problems caused by unobserved heterogeneity or endogeneity. A few recent studies (see the studies that appear 

in more than one row of Table 3) have started considering the multiple econometric challenges simultaneously, but 

such studies are far and few in between. 
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7.  Summary and Insights 

It is clear from the above discussion that accident research has benefited greatly from the 

application of more appropriate, and often more sophisticated, statistical methodologies. The 

application of these new statistical methodologies has enabled researchers to extract important 

new inferences from available data.  However, many important methodological issues remain 

relating to model specification, unobserved heterogeneity, selectivity-bias/endogeneity, risk 

compensation, missing data, addressing spatial and temporal correlations, and so on. Important 

new data sources, such as data from naturalistic driving, are becoming available, but many of the 

fundamental issues facing the statistical modeling of current data will also pervade these new 

data sources, and many new methodological concerns will most certainly arise from these 

sources. To be sure, there have been recent methodological applications such as random 

parameters models, finite-mixture/latent-class models, multi-state switching models, and others 

that hold considerable promise for improving the statistical analysis of current and future data 

sources. 

Considering the above, the development and application of analytic methods in accident 

research is entering an era of unprecedented opportunities.  This era that is being brought about 

by a combination of recent advances in methodological techniques and the availability of 

exciting new data sources. To show the interaction between methodology and data in the field 

and how it is evolving, it could be easily argued that the accident-research field has been dealing 

with relatively static data (quantity and quality) for decades (primarily police-reported crash 

data).  This has kept a virtually constant “data frontier” while the “methodological frontier” has 

marched, in many respects, well beyond data capabilities. This is illustrated in Figure 3, where it 

can be seen that the methodological opportunities have been limited by data availability from 
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traditional sources. However, as illustrated in Figure 4, the advent of many emerging data 

sources is beginning to greatly expand the data frontier, creating an urgent need for new 

methodological advances.
 
 

It is important to recognize that the many methodological opportunities that will present 

themselves in the coming years must be viewed from the perspective of what has been done in 

the past. Fundamental methodological issues encountered with past data (unobserved 

heterogeneity, selectivity-bias/endogeneity, risk compensation, missing data) will most certainly 

be present with new data sources and great caution must be exercised because there is often the 

tendency with new data (particularly data that is greatly expanded in terms volume and number 

of observations) to adopt methodological approaches that ignore important fundamental 

methodological issues. 

As research relating to the statistical analysis of highway crash data (and new data that 

can provide information on near-crash events) progresses, it is important that researchers 

continue to address the fundamental methodological questions and continually strive to expand 

the methodological frontier. Not expanding the methodological frontier, and continuing to use 

methodological approaches with known deficiencies, has the potential to lead to erroneous and 

ineffective safety policies that may result in unnecessary injuries and loss of life. 
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(2002); Kumara and Chin (2003); Shankar et al. (2003); Qin et al. (2004); Lord et al. (2005b); 

Lord et al. (2007); Malyshkina and Mannering (2010a) 
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Table 1. (continued) 

 

Random effects models, spatial 

and temporal correlation models 

Johansson (1996); Shankar et al. (1998); Miaou and Lord (2003); Flahaut et al. (2003); 

MacNab (2004); Miaou et al. (2003); Miaou et al. (2005); Wang and Abdel-Aty (2006); 

Aguero-Valverde and Jovanis (2006); Aguero-Valverde and Jovanis (2008); Li et al. (2008a); 

Quddus (2008); Sittikariya and Shankar (2009); Guo et al. (2010); Aguero-Valverde (2010); 

Mitra and Washington (2012); Castro et al. (2012); Narayanamoorthy et al. (2013); Aguero-

Valverde (2013); Mohammadi and Samaranayake (2014); Xie et al. (2014) 

Generalized estimating equation 

models 

Lord and Persaud (2000); Lord et al. (2005a); Wang and Abdel-Aty (2008); Lord and Mahlawat 

(2009) 

Neural network, Bayesian 

Neural network, and vector 

machine models 

Abdelwahab and Abdel-Aty (2001); Chang (2005); Riviere et al. (2006); Xie et al. (2007); Li et 

al. (2008b); Yu and Abdel-Aty (2013c) 

Hierarchical/multilevel models Jones and Jørgensen (2003); Kim et al. (2007a); Aguero-Valverde (2010); Ahmed et al. (2011); 

Usman et al. (2012);Yu et al. (2013); Deublein et al. (2013); Yu and Abdel-Aty (2013a, 2013b) 

Negative multinomial model Ulfarsson and Shankar (2003); Hauer (2004); Caliendo et al. (2007) 

Poisson-lognormal and Poisson-

Weibull models 

Miaou et al. (2005); Lord and Miranda-Moreno (2008); Aguero-Valverde and Jovanis (2008); 

Cheng et al. (2013) 

Gamma model Oh et al. (2006); Daniels et al. (2010) 

Conway-Maxwell-Poisson 

model 

Lord et al. (2008); Sellers and Shmueli (2010); Lord et al. (2010); Geedipally and Lord (2011); 

Giuffre et al. (2011); Francis et al. (2012); Lord and Guikema (2012) 

Censored regression models Anastasopoulos et al. (2008); Anastasopoulos et al. (2012a); Anastasopoulos et al. (2012b) 

Generalized additive models Xie and Zhang (2008); Li et al. (2009) 
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Table 1. (continued) 

 

Random parameters count 

models 

Anastasopoulos and Mannering (2009); El-Basyouny and Sayed (2009b); Granowski and 

Manner (2011);Venkataraman et al. (2011); Ukkusuri et al. (2011); Mitra and Washington 

(2012); Wu et al. (2013); Bullough et al. (2013); Castro et al., 2012, Narayanamoorthy et al. 

(2013); Bhat et al. (2013); Venkataraman et al. (2013); Chen and Tarko (2014); Venkataraman 

et al. (2014) 

Finite-mixture/latent-class and 

Markov switching models 

Malyshkina et al. (2009); Park and Lord (2009); Malyshkina and Mannering (2010a); Park et 

al. (2010); Peng and Lord (2011); Zou et al. (2013); Zou et al. (2014) 

Negative binomial-Lindley 

model 

Lord and Geedipally (2011); Geedipally et al. (2012) 

Count model recast as a 

generalized ordered-response 

system 

Castro et al. (2012); Narayanamoorthy et al. (2013); Bhat et al. (2013) 

 

*Source: Updated from Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: A review and assessment of 

methodological alternatives. Transportation Research Part A 44(5), 291-305. 

  



61 

 

Table 2. Summary of Previous Research Analyzing Crash-Injury Severities* 

 

Methodological Approaches Previous Research 

Binary logit/probit models Shibata and Fukuda (1994); Farmer et al. (1997); Khattak et al. (1998); Krull et al. (2000); 

Al-Ghamdi (2002); Bedard et al. (2002); Toy and Hammitt (2003); Ballasteros et al. 

(2004); Chang and Yeh (2006); Sze and Wong (2007); Lee and Abdel-Aty (2008); Pai 

(2008); Rifaat and Tay (2009); Haleem and Abdel-Aty (2010); Peek-Asa et al. (2010); 

Kononen et al. (2011); Moudon et al. (2011); Santolino et al. (2012) 

Multinomial logit models Shankar and Mannering (1996); Carson and Mannering (2001); Abdel-Aty and 

Abdelwahab (2004); Ulfarsson and Mannering (2004); Khorashadi et al. (2005); Islam 

and Mannering (2006); Kim et al. (2007b); Malyshkina and Mannering (2008); 

Savolainen and Ghosh (2008); Schneider et al. (2009); Malyshkina and Mannering 

(2010); Rifaat et al. (2011); Ye and Lord (2011); Schneider and Savolainen (2011); Eluru 

(2013); Yasmin and Eluru (2013); Ye and Lord (2014) 

Nested logit models Shankar et al. (1996); Chang and Mannering (1998); Chang and Mannering (1999); Lee 

and Mannering (2002); Abdel-Aty and Abdelwahab (2004); Holdridge et al. (2005); 

Savolainen and Mannering (2007); Haleem and Abdel-Aty (2010); Hu and Donnell 

(2010); Patil et al. (2012); Wu et al. (2013); Yasim and Eluru (2013) 

Sequential logit/probit models Saccomanno et al. (1996); Dissanayake and Lu (2002a, 2002b); Helai et al. (2008); 

Yamamoto et al. (2008); Jung et al. (2010); Xu et al. (2013) 

Heteroskedastic ordered logit/probit 

models 

O’Donnell and Connor (1996); Wang and Kockelman (2005); Lemp et al. (2011) 
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Table 2. (continued). 

 

Ordered logit/probit models Khattak et al. (1998); Klop and Khattak (1999); Renski et al. (1999); Khattak (2001); 

Khattak et al. (2002); Kockelman and Kweon (2002); Quddus et al. (2002); Abdel-Aty 

(2003); Austin and Faigin (2003); Kweon and Kockelman (2003); Zajac and Ivan (2003); 

Khattak and Rocha (2003); Yamamoto and Shankar (2004); Donnell and Mason (2004); 

Khattak and Targa (2004); Abdel-Aty and Keller (2005); Lee and Abdel-Aty (2005); 

Shimamura et al. (2005); Garder (2006); Lu et al. (2006); Oh (2006); Siddiqui et al. 

(2006); Pai and Saleh (2007); Das et al. (2008); Gray et al. (2008); Wang and Abdel-Aty 

(2008); Chimba and Sando (2009); Wang et al. (2009); Pai (2009); Xie et al. (2009); 

Haleem and Abdel-Aty (2010); Jung et al. (2010); Quddus et al. (2010); Ye and Lord 

(2011); Zhu and Srinivasan (2011); Ferreira and Couto (2012); Abay (2013); Jiang et al. 

(2013a, 2013b); Eluru (2013); Mergia et al. (2013); Yasmin and Eluru (2013); Ye and 

Lord (2014) 

Log-linear models Chen and Jovanis (2000) 

Generalized ordered outcome models Srinivasan (2002); Eluru et al. (2008); Quddus et al. (2010); Castro et al. (2013); Eluru 

(2013); Abay et al. (2013); Yasim and Eluru (2013); Yasmin et al. (2013a); Yasmin et al. 

(2014) 

Simultaneous binary logit model Ouyang et al. (2002) 

Bivariate/multivariate binary probit 

models 

Winston et al. (2006); Lee and Abdel-Aty (2008) 

Bivariate/multivariate ordered probit 

models 

Yamamoto and Shankar (2004); de Lapparent (2008); Eluru et al. (2010); Rana et al. 

(2010); Abay et al. (2013) Chiou et al. (2013a); Yasmin et al. (2013b); Russo et al. (2014) 

Artificial neural networks Abdelwahab and Abdel-Aty (2001); Delen et al. (2006); Chimba and Sando (2009) 

Mixed joint binary ordered logit model Eluru and Bhat (2007) 

 

  



63 

 

Table 2. (continued). 

 

Mixed logit model (random parameters 

logit model) 

Milton et al. (2008); Kim et al. (2008); Kim et al. (2010); Malyshkina and Mannering 

(2010b); Kim et al. (2010); Altwaijri et al. (2011); Anastasopoulos and Mannering (2011); 

Moore et al. (2011); Ye and Lord (2011); Morgan and Mannering (2011); Chiou et al. 

(2013b); Kim et al. (2013); Aziz et al. (2013); Abbey (2013); Manner and Wunsch-Ziegler 

(2013); Yasmin and Eluru (2013); Ye and Lord (2014) 

Partial proportional odds model Wang and Abdel-Aty (2008); Wang et al. (2009); Quddus et al. (2010) 

Finite-mixture/latent-class and Markov 

switching models 

Malyshkina and Mannering (2009); Xie et al. (2012); Eluru et al. (2012); Xiong and 

Mannering (2013); Xiong et al. (2013); Yasmin et al. (2013a); Yasmin et al. (2014) 

Heterogeneous outcome model Quddus et al. (2010) 

Mixed ordered probit (random 

parameters probit) model 

Zoi et al. (2010); Paleti et al. (2010); Xiong et al. (2013)  

Spatial and temporal correlations Castro et al. (2013) 

 

*Source: Updated from Savolainen, P., Mannering, F., Lord, D., Quddus, M., 2011. The statistical analysis of crash-injury severities: A 

review and assessment of methodological alternatives. Accident Analysis and Prevention 43(5), 1666-1676. 
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Table 3. Research that has addressed identified ongoing methodological considerations in highway-accident research 

Methodological Consideration Previous Research 

Parsimonious vs. Fully 

Specified Models* 

Jovanis et al. (2011); Mitra and Washington (2012) 

Unobserved Heterogeneity Eluru and Bhat (2007); Milton et al. (2008); Eluru et al. (2008); Kim et al. (2008); Malyshkina 

et al. (2009); Park and Lord (2009); Anastasopoulos and Mannering (2009); El-Basyouny and 

Sayed (2009b); Malyshkina and Mannering (2009); Eluru et al. (2010); Kim et al. (2010); 

Malyshkina and Mannering (2010a); Malyshkina and Mannering (2010b); Park et al. (2010); 

Zoi et al. (2010); Paleti et al. (2010); Peng and Lord (2011); Granowski and Manner 

(2011);Venkataraman et al. (2011); Ukkusuri et al. (2011); Altwaijri et al. (2011); 

Anastasopoulos and Mannering (2011); Moore et al. (2011); Ye and Lord (2011); Peng and 

Lord (2011); Morgan and Mannering (2011); Xie et al. (2012); Mitra and Washington (2012); 

Wu et al. (2013); Chiou et al. (2013b); Kim et al. (2013); Aziz et al. (2013); Zou et al. (2013); 

Castro et al. (2013); Bhat et al. (2013); Abay et al. (2013); Yasmin and Eluru (2013); Xiong and 

Mannering (2013); Xiong et al. (2013); Venkataraman et al. (2014); Shaheed et al. (2014); 

Yasmin et al. (2014) 

Selectivity Bias/Endogeneity Winston et al. (2006); Eluru and Bhat (2007); Paleti et al. (2010); Rana et al. (2010); Abay et al. 

(2013); Bhat et al. (2013) 

Risk Compensation Winston et al. (2006) 

Choice of Methodological 

Approach 

Abdel-Aty (2003); Lord et al. (2005b); Anastasopoulos and Mannering (2011); Geedipally et al. 

(2011); Geedipally and Lord (2011); Ye and Lord (2011); Anastasopoulos et al. (2012a); Abay 

(2013); Ye et al. (2013); Eluru (2013); Yasim and Eluru (2013); Ye and Lord (2014) 

Under-Reporting of Crashes 

with Less Severe Injuries 

Kumars and Chin (2005); Yamamoto et al. (2008); Ma (2009); Ye and Lord (2011); Patil et al. 

(2012); Yasim and Eluru (2013) 



65 

 

Spatial and Temporal 

Correlation 

Flahaut et al. (2003); MacNab (2004); Miaou and Song (2005); Song et al. (2006); Wang and 

Abdel-Aty (2006); Aguero-Valverde and Jovanis (2006, 2008, 2010); Guo et al. (2010); Peng 

and Lord (2011); Castro et al. (2012); Castro et al. (2013); Abay (2013); Narayanamoorthy et 

al. (2013); Chou et al. (2014); Mohammadi and Samaranayake (2014); Xie et al. (2014) 

 

*The bias introduced by omitting a significant variable is discussed and demonstrated in any standard econometrics text (see for 

example, Greene 2012) 

 

 



66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Driver adaptation to changing weather conditions – the trade-off between speed and 

safety. 
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Figure 2. Illustration of the limitations of the standard ordered probability model as applied to 

crash-injury severity. Source: Adapted from Washington et al., (2011). 
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Figure 3. State of methodological research with traditional crash data. 

  

Data Frontier 

Methodological 

Frontier 

Methodological 

Opportunities 



69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. State of methodological research with emerging crash-data sources. 
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