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TABLE 1 Loadings of Latent Variables on Indicators 

 

Attitudinal Indicators 

Loading of Indicators on Latent Constructs 

Tech-Savviness Safety Concern 
Variety-Seeking 
Lifestyle (VSL) 

IPTT 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

I like to be among the first to have the latest 
technology  

0. 851 6. 13         
  

Learning how to use new technologies is often 
frustrating for me 

-0. 336 -5. 36         
  

Having internet connectivity everywhere I go 
is important to me 

0. 329   5. 36         
  

I would feel comfortable having an AV pick 
up/drop off children without adult 
supervision 

    -0.872 -23.65     
  

I am concerned about the potential failure of 
AV sensors, equipment, technology, or 
programs  

      0.459 13. 69     
  

I would feel comfortable sleeping while 
traveling in an AV  

    -0.886 -22. 04   
  

AVs would make me feel safer on the street as 
a pedestrian or as a cyclist  

    -0.796 -21. 73   
  

I like trying things that are new and different         0.704 14.94 
  

I like the idea of having store, restaurants, and 
offices mixed among the homes in my 
neighborhood 

        0.397   6.73 
  

I make good use of the time I spend traveling             0.372 5.15 

The level of congestion during my daily travel 
bothers me 

           0.522 5.28 

I would make more long-distance trips when 
AVs are available because I wouldn’t 
have to drive 

       0.345 4.73 
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Methodology for Developing Continuous Latent Constructs 
The four latent constructs correspond to a total of 12 indicators (three for tech-savviness, four for 
AV safety concerns, two for variety-seeking lifestyle, and three for IPTT). To make the modeling 
exercise more tractable, without also losing any information, we first reduce the group of indicators 
for each construct to a single continuous “factor” using the traditional confirmatory analysis results 
(see Moore et al., 2020 for a similar procedure). In order to ensure that all the indicators for each 
latent construct are appropriately scaled, we make the following normalization:  
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where *
lz

  is the sample mean vector of the indicators and *
lz

  is the sample standard deviation 

vector. Then, the factor analysis is undertaken as * * *

*τ R 
l l l

lz z z
z   , where *R

lz
 is a vector of the 

*
lz  factor’s (latent construct’s) loadings on each of its indicators, and *

lz
  is a vector of error terms 

to recognize that the indicator vector *
lz

  (and, equivalently, *τ
lz
) is obtained only for a sample of 

the population. The loading vector *R
lz
 is essentially estimated by capturing as much of the 

variance-covariance of the original *τ
lz
 elements through the variance-covariance of the loading 

vector *R
lz
 (see Mueller and Hancock, 2001). In doing so, the elements of the *

lz
 vector are 

assumed independent of *
lz , and the scale of the factor *

lz  itself is normalized to the standard 

deviation of one with a mean value of zero (this is an innocuous normalization). Once the loading 

vector *R
lz
 is estimated for each latent construct, the single continuous indicator value for each of 

the latent constructs is computed as * * *

1ˆ( ) .
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h   R τ  Of course, these are point values for a 

particular sample, and are considered as manifestations of the underlying stochastic latent 

construct *
lz . That is, we write 

z
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l
lα w  in our econometric model, and then write *
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linear function of covariates: 
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where w is a ( 1)D  vector of observed covariates (including a constant), lα  is a corresponding 

( 1)D  vector of coefficients, and l  is a standard normally distributed random error term. We 

also define the ( )L D  matrix 1 2( , ,..., )L α α α α , and the )1( L  vectors ) ,...,,( **
2

*
1  Lzzz*z  and 

)'.,,,,( 321 L η  In our empirical case, L=4, corresponding to the four latent constructs.  In 

matrix form, we may write Equation (2) as: 

η αwz* .                                         (3) 



4 

We consider a multivariate normal correlation structure for η to accommodate correlations 

among the unobserved latent variables: ],[~ Γ0η LLMVN , where L0  is an )1( L  column vector 

of zeros, and Γ  is )( LL  correlation matrix. As a first stage of estimation, we then perform a 

multivariate regression analysis on this system of latent construct equations using the maximum 
likelihood approach to obtain estimates for the coefficients in vector α  for the observed covariates. 
Based on the estimates obtained in our multivariate regression model, we construct the estimated 
continuous values for each of the latent constructs for each individual in the sample. Therefore, 

we can write the single continuous factor for each construct as *
lz

c = *
lz  lα w

 , where  lα


 are the 

estimated coefficients and *
lz


is the estimated continuous value for latent construct l. In our second 

stage model (discussed in the following framework), these estimated latent values appear on the 
right side of the main outcome utilities as exogenous variables (along with other individual and 
household variables).  
 
Multivariate Ordered-Response Probit (MORP) Framework for Modeling Outcomes 
Let q be an index for individuals (q = 1, 2, …, Q), and let i be the index for emotion (i = 1, 2, …, 
I, where I denotes the total number outcomes of interest for each individual; in the current study, 
I = 5). Let the number of ordinal levels for the outcome variables be K + 1 (i.e., the response of an 
emotional rating is indexed by k and belongs in {0, 1, 2, …, K}). There is no need to index K by i 
because all trip propensity variables are mapped to a five-point ordinal scale. Following the usual 

ordered response framework notation, the latent propensity ( *
qiy ) for each trip propensity variable 

is written as a function of relevant covariates and this latent propensity is related to the observed 

count outcome ( qiy ) through threshold bounds (McKelvey and Zavoina, 1975): 

kyxy qiqiqiiqi  ,'*   if  1*  k
iqi

k
i y  , (4) 

where qix  is a (L×1) vector of exogenous variables (not including a constant) which also includes 

the estimated continuous latent scores for each latent constructs as discussed in Section 3.2.2, i

is a corresponding (L×1) vector of coefficients to be estimated, qi  is a standard normal error term,  

and k
i is the lower bound threshold for count level k of AV trip propensity variable i 

0 1 2 1 0 1( ... ;   ,   K K
i i i i i i              for each AV trip propensity i). The qi  terms are 

assumed independent and identical across individuals (for each and all i). Due to identification 

restrictions, the variance of each qi  term is normalized to 1. However, correlations are allowed in 

the qi  terms across the AV trip propensity variables i for each individual q. Specifically, define 

)'.,,,,( 321 qIqqqq    Then, q  is multivariate normal distributed with a mean vector of zeros 

and a correlation matrix as follows: 
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q ~  ,N 0 Σ  

The off-diagonal terms of Σ capture the error covariances among the underlying latent 
continuous variables of the different trip propensity variables; that is, they account for the presence 

of common unobserved factors influencing the intensity outcome for each variable. Thus, if 12  

is positive, it implies that individuals with a higher propensity to undertake a greater number of 
trips in an AV setting are also likely to travel further for shopping. If all correlation parameters 
(i.e., off-diagonal elements of Σ) stacked into a vertical vector, Ω, are identically zero, the model 
system in Equation (1) collapses to a series of independent ordered response probit models for 
each AV trip propensity variable.  

The parameter vector of the multivariate probit model is 

,)  ; ..., , ,  ; ..., , ,( 2121  II   where 1 2( ,  ,  ...,  )K
i i i i      for Ii ..., ,2 ,1 . Let the actual 

observed AV trip propensity level for individual q and outcome variable i be mqi. In that case, the 
likelihood function for individual q may be written as follows: 
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(.,.,...)I  in the above expression represents the standard multivariate normal density function. 

Calculating the high-order I-dimensional rectangular integral in Equation (3) is computationally 
challenging. However, a recent efficient matrix-based approach devised by Bhat (2018), has been 
used to compute the rectangular integral shown above and estimate coefficients of the multivariate 
ordered response model. The mathematical formulations for the method have been omitted for 
brevity and may be found elsewhere (Bhat, 2018). 
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TABLE 2 Average Treatment Effect (ATE) for the TDS Dimension 

Variable  Base Level 
Treatment 

Level 

% Contribution by mediation through 

% 
Direct 
Effect 

Overall 
ATE 

Tech-
Savviness 
increase 

Safety 
Concern 
decrease 

Variety-
Seeking 
Lifestyle 
increase 

IPTT 
increase 

Socio-demographic   

Gender Male Female 0 -58 0 0 42 -0.202 

Age >65 18-29 years 0 40 4 19 37 0.229 

Employment 
Status 

Unemployed Employed 0 52 0 48 0 0.09 

Student status Non-student Student 0 0 -100 0 0 -0.021 

Education 
Less than 
graduate degree 

Graduate 
degree 0 0 0 100 0 0.091 

Income <$100,000 >$250,000 0 47 23 0 -30 0.151 

Presence of 
children 

Not present Present 0 -59 0 -41 0 -0.065 

Built-environment effects   

Land use Rural/suburban Urban - - - - - - 

Population 
density 

Low/Medium High - - - - - - 

Land-use mix 25th percentile 
75th 
percentile - - - - - - 

Retail density Low/Medium High 0 0 0 0 -100 -0.16 
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TABLE 3 Average Treatment Effect (ATE) for the TDL Dimension 

Variable Base Level 
Treatment 

Level 

% Contribution by mediation through 

% 
Direct 
Effect 

Overall 
ATE 

Tech-
Savviness 
increase 

Safety 
Concern 
decrease 

Variety-
Seeking 
Lifestyle 
increase 

IPTT 
increase 

Socio-demographic   

Gender Male Female 5 -60 0 0 35 -0.207 

Age >65 18-29 years -4 31 3 18 44 0.269 

Employment 
Status 

Unemployed Employed 0 47 0 53 0 0.143 

Student status Non-student Student 0 0 -100 0 0 -0.048 

Education 
Less than 
graduate degree 

Graduate 
degree 0 0 0 100 0 0.112 

Income <$100,000 >$250,000 -10 62 28 0 0 0.274 

Presence of 
children 

Not present Present 0 -54 0 -46 0 -0.021 

Built-environment effects   

Land use Rural/suburban Urban - - - - - - 

Population 
density 

Low/Medium High - - - - -100 -0.2 

Land-use mix 25th percentile 
75th 
percentile - - - - -100 -0.047 

Retail density Low/Medium High - - - - - - 
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TABLE 4 Average Treatment Effect (ATE) for the ALDT Dimension 

Variable Base Level 
Treatment 

Level 

% Contribution by mediation through 

% 
Direct 
Effect 

Overall 
ATE 

Tech-
Savviness 
increase 

Safety 
Concern 
decrease 

Variety-
Seeking 
Lifestyle 
increase 

IPTT 
increase 

Socio-demographic   

Gender Male Female 0 -55 0 0 45 -0.062 

Age >65 18-29 years 0 29 3 18 50 0.416 

Employment 
Status 

Unemployed Employed 0 46 0 54 0 0.155 

Student status Non-student Student 0 0 -100 0 0 -0.021 

Education 
Less than 
graduate degree 

Graduate 
degree 0 0 0 100 0 0.133 

Income <$100,000 >$250,000 0 68 32 0 0 0.17 

Presence of 
children 

Not present Present 0 -53 0 -47 0 -0.076 

Built-environment effects   

Land use Rural/suburban Urban - - - -   - 

Population 
density 

Low/Medium High - - - -   - 

Land-use mix 25th percentile 
75th 
percentile - - - -   - 

Retail density Low/Medium High - - - - - - 
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TABLE 5 Average Treatment Effect (ATE) for the CTT Dimension 

Variable Base Level 
Treatment 

Level 

% Contribution by mediation through 

% 
Direct 
Effect 

Overall 
ATE 

Tech-
Savviness 
increase 

Safety 
Concern 
decrease 

Variety-
Seeking 
Lifestyle 
increase 

IPTT 
increase 

Socio-demographic   

Gender Male Female 0 -100 0 0 0 -0.023 

Age >65 18-29 years 0 46 0 0 54 0.083 

Employment 
Status 

Unemployed Employed 0 100 0 0 0 0.012 

Student status Non-student Student 0 0 0 0 0 - 

Education 
Less than 
graduate degree 

Graduate 
degree 0 0 0 100 0 0.013 

Income <$100,000 >$250,000 0 100 0 0 0 0.027 

Presence of 
children 

Not present Present 0 -100 0 0 0 -0.012 

Built-environment effects   

Land use Rural/suburban Urban - - - -   - 

Population 
density 

Low/Medium High - - - -   - 

Land-use mix 25th percentile 
75th 
percentile 0 0 0 0 -100 -0.001 

Retail density Low/Medium High - - - - - - 
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