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17.1 INTRODUCTION 
The primary focus of transportation planning, until the past three decades or so, was to 
meet long-term mobility needs by providing adequate transportation infrastructure 
supply. In such a supply-oriented planning process, the main role of travel demand 
models was to predict aggregate travel demand for long-term socio-economic scenarios, 
transport capacity characteristics, and land-use configurations.  

Over the past three decades, however, because of escalating capital costs of new 
infrastructure, and increasing concerns regarding traffic congestion and air-quality 
deterioration, the supply-oriented focus of transportation planning has expanded to 
include the objective of addressing accessibility needs and problems by managing travel 
demand within the available transportation supply. Consequently, there has been an 
increasing interest in travel demand management strategies, such as congestion pricing, 
that attempt to change transport service characteristics to influence individual travel 
behavior and control aggregate travel demand.  

The interest in analyzing the potential of travel demand management policies to 
manage travel demand, in turn, has led to a shift in the focus of travel demand modeling 
from the statistical prediction of aggregate-level, long-term, travel demand to 
understanding disaggregate-level (i.e., individual-level) behavioral responses to short-
term demand management policies such as ridesharing incentives, congestion pricing, 
and employer-based demand management schemes (alternate work schedules, 
telecommuting, etc.). Individuals respond in complex ways to such changes in travel 
conditions. The limitation of the traditionally used statistically-oriented trip-based travel 
modeling approach in capturing these complex individual responses has resulted in the 
development of behaviorally-oriented activity-based approaches to modeling passenger 
travel demand.1  

The origin of the activity-based approach dates back to the 1960’s from Chapin’s 
(Chapin 1974) research on activity patterns of urban population. Chapin provided a 
motivational framework in which societal constraints and inherent individual motivations 
interact to shape activity participation patterns. This framework, however, ignored the 
spatial context (or geography of) activity participation and did not address the 
relationship between activities and travel. During the same time, the first explicit 
discussion in the literature on activity participation in the context of time and space 
appears to have been proposed by Hagerstrand (1970).2 While Hagerstrand’s work 

                                                 
1 The reader will note here that the activity-based approach has emerged in the context of modeling 
passenger travel demand, not for freight travel modeling. 
2 In his presidential address at a regional science association congress in 1969, Hagerstrand identified three 
types of constraints that shape individual activity patterns: (1) authoritative constraints, (2) capability 
constraints, and (3) coupling constraints. Authoritative constraints refer to the constraints imposed by the 
spatial and temporal opportunities of activity participation (These authoritative space-time constraints laid 
the foundation for what are now known as “space-time prisms” and “space-time paths”). Capability 
constraints refer to constraints imposed by biological needs (such as eating and sleeping) and/or resources 
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addressed the relationship between activity participation and time-space concepts, it was 
the seminal work by Jones (1979) that explicitly addressed the relationship between 
activities, travel, and time and space. Specifically, Jones identified travel as derived from 
the need to participate in activities at different points in space and time. Subsequent to the 
research of Jones (1979), and a conference held in 1981 on “Travel Demand Analysis: 
Activity-based and Other New Approaches” (see Carpenter and Jones 1983 for the 
conference proceedings), the activity-based approach started gaining significant research 
attention in the 1980s3.  

Parallel to the early research discussed above in the regional science field, 
microeconomic utility maximization-based consumption and home production theories of 
time allocation to activities (Becker, 1965; Evans, 1972) further added to the early 
theoretical foundations of activity-travel analysis. In addition, the random utility 
maximization-based consumer choice theory (McFadden, 1973) provided the most 
popular approach to activity-travel analysis to date. 

In the 1990s, several factors provided further stimulus to move from the trip-
based to activity based approach to modeling travel demand.4 These factors included: (1) 
the increased information demands placed on travel demand models by public policy 
mandates (such as the ISTEA, TEA-21, and the CAAA), (2) the increasing need to 
evaluate the effectiveness of short-term travel demand management policies (Bhat and 
Koppelman, 1999), and (3) the increasing realization of the limitations of the trip-based 
approach from a behavioral validly stand point and a predictive accuracy stand point (see 
Jones et al., 1990; and Axhausen and Garling 1992). Further, the improved analytical 
tools, modeling methodologies, computation capacity and power, and data collection 
methods accelerated the research shift to an activity-based paradigm.  

In recent years, activity-based methods have received much attention and seen 
considerable progress, as discussed in the remainder of this chapter. In the next section 
(Section 17.2), we discuss the salient aspects of the activity-based approach by presenting 
a theoretical and policy-oriented comparison of the trip-based and activity-based 
approaches. Section 17.3 presents an overview of the various activity-travel forecasting 
systems in the literature. Section 17.4 discusses the emerging developments, and future 
research directions along three important dimensions of activity participation and travel: 
(a) Inter-personal interactions, (b) Time, and (c) Space. Section 17.5 focuses on the 
integration of activity-based travel forecasting systems with other modeling systems 
(such as land use models and dynamic traffic assignment models) to build larger and 
comprehensive urban modeling systems. The final section summarizes the chapter.      

 

17.2 Trip-Based Versus Activity-Based Approaches 
The fundamental difference between the trip-based and activity-based approaches is that 
the former approach directly focuses on “trips” without explicit recognition of the 
motivation or reason for the trips and travel. The activity-based approach, on the other 

                                                                                                                                                 
(income, availability of cars, etc.) to undertake activities. Coupling constraints define where, when, and the 
duration of planned activities that are to be pursued with other individuals. 
3 For a detailed review of the research on activity-based travel behavior analysis and modeling in the 1980s, 
the reader is referred to Kitamura, 1988. 
4 For an overview of the research on activity-based travel analysis in the 1990’s, the reader is referred to 
Bhat and Koppelman, 1999. 
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hand, views travel as a demand derived from the need to pursue activities (see Jones et 
al., 1990; Bhat and Koppelman, 1999; and Davidson et al., 2007), and focuses on 
“activity participation behavior”. The underlying philosophy is to better understand the 
behavioral basis for individual decisions regarding participation in activities in certain 
places at given times (and hence the resulting travel needs). This behavioral basis 
includes all the factors that influence the why, how, when and where of performed 
activities and resulting travel. Among these factors are the needs, preferences, prejudices 
and habits of individuals (and households), the cultural/social norms of the community, 
and the travel service characteristics of the surrounding environment.  

Another difference between the two approaches is in the way travel is 
represented. The trip-based approach represents travel as a mere collection of “trips”. 
Each trip is considered as independent of other trips, without considering the inter-
relationship in the choice attributes (such as time, destination, and mode) of different 
trips. Such a neglect of the temporal, spatial and modal linkages between the trips can 
lead to illogical trip chain predictions, and distorted evaluations of the impact of policy 
actions.5 On the other hand, the activity-based approach precludes illogical mode-trip 
chains by using “tours” as the basic elements to represent and model travel patterns. 
Tours are chains of trips beginning and ending at a same location, say, home or work. 
The tour-based representation helps maintain the consistency across, and capture the 
interdependency (and consistency) of the modeled choice attributes among, the trips of 
the same tour. In addition to the tour-based representation of travel, the activity-based 
approach focuses on sequences or patterns of activity participation and travel behavior 
(using the whole day or longer periods of time as the unit of analysis). Such an approach 
can address travel demand management issues through an examination of how people 
modify their activity participations (for example, will individuals substitute more out-of-
home activities for in-home activities in the evening if they arrived early from work due 
to a work-schedule change?). 

The third major difference between the trip-based and the activity-based 
approaches is in the way the time dimension of activities and travel is considered. In the 
trip-based approach, time is reduced to being simply a “cost” of making a trip and a day 
is viewed as a combination of broadly defined peak and off-peak time periods. On the 
other hand, activity-based approach views individuals' activity-travel patterns are a result 
of their time-use decisions within a continuous time domain. Individuals have 24 hours in 
a day (or multiples of 24 hours for longer periods of time) and decide how to use that 
time among (or allocate that time to) activities and travel (and with whom) subject to 
their sociodemographic, spatial, temporal, transportation system, and other contextual 
constraints. These decisions determine the generation and scheduling of trips. Hence, 
determining the impact of travel demand management policies on time-use behavior is an 
important precursor step to assessing the impact of such polices on individual travel 
behavior.   

                                                 
5 Take, for example, an individual who drives alone to work and makes a shopping stop on the way back 
home from work. The mode choices for the home-work and work-home trips in this scenario are not 
independent. So in the face of transit improvements, the person may not switch to transit because the 
evening commute shopping stop may be more conveniently pursued by driving. However, the trip-based 
approach can over-predict the shift to transit due to ignoring the linkage between the trips identified above. 
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The fourth major difference between the two approaches relates to the level of 
aggregation. In the trip-based approach, most aspects of travel (number of trips, modal 
split, etc) are analyzed at an aggregate level. The study area is divided into several spatial 
units labeled as Traffic Analysis Zones (TAZ). Then, the total numbers of trip exchanges 
are estimated for each pair of TAZs by each travel mode and by each route, during each 
coarsely defined time of day. Consequently, trip-based methods accommodate the effect 
of socio-demographic attributes of households and individuals in a very limited fashion, 
which limits the ability of the method to evaluate travel impacts of long-term socio-
demographic shifts. The activity-based models, on the other hand, have the ability to 
relatively easily accommodate virtually any number of decision factors related to the 
socio-demographic characteristics of the individuals who actually make the activity-
travel choices, and the travel service characteristics of the surrounding environment. Thus 
the activity-based models are better equipped to forecast the longer-term changes in 
travel demand in response to the changes in the socio-demographic composition and the 
travel environment of urban areas. Further, using activity-based models, the impact of 
policies can be assessed by predicting individual-level behavioral responses instead of 
employing trip-based statistical averages that are aggregated over coarsely defined 
demographic segments. 

Given the behavioral basis and conceptual advantages, the activity-based 
approach can potentially offer a better ability to evaluate a wide variety of transportation 
policy initiatives that cannot be either analyzed, or may not be accurately analyzed, using 
a traditional trip-based framework. For example, trip-based models have very limited 
ability to predict traveler responses to travel demand management strategies such as 
congestion pricing, because of the highly aggregate treatment of the time-of-day 
dimension, and the ignorance of temporal linkages across different trips. Activity-based 
models are better suited to model the impact of congestion pricing strategies because they 
capture individual responses to tolls including the potential mode shifts, departure timing 
shifts, and the potential substitution patterns among different dimensions of travel (mode, 
timing, etc). In addition to the incorporation of temporal linkages among various trips 
(across the day) of an individual, the activity-based modeling approach facilitates the 
accommodation of the linkages across the activity participation decisions and travel 
patterns of different individuals in a household. Such an explicit modeling of inter-
individual interactions and the resulting joint travel is essential in the context of 
occupancy-specific tolling strategies such as high occupancy vehicle (HOV) lanes and 
high occupancy toll (HOT) lanes (Davidson et al., 2007). Trip-based models, on the other 
hand, have no ability to incorporate joint travel patterns and cannot provide credible 
estimates of shared-ride travel for informing HOV/HOT lane policy making. 
 
17.3 ACTIVITY-BASED TRAVEL DEMAND MODELING SYSTEMS 
This section provides an overview of the activity-based travel forecasting systems in the 
literature. Most of the models developed to date can be classified into one of two 
modeling approaches: (1) Utility maximization-based econometric model systems, and 
(2) Rule-based computational process model systems. However, it is important to note 
that the above two approaches have been neither exclusive nor exhaustive. Several other 
approaches, including: (a) Time-space prisms and constraints, (b) operations 
research/mathematical programming approaches, and (c) Agent-based approaches have 
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been employed, either in combination with the above approaches or separately, to 
develop activity-based model systems. The modeling approaches and the models within 
each approach are discussed below.  

17.3.1 Utility Maximization-based Econometric Model Systems  
The underlying theory behind utility maximization-based modeling systems comes from 
the economic theories of consumer choice (e.g., Becker 1965) that individuals make their 
activity-travel decisions to maximize the utility derived from the choices they make. 
These model systems usually consist of a series of utility maximization-based discrete 
choice models (i.e., multinomial logit and nested logit models) that are used to predict 
several components of individuals’ activity-travel decisions. In addition to such utility 
maximization-based model components, several model systems employ other 
econometric structures, including hazard-based duration structures, and ordered response  
structures to model various activity-travel decisions. In all, these model systems employ 
econometric systems of equations (most of which are utility maximization-based) to 
capture relationships between individual-level socio-demographics and activity-travel 
environment attributes on the one hand and the observed activity-travel decision 
outcomes on the other.  

The two main criticisms of this approach are that: (1) individuals are not 
necessarily fully rational utility maximizers (Timmermans et al., 2002), and (2) the 
approach does not explicitly model the underlying decision processes and behavioral 
mechanisms that lead to observed activity-travel decisions. Nonetheless, the approach is 
very amenable to the development of operational activity-based travel forecasting 
systems. In this section, we provide an overview of a representative sample of such travel 
forecasting systems that are either fully developed or under development for practical 
transportation planning purposes. The model systems include:  
(1) The models developed (or under development) for various planning agencies such as 

Portland METRO (Bradley, et al., 1998), San Francisco SFCTA (Bradley, et al.; 
2001), New York NYMTC (Vovsha, et al., 2002), Columbus MORPC (PB Consult 
2005), Sacramento SACOG (Bowman and Bradley, 2005-2006) and Atlanta ARC 
(PB et al., 2006), and  

(2) The models developed in the research community (CEMDAP and FAMOS).6 
The first group of models can be categorized into (a) “full individual day pattern” 

modeling systems, and (b) “enhanced (or linked) full individual day pattern” modeling 
systems. The “full individual day pattern” modeling systems follow the concept of an 
over-arching daily activity-travel pattern proposed by Bowman and Ben-Akiva (2001). 
These systems are based on an underlying system of multinomial logit and nested logit 
models in a particular hierarchy, although with minor variations. The Portland, San 
Francisco, New York, and Sacramento models belong to this category. We briefly 
describe the features of the Sacramento model as an example of a “full individual day 
pattern” model in the subsequent section (i.e., Section 17.3.1.1). The “enhanced (or 
linked) full individual day pattern” modeling systems, on the other hand, are an 
enhancement of the “full individual day pattern” models to accommodate intra-
household interactions in activity-travel engagement. That is, the full-day activity 

                                                 
6 For a comparative review of the design features of each of these models, the reader is referred to Bradley 
and Bowman, 2006. 
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schedule approach of Bowman and Ben-Akiva (2001) is enhanced to explicitly recognize 
and model the linkages across the activity-travel patterns of individuals (e.g., joint 
activity engagement and travel) in a household. The reader is referred to the 
documentation of the activity-based models developed for Columbus and Atlanta regions 
(PB Consult 2005, and PB et al., 2006) for details on such linked full individual day 
pattern model systems. 

17.3.1.1 Activity-Travel Forecasting System of the Sacramento Activity-based Model  
The activity-travel forecasting system in the Sacramento model, labeled as DaySim, 
belongs to the “full individual day pattern” modeling systems category in that it predicts 
each individual’s full-day activity and travel schedule in the study area.  

DaySim consists of an econometric micro-simulation system with a three-tier 
hierarchy of: (1) Day-level activity pattern choice models (or, simply, pattern-level 
choice models), (2) Tour-level choice models, and (3) Trip/Stop-level choice models. 
Each of the models in this hierarchy consists of a series of econometric choice models, as 
outlined in Table 17.1. For all these individual model components, Table 17.1 lists the 
model name and the output of the model, the econometric structure, and the set of choice 
alternatives. As can be observed from the table, each of the activity-travel choices is 
modeled using either a multinomial logit or a nested logit structure. The reader will note 
here that the models are numbered hierarchically in the table to represent the sequence in 
which the activity-travel decisions are modeled in DaySim. The choice outcomes from 
models higher in the hierarchy (assumed to be of higher priority to the decision-maker) 
are treated as known in the lower level models. 

As can be observed from the table, the pattern-level models consist of models 
numbered 1.1 (the daily activity pattern model) and 1.2 (the number of tours model). 
These models predict: (a) the occurrence (and the number) of home-based tours (i.e., 
tours that originate and end at home) specifically for each of the following seven activity 
purposes during a day: work, school, escort, personal business, shopping, meal, and 
social/recreational, and (b) the occurrence of additional stops/trips that may occur (in 
other tours) for these seven purposes. The tour-level models (numbered 2.1, 2.3, 2.4 and 
2.5 in the table) predict the primary destination (i.e., the destination of the primary stop 
for which this tour is made), travel mode, time-of-day of travel (i.e., time of arrival at, 
and time of departure from primary destination), and the number of additional stops by 
purpose (other than the primary stop) for all tours. Tour-level models also include a 
work-based tour (i.e., a tour that originates and ends at work) generation model 
(numbered 2.2) that predicts the number (and purpose) of work-based tours for each 
home-based work tour predicted by models 1.1 and 1.2. The stop-level models predict the 
stop location (or destination), mode choice, and time-of-day of travel for each of the stops 
(other than the primary stops) generated in the previous steps. 

Among the models listed in Table 17.1, models 1.1, 1.2, 2.2, and 2.5 together 
form the activity and travel generation models, which provide as outputs a list of all the 
activities, tours, and trips generated for the person-day. These activities, tours, and trips 
are scheduled using the other tour-level and trip-level models, which can also be labeled 
as the scheduling models. The scheduling models determine the when (time-of-day), 
where (destination), and how (mode) of the generated activities and travel.  
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Table 17.1 Activity-Travel Forecasting System of the Sacramento Activity-based Model 
Model 

ID Model Name and Outcome Model 
Structure 

Choice Alternatives 
 

Day-level activity-pattern choice models: Predict the number of home-based tours a person undertakes during a day for seven purposes, and the occurrence of additional stops during 
the day for the same seven purposes. Purposes: work, school, escort, personal business, shopping, meal, and social/recreational, in that order of priority 

1.1 
Daily activity pattern model: Jointly predicts whether or not  a person 
participates in tours and extra stops for 7 activity purposes in a day 

MNL (Multinomial 
logit) 

Feasible alternatives of 2080 combinations of 0 or 1+ tours, and 0 or 1+ 
stops for 7 activity purposes. Base alterative is “Stay at home” 

1.2 Number of tours for each of the 7 activity purposes for which tour 
making is predicted from the above model MNL 1,2, or 3 tours for each purpose 

Tour-level models: Predict primary destination, mode and time-of-day, in that order, for all tours.  A  Work-based tour generation model is also included. 

2.1 

Parcel-level tour primary destination zone and parcel choice model 
(for each of the tours predicted in the above step). This model is 
applied for all tours in the order of their priority, with high priority tour-
outcomes known at the low-priority tour models.  

NL (Nested logit) for 
work-tour, and MNL 
for non-work and 
non-school tours 

Sample of available parcels (parcel availability based on purpose-specific 
size and travel time). Work-tour model has usual work location in a nest 
 

2.2 

Work-based tour generation model: Predicts the number and purpose 
of work-based sub tours that originate for each home-based work tour 
predicted by models 1.1, 1.2, and 2.1. These work-based subtours 
take priority after home-based work tours 

MNL model, applied 
repeatedly 

1 (more) subtour for any of 7 purposes, or No (more) subtours. In 
application, the model is repeated until the 3rd subtour purpose or “No(more) 
subtour” is predicted 
 

2.3 Tour-level main mode choice models (by purpose, for all tours): 
Predicts the tour-level mode choice NL Drive-transit-walk, Walk-transit-drive, Walk-transit-walk, School bus, Shared 

ride 3+, Shared ride2, Drive alone, Bike, Walk 

2.4 Tour-level time-of-day choice models by purpose: Predict half-hour 
time periods of arrival at and departure from primary destination MNL 

Combinations of all feasible half-hour intervals of arrival and departure = 
48x49/2 
 

2.5 
Intermediate stop generation models (predicts the exact number and 
purpose of stops for the half-tours leading to and from the primary 
destination of the tour) 

MNL model, applied 
repeatedly for all 
half-tours 

1 (more) stop for any of 7 purposes, or No (more) stops. In application, 
model is repeated until the 5th stop purpose or No(more) stops is predicted 
 

Stop-level models (Stops in half-tour before primary destination are modeled in the reverse chronological order. Location, mode, and 30-minute time period of arrival at location are 
modeled in that order, and departure time is derived from level-of-service tables. After the trip chain for the first half-tour is modeled, the trip chain for the second half-tour back to the tour 
origin is similarly modeled in regular chronological order) 

3.1 
Intermediate stop location: Predicts the destination zone and parcel 
of each intermediate stop, conditional on tour origin and primary 
destination, and location of previous stops.

MNL 
Sample of available parcels drawn from an importance sampling procedure 
at three levels of geography (stratum, TAZ, and parcel). Parcel availability 
based on purpose-specific size and travel time.

3.2 Trip mode choice (conditional on main tour mode, the mode of 
previously modeled adjacent trip, and the specific OD pair anchors) MNL Drive to transit, walk to transit, School bus, Shared ride 3+ and 2, Drive 

alone, Bike, Walk 

3.3 
Trip time-of-day choice models by purpose: Predict arrival time 
(departure time) choice for stops in first (second) half tour, conditional 
on the time windows remaining from previous choices 

MNL Feasible alternatives among the 48 half-hour time period alternatives   
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The above-described activity-travel forecasting system is applied, in succession, 
to each (and every) individual in the study area to obtain the full-day activity and travel 
information of all individuals in the population. 

17.3.1.2 CEMDAP 
CEMDAP (Comprehensive Econometric Microsimulator for Activity-Travel Patterns; 
Bhat et al., 2004; and Pinjari et al., 2006) is a continuous time activity-travel forecasting 
system that is based on a range of discrete choice, hazard-based duration, and regression-
based econometric models. Similar to the afore-mentioned model systems, the activity-
travel patterns in CEMDAP are represented in a hierarchy of pattern-level attributes, 
tour-level attributes, and stop-level attributes. The difference, however, is that the 
attributes in CEMDAP characterize a continuous time activity-travel pattern built within 
the space-time constraints imposed by work and school activities. Hence separate 
representation frameworks and modeling sequences are adopted for workers (defined as 
adults who go to work or school, and children who go to school on the day) and non-
workers (non-working adults and non-school going children), while incorporating 
coupling dependencies due to inter-personal interactions (between parents and children). 

Activity-Travel Representation Frameworks for Workers in CEMDAP (drawn from Bhat 
and Singh, 2000): The daily pattern of workers is characterized by five different sub 
patterns: (a) Before-Work (BW) pattern, which represents the activity-travel undertaken 
before leaving home to work; (b) Home-Work commute (HW) pattern, which represents 
the activity-travel pursued during the home-to-work commute; (c) Work-based (WB) 
pattern, which includes all activity and travel undertaken from work; (d) Work-Home 
commute (WH) pattern, which represents the activity-travel pursued during the work-to-
home commute; and (e) The post home arrival pattern (referred to as After-Work or AW 
pattern), which comprises the activity and travel behavior of individuals after arriving 
home at the end of the work-to-home commute. Within each of the BW, WB and AW 
patterns, there might be several tours.  A tour is a circuit that begins and ends at home for 
the BW and AW patterns and is a circuit that begins and ends at work for WB pattern.  
Further, each tour within the BW, WB and AW patterns may comprise several activity 
stops.  Similarly, the HW and WH commute patterns may also comprise several activity 
stops. Figure 17.1 provides a diagrammatic representation of the worker activity-travel 
pattern in terms of the overall pattern, the component tours and stops. 
 The characterization of the complete workday activity-travel pattern is 
accomplished by identifying a number of different attributes within the representation 
discussed above. These attributes may be classified based on the level of representation 
they are associated with: that is, whether they are associated with a pattern, a tour, or a 
stop.  Pattern-level attributes include the number of tours for the BW, WB and AW 
patterns, and the home-stay duration before the HW commute pattern. Tour-level 
attributes include the travel mode, number of stops, and home-stay duration before each 
tour in the BW and AW patterns, work-stay duration before each tour in the WB pattern, 
and the sequence of tours in each pattern. Stop-level attributes include activity type, 
travel time from previous stop, location of stop, activity duration, and the sequence of the 
stop in the tour. 
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Figure 17.1. Diagrammatic representation of worker activity-travel pattern in 

CEMDAP 
 

Activity-Travel Representation Frameworks for Non-Workers in CEMDAP (drawn from 
Bhat and Misra, 2000): In the case of non-workers, the activity-travel pattern is 
considered as a set of out-of-home activity episodes (or stops) of different types 
interspersed with in-home activity stays. The chain of stops between two in-home activity 
episodes is referred to as a tour. The pattern is represented diagrammatically in Figure 
17.2.  A non-worker's daily activity-travel pattern is characterized again by attributes 
associated with the entire daily pattern, a tour in the day, and a stop.  Pattern-level 
attributes include whether or not the individual makes any stops during the day, the 
number of stops of each activity type if the individual leaves home during the day, and 
the sequencing of all episodes (both stops and in-home episodes).  The only tour-level 
attribute is the travel mode for the tour.  Stop-level attributes include the activity 
duration, travel time to stop from previous episode (except for the first home-stay 
episode), and the location of out-of-home episodes (i.e., stops).   

The modeling of the activity-travel pattern of individuals entails the determination 
of each of the attributes that characterize the representation structure described above.  
Due to the large number of attributes and the large number of possible choice alternatives 
for each attribute, the joint modeling of all these attributes is infeasible.  Consequently, a 
modeling framework that is feasible to implement from a practical standpoint is required. 
The framework adopted in CEMDAP is described below. 
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Figure 17.2. Diagrammatic representation of the activity-travel pattern of non-
workers in CEMDAP 

 

CEMDAP’S Modeling and Micro-simulation Framework (drawn from Pinjari et al., 
2006): CEMDAP comprises a suite of econometric models, each model corresponding to 
the determination of one or more activity/travel choices of an individual or household. 
These models may be broadly grouped into two systems: (1) The generation-allocation 
model system and (2) The scheduling model system. The first system of models is 
focused on modeling the decision of individuals/households to undertake different types 
of activities (such as work, school, shopping, and discretionary) during the day and the 
allocation of responsibilities among individuals (for example, determination of which 
parent would escort the child to and from school). Table 17.2 lists the precise 
econometric structure and the choice alternatives for each of the model components in 
this system. The second system (i.e., the scheduling model system) determines how the 
generated activities are scheduled to form the complete activity-travel pattern for each 
individual in the household, accommodating the space-time constraints imposed by work, 
school, and escort of children activities. That is, these models determine the choices such 
as number of tours, mode and number of stops for each tour, and the activity-type, 
location, and duration for each stop in each tour. Table 17.3 lists the econometric 
structures and the set of choice alternatives for each model in this second system.  
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Table 27.2  The Generation-Allocation Model System in CEMDAP 
Model 

ID Model Name Econometric 
Structure Choice Alternatives Comments 

GA1 Children’s decision to go to school Binary logit Yes, No Applicable only to children who are students. 
The determination of whether or not a child is a 
student is made in the CEMSELTS module 
(see Eluru et al. 2008) 

GA2 Children’s school start time (time from 3 AM) Hazard-duration Continuous time 

GA3 Children’s school end time (time from school start time) Hazard-duration Continuous time 

GA4 Decision to go to work Binary logit Yes, No Applicable only to individuals above the age of 
16 and who are workers. The determination of 
whether or not an individual is a worker is made 
in the CEMSELTS module 

GA5 Work start and end times Multinomial logit 528 discrete time period combinations 

GA6 Decision to undertake work related activities Binary logit Yes, No 

GA7 Adult’s decision to go to school Binary logit Yes, No Applicable only to adults who are students, as 
determined in CEMSELTS GA8 Adult’s school start time (time from 3 AM) Regression Continuous time 

GA9 Adult’s school end time (time from school start time) Regression Continuous time 

GA10 Mode to school for children Multinomial logit Driven by parent, Driven by other, 
School bus, Walk/bike

Applicable only to children who go to school 

GA11 Mode from school for children Multinomial logit Driven by parent, Driven by other, 
School bus, Walk/bike

GA12 Allocation of drop off episode to parent Binary logit Father, Mother Applicable only to non-single parent household 
with children who go to school GA13 Allocation of pick up episode to parent Binary logit Father, Mother 

GA14 Decision of child to undertake discretionary activity jointly with parent Binary logit Yes, No Second model in this row is applicable only to 
non-single parent households with children who 
go to school GA15 Allocation of the joint discretionary episodes to one of the parents Binary logit Father, Mother 

GA16 Decision of child to undertake independent discretionary activity Binary logit Yes, No 

GA17 Decision of household to undertake grocery shopping Binary logit Yes, No Second model in this row is applicable only if 
the household is determined (using the first 
model in this row) to undertake shopping  GA18 Decision of an adult to undertake grocery shopping  Binary logit Yes, No 

GA19 Decision of an adult to undertake household/personal business Binary logit Yes, No 

GA20 Decision of an adult to undertake social/recreational activities Binary logit Yes, No 

GA21 Decision of an adult to undertake eat out activities Binary logit Yes, No 

GA22 Decision of an adult to undertake other serve passenger activities Binary logit Yes, No 
General Notes: (1)    A child is an individual whose age is less than 16 years, and an adult is an individual whose age is 16 years or more. 

(2) CEMSELTS = Comprehensive Econometric Microsimulator for SocioEconomics, Land-use, and Transportation Systems. 
(3) In the CEMDAP architecture, all individuals in the population have to be classified into one of the following three categories: (1) student (2) worker, and (3) non-

student, non-worker. CEMDAP, in its current form, does not accept the category of “student and worker”.   
(4) GA1- GA9 model the work/school participation decisions, GA10-GA16 model the children’s travel needs and allocation of escort responsibility, and GA17-GA22  

model the individual-level activity participation choice.
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Table17.3  The Scheduling Model System in CEMDAP 
Model 
ID Model Name Econometric 

Structure Choice Alternatives 

WS1 Commute mode Multinomial logit Solo driver, Driver with passenger, Passenger, 
Transit, Walk/Bike 

WS2 Number of stops in work-home commute Ordered probit 0,1,2 

WS3 Number of stops in home- work commute Ordered probit 0,1,2 

WS4 Number of after-work tours Ordered probit 0,1,2 

WS5 Number of work-based tours Ordered probit 0,1,2 

WS6 Number of before-work tours Ordered probit 0,1 

WS7 Tour mode Multinomial logit Solo driver, Driver with passenger, Passenger, 
Transit, Walk/Bike 

WS8 Number of stops in a tour Ordered probit 1,2,3,4,5 

WS9 Home/work stay duration before a tour Regression Continuous time 

WS10 Activity type at stop Multinomial logit Work-related, Shopping, Household/personal 
business, Eat out, Other serve passenger 

WS11 Activity duration at stop Linear Regression Continuous time 

WS12 Travel time to stop Linear Regression Continuous time 

WS13 Stop location Spatial location choice Choice alternatives based on estimated travel time 

NWS1 Number of independent tours Ordered probit 1,2,3,4 

NWS2 Decision to undertake an independent 
tour before pickup-up/joint  discretionary 

Binary logit Yes, No 

NWS3 Decision to undertake an independent 
tour after pickup-up/ joint  discretionary 

Binary logit Yes, No 

NWS4 Tour Mode Multinomial logit Solo driver, Driver with passenger, Passenger, 
Transit, Walk/Bike

NWS5 Number of stops in a tour Ordered probit 1,2,3,4,5 

NWS6 Number of stops following a pick-up/drop-
off stop in a tour 

Ordered probit 0,1 

NWS7 Home stay duration before a tour Regression Continuous time 

NWS8 Activity type at stop Multinomial logit Work-related, Shopping, Household/personal 
business, Eat out, Other serve passenger 

NWS9 Activity duration at stop Linear Regression Continuous time 

NWS10 Travel time to stop Linear Regression Continuous time 

NWS11 Stop location Spatial location choice Choice alternatives based on estimated travel time 

JS1 Departure time from home Regression Continuous time 

JS2 Activity duration at stop Regression Continuous time 

JS3 Travel time to stop Regression Continuous time 

JS4 Location of stop Spatial location choice Continuous time 

CS1 School-home commute time Regression Continuous time 

CS2 Home-school commute time Regression Continuous time 

CS3 Mode for independent discretionary tour Multinomial logit Drive by other, Walk/Bike 

CS4 Departure time from home for 
independent discretionary tour 

Regression Continuous time 

CS5 Activity duration at independent 
discretionary stop 

Regression Continuous time 

CS6 Travel time to independent discretionary 
stop 

Regression Continuous time 

CS7 Location of independent discretionary Spatial location choice Pre-determined subset of zones 
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CEMDAP’s micro-simulation prediction procedure is represented schematically in Figure 
17.3. Each step in the figure involves the application of several models in a systematic 
fashion. This micro-simulation procedure is applied to each and every household and 
individual of an urban area to predict the overall activity-travel patterns in the area.  

Figure 17.3 Microsimulation Framework in CEMDAP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application of the Generation-Allocation Model System 

Work and school activity participation and timing decisions 
(Models GA1 -GA9 of Table 1 are applied in this step) 

Children’s travel needs and allocation of escort responsibilities to parents 
(Models GA10 - GA16 of Table 1 are applied in this step) 

Independent activity participation decisions 
(Models GA17- GA22 of Table 1 are applied in this step) 

Application of the Scheduling Model System 

Work-to-home/home-to-work commute characteristics for each worker 
(Models WS1- WS3, and WS10 - WS13 of Table 2 are applied in this step) 

Drop-off tour of the nonworker escorting children to school 
(Models NWS6, and NWS8 - NWS11 of Table 2 are applied in this step) 

Pick-up tour of the nonworker escorting children from school 
(Models NWS6, and NWS8- NWS11 of Table 2 are applied in this step) 

School-to-home and home-to-school commutes for each school-going 
child (Models CS1 and CS2 of Table 2 are applied in this step) 

Joint tour of the adult pursuing discretionary activity jointly with children 
(Models JS1 - JS4 of Table 2 are applied in this step) 

Independent home-based tours and work-based tours for each worker 
(Models WS4 - WS13 of Table 2 are applied in this step) 

Independent home-based tours for each non-worker 
(Models NWS1 -NWS11 except NWS6 of Table 2 are applied in this step) 

Independent discretionary activity tour for each child 
(Models CS3 to CS7 of Table 2 are applied in this step) 
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17.3.1.3 FAMOS 
FAMOS (Florida Activity Mobility Simulator; Pendyala et al., 2005) is similar to 
CEMDAP in the explicit recognition of space-time constraints, and the continuous time 
nature of the modeling system. FAMOS consists of a Prism-Constrained Activity Travel 
Simulator (PCATS) that simulates the activities and trips undertaken by an individual 
together with the locations, modes, times, durations and sequence of the activities and 
travel. The unique feature of this simulator is that Hägerstrand’s space-time prisms7 are 
utilized to represent and model the spatial and temporal constraints under which 
individuals undertake activities and trips (hence, the name prism-constrained activity-
travel simulator). The boundaries (or frontiers) of these space-time prisms, within which 
the individual activity travel patterns must take place, are determined by using stochastic 
frontier models (see Pendyala et al., 2002). Subsequently, the activity-travel patterns are 
simulated within the boundaries of the space-time prisms. 

17.3.2 Rule-Based Computational Process Models 
Rule-based computational process models (CPM) have been proposed as another 
approach to modeling activity-travel behavior. A CPM is basically a computer program 
implementation of a production system model, which is a set of rules in the form of 
condition-action (if-then) pairs that specify how a task is solved (Garling et al., 1994). 
CPM researchers argue that complex human activity-travel behavior may not always be 
able to be represented as an outcome of utility maximization (Timmermans et al., 2002). 
Rather, the underlying principle of the CPMs is that individuals use context dependent 
choice heuristics to make decisions pertaining to activities and travel. These models 
attempt to mimic how individuals think when building schedules. The model systems can 
be viewed as an exhaustive set of rules in the form of condition-action pairs to specify 
how a task is solved. 

A limitation of CPMs, however, is that there are still unresolved issues in the 
development of CPMs that make it difficult to determine the statistical significance of the 
factors that affect scheduling decisions. Also, most CPMs consider the generation of 
activity episodes (and one or more attributes of each episode) to be exogenous, and focus 
only on the scheduling or sequencing of activities. Even for activity scheduling and 
sequencing, it is difficult to enumerate all the decision rules underlying such a complex 
process. Nonetheless, this research is valuable in providing insights into activity-travel 
scheduling processes of individuals that can, at the least, be used to inform the 
development of operational travel demand models. 

The important CPMs in the literature are listed and briefly discussed next. 

 

                                                 
7Hägerstrand’s space-time prism is a conceptual framework to capture spatial and temporal constraints on 
individual’s activity-travel patterns. Space-time prisms can be constructed by considering a three 
dimensional (3D) space, with a two-dimensional horizontal plane representing the geographical space with 
different activity locations, and a vertical axis representing the time dimension. Within such a 3D space, the 
space-time coordinates defined by the spatial and temporal constraints of a person (for example, she/he can 
leave home no earlier than time t0 and she/he must be at work no later than t1) form the vertices of a space-
time prism. Between the vertices, given the remaining amount of time (t1 -t0), and given a maximum 
possible speed of travel, the set of all locations (i.e., space-time coordinates) she/he can reach form a space-
time prism. Thus, space-time prisms represent the feasible activity-travel space defined by the spatial and 
temporal constraints. 
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17.3.2.1 CARLA (Clarke, 1986)  
CARLA (for Combinatorial Algorithm for Rescheduling Lists of Activities) was one of 
the earliest rule-based activity scheduling models, developed by the Oxford University 
Transport Studies Unit (Clarke, 1986). This model uses an exogenously available activity 
program (list of activities to be scheduled, durations and timing) to generate all feasible 
activity pattern changes to proposed policies. The potential changes include retiming of 
activities, change of travel mode, or change in location. Since there can be a large number 
of  resulting activity sequences, the feasibility of an activity sequence is dependent on a 
number of pre-defined rules including logical timing and location-related constraints and 
interpersonal coupling constraints, and personal preferences. Subsequently, 
combinatorics and heuristics are used to choose one of the feasible activity sequences. 

17.3.2.2 STARCHILD (Recker et al., 1986 a; and 1986b) 
STARCHILD (for Simulation of Travel/Activity Responses to Complex Household 
Interactive Logistic Decisions) works in two stages. In the first, pre-travel stage, the 
individual decides on a planned activity episode schedule based on an exogenously 
available directory of activities along with the duration, location, and time window for 
participation. In the second stage, the model identifies feasible alternatives (based on a 
detailed set of constraints, including timing, location, and household level coupling 
constraints), and groups the alternatives together into statistically similar categories. 
Subsequently, a logit model is used to establish pattern choice. Thus, STARCHILD 
extends the feasible activity pattern generation approach of CARLA by adding a logit 
choice model of actual choice. 8  

17.3.2.3 SCHEDULER (Garling et al., 1989) 
In SCHEDULER, a long term calendar (or a set of prior commitments, activity episodes, 
durations and timing details) is assumed to be present at the start of any time period. 
From this long term calendar, a small set of episodes with high priority (priority is 
defined based on prior commitments, preferences and constraints) are selected to be 
executed in the short term. The short-term activities are sequenced and their locations are 
determined based on a “distance-minimizing” heuristic procedure. 

  

                                                 
8 The STARCHILD approach was extended later by Recker (1995), who introduced a mathematical 
programming (or operations research) approach to model household activity-travel patterns. Specifically, 
he casted the household activity-travel pattern modeling problem (HAPP) as a network-based routing 
problem, while accommodating vehicle assignment, ride-sharing, activity assignment and scheduling 
behaviors as well as available time window constraints. The resulting mathematical formulation is a mixed 
integer linear program that provides an optimal path of household members through time and space as they 
complete a prescribed agenda of activities. Recker (2001) further expanded on this approach by 
accommodating the inter-personal interactions among the resource (vehicle) allocation decisions made by 
households. More recently, Gan and Recker (2008) extended the approach to the case of household activity 
rescheduling, while also incorporating the impact of uncertainties associated with activity rescheduling 
behaviors such as activity cancellation, insertion, and duration adjustment. In the context of the 
mathematical programming approach, Recker (2001) indicates that the approach provides a powerful 
analytical framework to model complex intra-household interactions associated with household activity-
based travel modeling. However, as identified in Recker et al. (2008), further work is needed, especially 
related to the estimation of such models, to operationalize the models for practical transportation planning 
purposes.  
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17.3.2.4 AMOS (Kitamura et al., 1996) 
AMOS (for Activity MObility Simulator) takes an observed daily activity-travel pattern 
of an individual (baseline pattern), identifies the set of associated constraints based on a 
set of rules, and synthesizes the possible adaptations (i.e., changes in departure time to 
work, switch mode, etc.) in the individual’s activity-travel patterns due to the changes in 
the activity-travel environment. The adaptation possibilities are generated and prioritized 
in a response generator that is calibrated using neural networks and the stated responses 
of commuters to a variety of transport policies. Subsequently, an activity-travel pattern 
modifier identifies the most likely activity-travel pattern response option, and an 
evaluation routine serves to decide if the option is satisfactory. These adaptation steps are 
repeated until an acceptable adjustment (in the activity-travel patterns) is found.   

17.3.2.5 SMASH (Ettema et al., 1993) 
SMASH (for Simulation Model of Activity Scheduling Heuristics) assumes that the 
activity scheduling process is a sequential and step-wise process of decision making. 
Starting with an empty schedule (and a long-term activity calendar), at each step, 
depending on the current schedule and the available alternatives, the individual is 
assumed to adjust the existing schedule by adding, or deleting, or rescheduling, or simply 
stopping the adjustment (and hence the scheduling) process. To make a decision on 
adding, deleting, rescheduling, or stopping the scheduling process, a model calibrated 
using the nested logit approach is used.  

17.3.2.6 ALBATROSS (Arentze and Timmermans 2000, 2005)  
ALBATROSS (for A learning-BAsed TRansportation Oriented Simulation System) is a 
comprehensive and advanced CPM-based activity-travel modeling system developed at 
the Eindhoven University in The Netherlands. The inputs to the system are (a) an activity 
diary describing the individuals’ activity sequence, purpose, timing and duration, (b) a 
list of constraints, (c) individual and household characteristics, (d) zonal data, and (e) 
transport system characteristics. The system uses the activity diary data to start with an 
initial skeleton-schedule (along with the start times and locations) of fixed activities of 
the day. Flexible activities are then added to the skeleton. At this point the activity 
participation profile (activity, with whom, and duration) is known. Subsequently, a 
scheduling engine determines the timing, trip chaining patterns, mode choice and 
destinations. The scheduling engine may reschedule the previously scheduled flexible 
activities whenever a new flexible activity is scheduled. 
 A distinct feature of ALBATROSS, different from other rule-based models, is the 
use of observed data to endogenously derive decision-making heuristics, instead of using 
relatively ad hoc rules. Further, the model incorporates learning mechanisms (see Garling 
et al., 1994; Arentze and Timmermans 2005; and Joh et al., 2006) in the development of 
decision-making heuristics. 

17.3.2.7 TASHA (Miller and Roorda 2003; and Roorda and Miller, 2005)  
TASHA (for Travel and Activity Scheduler for Household Agents) is another state-of-the 
art activity-travel scheduling model. In TASHA, activity scheduling occurs to carry out 
projects. Projects are defined as a set of coordinated activities performed to achieve a 
common goal. For example, activities such as shopping for food, preparing meals, and 
having a dinner with guests are all tied together by a common goal, which is to hold a 
dinner party (Miller and Roorda 2003). For each project, an agenda (list) of activity 
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episodes is generated that can potentially be executed in the context of the project. The 
model recognizes and incorporates the idea that activity scheduling is a path-dependent 
process and the final outcome of the scheduling process depends on the order in which 
decisions are made. Thus the agenda is dynamically augmented with further details (such 
as add an activity, or delete an activity either because it is executed or canceled) until the 
project’s purpose is fulfilled. Innovative and intuitive concepts such as activity 
precedence and scheduling conflict resolution are utilized to inform the development of 
path dependent (or dynamic) schedule planning and adjustment (or rescheduling) 
strategies and household-level interdependencies. A specifically tailored survey was 
conducted to observe the process (rather than outcomes, that are observed in the usual 
activity-travel surveys) of activity scheduling and inform the development of decision-
making rules (see Roorda and Miller 2005; and Doherty et al., 2004). 

17.3.3 Agent-based Modeling Systems  
The agent-based modeling systems incorporate the complexity of human behavior using 
“agents” that are autonomous and interactive in nature (see Odell, 2002). The autonomy 
and the interactive nature are based on behavioral rules that may evolve over time, with 
every new experience. While the use of behavioral rules is similar to the rule-based CPM 
approach, the agent-based approach allows the agents to learn, modify, and improve their 
interactions with the environment. Thus, the linkages between the choices made by 
individuals may evolve over time, as opposed to a fixed, and limited, pattern of linkages 
that are represented in traditional rule-based CPM models. Although the agent-based 
modeling approach is becoming increasingly popular in such fields as economics (Dosi et 
al., 1996), social sciences (Gilbert and Cont´e 1995) and ecology (Grimm et al., 1999), it 
is only in the recent past that this approach has been utilized in the activity-travel 
behavior modeling arena (see Buliung and Kanaroglou, 2007 for a review). Examples of 
agent-based activity-travel model systems include ALBATROSS, TRANSIMS, and 
MATSIM. The reader will note here that although ALBATROSS was discussed within 
the context of rule-based CPM models (Section 17.3.2.6), the system is growing to 
incorporate the features of agent-based modeling approaches such as learning and 
adaptation (see Arentze and Timmermans 2005; and Joh et al., 2006). TRANSIMS 
(LANL, 2007) and MATSIM (Balmer et al., 2005; and MATSIM, 2007) represent 
advanced efforts of agent-based activity-travel scheduling coupled with dynamic traffic 
flow simulation.  
 
17.4 DIMENSIONS OF ACTIVITY-TRAVEL BEHAVIOR: A RESEARCH 
SYNTHESIS 
In this section, we provide a synthesis of the literature on various dimensions of activity-
travel behavior that have received substantial attention in the past decade and/or that have 
started gaining increasing importance in recent years. These different dimensions include: 
(1) Interpersonal interactions, (2) The time dimension of activity-travel behavior, and (3) 
The space dimension of activity-travel behavior. Within each area, we also identify 
directions for future research. 
 
17.4.1 Interpersonal Interactions 
The recognition of the role of inter-individual interactions in travel decisions dates back 
to the 1970’s when Hagerstrand (1970) identified coupling constraints that define the 
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timing, location, and the duration of activities that are pursued with other individuals. 
Early studies in this area include, for example, Koppelman and Townsend (1987) who 
analyzed household-level time allocation patterns. Subsequently, several studies (e.g. Pas 
1985) further emphasized the need for the explicit recognition of inter-individual 
interactions in activity-based travel analysis, especially at the household level. Since the 
turn of the century, there has been an increasing recognition that interpersonal 
interactions play an important role in shaping individuals’ activity-travel patterns (see, 
for example, Srinivasan and Bhat, 2006). In this section, we focus on three major sources 
of inter-personal interactions: (a) Household members, (b) Children9, and (c) Social 
networks. 

17.4.1.1 Intra-household Interactions 
Very broadly, household-level interactions in an activity-travel context arise from 
interrelated decision processes associated with (1) the sharing and allocation of 
responsibilities (maintenance activities) and resources (vehicles), (2) the facilitation of 
the activity participation and travel needs of mobility-dependent household members (for 
example, children, the elderly, and other mobility constrained members), and (3) the joint 
activity engagement and travel. Recent empirical studies in this area focus on: 
1. Activity/task allocation (see, for example, Scott and Kanaroglou, 2002; Ettema et al., 

2004; Zhang et al., 2004; Srinivasan and Bhat, 2005);  
2. Joint activity-travel engagement (see, for example, Gliebe and Koppelman, 2002; 

Scott and Kanaroglou, 2002; and Zhang et al., 2004); and 
3. Children’s activity-travel arrangements (Sener and Bhat, 2007)  

There are several research challenges remaining in the area of intra-household 
interactions. These include a better understanding of activity and vehicle allocation 
among members of a household, and the negotiation and altruistic processes among 
individuals leading up to observed activity-travel patterns. Such research efforts can be 
facilitated through the collection of data on task and resource allocation, and joint 
activity-travel engagement. Another important research need relates to the understanding 
of the impacts of children and other mobility-dependent individuals on adult activity-
travel patterns (and the reverse impact of these adults’ patterns on the activity-travel 
patterns of mobility-dependent individuals). The next section provides a detailed 
discussion on the importance of explicitly recognizing children and their activity-travel 
patterns in travel demand modeling. 

17.4.1.2 Children’s Activity-Travel Behavior 
The focus of analysis in existing activity-based research has almost exclusively been on 
the activity-travel patterns of adults. However, children’s travel needs affect the travel 
patterns of other family members to a considerable extent. Children depend, to a large 
extent, on household adults or other adults to drive them to after-school activities. In 
addition to serve-passenger activities, children can also impact adults’ activity-travel 
patterns in the form of joint activity participation in such activities as shopping, going to 
the park, and other social-recreational activities. In addition, the consideration of 
children’s activity-travel patterns is important in its own right. Specifically, children’s 
activity-travel patterns contribute directly to travel by non-drive alone modes of 

                                                 
9 Although children are household members, we have listed them a separate category to emphasize the 
importance of considering children as a major source of inter-personal interactions. 
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transportation. Thus, it is important to consider the activity-travel patterns of children, 
and explicitly inter-link these with those of adults’ activity-travel patterns.     

Most previous research in the area of children’s activity-travel patterns has been 
exploratory in nature (see, for example, McDonald, 2006; and Copperman and Bhat, 
2007).  The studies that go beyond broad descriptive research have almost exclusively 
focused on the mode for children’s trips to and from school. Only a few studies have 
begun to address joint travel between parents and children, but even these studies have 
limited their analysis to accompaniment decisions related to school travel (see 
Yarlagadda and Srinivasan, 2007). Future research should focus on addressing the factors 
that contribute to children’s non-school mode choice, as well as the activity generation 
and scheduling decisions related to children’s participation in activities during the 
weekday and weekend. In addition, joint travel and activity participation should address 
joint participations and accompaniment arrangement for children’s non-school activities 
(see Sener and Bhat, 2007 for a study that addresses who children spend time with in out-
of-home recreational activities). 

17.4.1.3 Role of Social Networks 
A recently emerging research area related to inter-personal interactions is the influence of 
social networks on activity-travel behavior (Axhausen, 2005, Hackney, 2005; Dugundgi 
and Walker, 2005; Carasco and Miller, 2006; Arentze and Timmermans, 2007; and Páez 
and Scott, 2007). The social network of an individual can influence several aspects of 
his/her activity-travel decisions, including the activity-travel generation, timing and 
scheduling of activities and trips, and route and destination choices (Arentze and 
Timmermans, 2007; and Páez and Scott, 2007). Further, understanding the dynamics of 
social networks (i.e., the formation of new social links and dissolution of old social links) 
can help forecast the dynamics of activity-travel patterns across time (Arentze and 
Timmermans, 2007). Besides, incorporating the role of social networks will add to the 
behavioral realism of activity-travel behavior models. Finally, and interestingly, a 
particular advantage of considering social networks lies in the decrease in computational 
time in the destination choice step due to the potential winnowing down of the number of 
feasible spatial location alternatives for activity participation (Hackney, 2005). 
  Although only recently emerging, the topic of social networks and its interactions 
with activity-travel behavior is likely to gain research attention in the coming years. The 
most limiting issue in the study of social networks today is the lack of information on the 
extent and nature of social networks in travel behavior survey data (Axhausen, 2006). 
Hence, the immediate research need is to design and administer surveys with an objective 
to capture social networks and their roles. 
 
17.4.2 The Time Dimension of Activity-Travel Behavior  
The appropriate treatment of the time dimension of activity-travel behavior is perhaps the 
most important prerequisite to accurately forecasting activity-travel patterns. This is 
because time is the main backdrop/setting within which the entire activity-travel 
decision-making takes place (see Kurani and Lee-Gosselin, 1996). Because of the 
treatment of time as a building block for activity-travel patterns, the following temporal 
aspects of activity-travel behavior have received significant attention: (1) Time-use in 
activities, and (2) Activity-travel timing and scheduling.    
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17.4.2.1 Time-use in activities 
The subject of activity time use has gained substantial attention in the travel demand field 
in the past two decades, with several threads of research efforts. From a 
conceptual/analytical standpoint, several studies use a resource allocation formulation 
based on classic economic theories of time allocation (Becker 1965; and Evans 1972). 
Random utility maximization and related microeconomic theory-based approaches have 
been particularly popular approaches to modeling activity time allocation (see Meloni et 
al., 2004; Bhat, 2005; and Jara-Diaz et al., 2007, for recent examples). 
 Recent research in this area has begun to examine time-use in the context of such 
related dimensions of activity-travel behavior as: (1) inter-personal interdependencies, 
accompaniment, and the social context (see, for example, Harvey and Taylor, 2000; 
Gliebe and Koppelman, 2002; Zhang et al., 2004; and Sener and Bhat, 2007), (2) multi-
day/weekly time-use behavior (see, for example, Lee and McNally, 2003; and Spissu et 
al., 2007), (3) substitution patterns between in-home and out-of-home time use (Kuppam 
and Pendyala, 2001; and Meloni et al., 2004), and (4) the impact of Information and 
Communications Technology (ICT) on time-use (de Graaff and Rietveld, 2007). A 
particular emphasis of recent time-use studies has been on discretionary activities, due to 
the extent of choice exercised in discretionary activities relative to non-discretionary 
activities.  

It is interesting to note that most of the time-use studies focus only on the activity 
generation aspect of the activity-travel behavior. That is, the time-use studies to date 
focus on the types of activities undertaken by individuals within a given time frame. 
These studies ignore the settings (i.e., the spatial, temporal, scheduling, sequencing and 
accompaniment contexts) within which the activities are carried out (with a few 
exceptions mentioned above, which examine the accompaniment and social contexts). 
The field would benefit from integrated analyses of time allocation and activity settings, 
including the spatial, temporal, scheduling, and sequencing contexts. Other areas for 
future research in the time-use area include: (1) the analysis of in-home activity time 
allocation and activity settings using data with detailed in-home activity type 
classification, and (2) the application of economic theory-based formulations for the 
empirical analyses of activity time allocation, monetary expenditures, consumption, and 
travel. 

17.4.2.2 Activity-travel Timing and Scheduling 
This section provides a discussion of recent research on individuals’ activity-travel 
timing and scheduling behavior. Specifically, the discussion is oriented along three 
directions along which the research has progressed: (a) Time-of-day forecasting, (2) 
Activity-travel scheduling, and (3) Time-frame of analysis. 

Time-of-day Forecasting: An important objective of transportation planning is to analyze 
the temporal variations in transportation demand to identify the need for, and evaluate the 
potential effectiveness of, travel demand management policies (such as time varying 
congestion pricing) aimed at spreading the peak period travel into the non-peak periods 
of the day. Such an analysis requires an appropriate incorporation of the impact of time-
varying travel level-of-service (LOS) conditions on activity-travel timing decisions. The 
importance of modeling time-of-day decisions in response to varying level of service 
conditions has long been recognized now, dating back to Vickrey’s (1969) demand-
supply equilibrium-based bottleneck formulation of urban traffic congestion, Small’s 
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(1982) discrete choice demand formulation of time-of-day choice with schedule delay 
considerations, and Arnott, de Palma, and Lindsey (1993) that combine the bottleneck 
supply-side formulation of Vickrey and the demand-side formulation of Small. Further, 
most practical travel modeling applications today adopt some type of travel demand and 
supply (i.e., transportation level-of-service) equilibration process that helps in 
incorporating the impact of time-varying travel LOS conditions to a certain extent.  
 It is important to recognize, however, that high resolution (in time) forecasts are 
required to better understand the impact of time varying level-of-service on activity-
travel behavior. The four-step models, because of their aggregate treatment of the time, 
are not well-equipped to provide such high resolution forecasts. Further, the trip-based 
methods that are at the core of four-step models ignore the temporal linkages of different 
trips. Recent developments toward overcoming these limitations include (1) continuous 
time modeling approaches, and (2) tour based approaches. Continuous time modeling 
approaches allow the prediction of activity timing decisions and travel departure/arrival 
timing decisions in the continuous time domain (or as very finely categorized intervals of 
time domain; i.e., almost continuous time domain) rather than in discrete time periods 
such as AM/PM peak/off-peak periods. Examples of such applications include Bhat and 
Steed (2002), and Pinjari et al. (2007). These studies use either hazard-based duration or 
discrete choice modeling approaches to develop continuous time or almost continuous 
time models. The time of day models developed within the context of the tour-based 
approach jointly predict the tour departure time from home/work and either the arrival 
time back home/work or the tour duration. Such tour-based time-of-day models are at the 
heart of several comprehensive activity-based travel forecasting systems today. 
Nonetheless, more research is required to appropriately integrate these developments into 
a demand-supply equilibration framework (see Section 17.5.1.2 for more discussion).  

Activity-travel Scheduling: Earlier research in the activity-travel timing area has largely 
focused on modeling individuals’ travel timing (i.e., trip/tour departure and/arrival time) 
decisions, by using either discrete time or continuous-time approaches. More recently, 
there has been an increasing recognition that observed activity-travel timing outcomes are 
a result of an underlying activity scheduling process that involves the planning and 
execution of activities over time (see Doherty et al., 2002). In view of this recognition, 
more research is warranted on the scheduling or sequencing of activities using detailed 
data on activity-travel scheduling (and rescheduling) processes and mechanisms (see, for 
example, Doherty et al., 2004; and Lee and McNally, 2006 for recent attempts of such 
surveys). 

Time-Frame of Activity-Travel Analysis: Most of the earlier activity-travel behavior 
studies have focused on a single day as the time period for analysis of activity-travel 
patterns. Such single day analyses make an implicit assumption of uniformity and 
behavioral independence in activity processes and decisions from one day to the next. 
Clearly, there may be substantial day-to-day dependence as well as variation in activity-
travel patterns. Further, many activities (such as grocery shopping or recreational 
pursuits) are likely to have a longer cycle for participation. Thus, single day analyses 
cannot reflect multi-day shifts in activity-travel patterns in response to policy actions 
such as workweek compression.  

The limitations of single day activity-travel behavior analysis have led to several 
multi-day and multi-week data collection efforts in the recent past (see, for example, 



 22

Axhausen et al., 2002). Availability of multi-day and multi-week data has, in turn, 
resulted in an increasing number of multi-day/multi-week studies (Schlich and 
Axhausen, 2003; Bhat et al., 2005; Buliung and Roorda 2006; and Spissu et al., 2008) 
focusing on understanding the temporal rhythms and variations in activity-travel 
behavior. However, a limited number of studies focus on determining the appropriate 
time frame of analysis (see, for example, Habib et al., 2008). While these studies 
provide preliminary evidence that discretionary activity participation may be 
characterized as being on a weekly rhythm (or perhaps longer time scale), more research 
is warranted to determine the appropriate time frame for different types of activities. 
More specifically, it is important to recognize that not all activities may be associated 
with time cycles of similar length. Another important and related issue is the time 
horizon of activity-travel planning and scheduling. Specifically, it is important to 
understand and model the complex interlacing of multiple time horizons that may be 
associated with the planning, scheduling, and execution of different activities and related 
travel over time (Doherty et al., 2002). 
 
17.4.3 The Space Dimension of Activity-Travel Behavior  
Space in an activity-travel context refers to location choice behavior and the impact of 
spatial (or location-specific) elements on activity-travel patterns. Current research 
interests in spatial analysis include: (1) spatial dependencies, (2) spatial representation, 
and perception, and (3) space-time interactions and constraints. 

17.4.3.1 Spatial Dependencies  
Spatial dependencies in an activity-travel context refer to the dependence of activity-
travel behavior on spatial elements, and hence the variation of activity-travel behavior 
over space (Fotheringham et al., 2000). Spatial dependence leads to three spatial analytic 
issues in activity-travel behavior modeling: (1) spatial autocorrelation (i.e., behavioral 
similarities across spatially proximate individuals and households due to common 
unobserved spatial elements; see Franzese and Hays, 2007), (2) spatial heterogeneity 
(variability in the relationships between activity-travel patterns and exogenous 
determinants over space due to location-specific effects; see Páez, 2007), and (3) spatial 
heteroskedasticity (variation in the location-specific unobserved factors that affect 
activity-travel patterns; Páez, 2006). It is important to account for such spatial 
dependencies to avoid inconsistent parameter estimates.  

17.4.3.2 Spatial Representation and Perception 
An important space-related issue in the context of activity-based analysis is spatial 
representation. Since the 1950s, the spatial configuration of a region has been represented 
in the form of spatial units, known as traffic analysis zones (TAZs), for the purpose of 
transportation modeling and planning.  These TAZs were created for use in the trip-based 
approach to travel demand modeling. The shift from the trip-based approach to an 
activity-based approach to travel demand analysis has generally been accompanied by 
consideration of a finer spatial representation of areal units (such as parcels). Such a 
move to finer spatial configurations may be advantageous due to the potential 
improvement in the accuracy of predicted travel patterns obtained from the better 
representation of the land-use and transportation network. However, a danger of using 
very fine resolutions of space is that the geographical context of activity-travel decision-
making may be lost (see Guo and Bhat, 2007b). Thus, while there seems to be a general 
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consensus that the TAZ system used in trip-based methods is rather coarse and unable to 
accurately represent such network attributes as access to transit stops, it is not at all clear 
what the appropriate spatial resolution (and representation) should be to better capture 
activity-travel choices. Besides, it may be that different resolutions are needed for 
different types of activity-travel related decisions (for instance, residential choice versus 
activity location choice) and different demographic population groups. 
 Another important issue that is related to spatial representation is the Modifiable 
Area Unit Problem (MAUP). Specifically, MAUP is associated with the sensitivity of 
spatial analytic results to the way in which the spatial units are defined. (see Guo and 
Bhat, 2004; and Páez and Scott, 2004). While there have been several studies showing 
the presence of the MAUP problem in several analytic contexts involving spatial 
elements, there have not been adequate attempts at controlling for the MAUP issue in 
activity-travel studies. This naturally leads to the following question: What is the best 
way to represent the spatial configuration and alleviate MAUP and other spatial 
representation-related problems in activity-based travel demand models?  Guo and Bhat 
(2004) argue that the fundamental reason behind MAUP is the inconsistency between the 
representation of spatial configuration in analytic models and decision makers’ 
perception of space, and that if the spatial characteristics are measured and represented in 
the same way as decision-makers perceive and process spatial information, there would 
be less concern of MAUP.  

A related issue is the scale at which individuals perceive space when making 
activity-travel decisions, both in terms of decision units (i.e., the scale of the 
“neighborhood” that is the unit of decision) as well as the extent of the effect of variables 
that impact the choice of decision unit (for example, do individuals consider crime rates 
or access to activities within a narrow 1-mile band or 5-mile bands around spatial units?).  

In all, in the context of space perception, there has been very little research on 
understanding people’s mental perceptions of the spatial attributes of the environments in 
which they live, work, and travel to and from. Taxonomies need to be developed for 
describing how different types of activity-travel decisions depend on individuals’ mental 
representations of space. People generally do not possess complete knowledge of their 
surroundings, but are able to select (filter) useful spatial information. Examining this 
spatial cognition is important for understanding how people adapt through changes of 
their mental representation of static environments and to changes of the environments at 
different spatial and time scales (see Kitchin and Blades 2002; and Golledge and 
Garling, 2004 on spatial cognition and learning issues in travel behavior modeling). 

17.4.3.3 Space-Time Interactions and Constraints 
It is now widely recognized that human activity and travel patterns are undertaken within 
time-space prisms, which are defined by spatial-temporal interactions that are influenced 
by transportation system characteristics (Hägerstrand, 1970). Thus these interactions 
must be incorporated into the analysis of human activity and travel patterns.  Further, the 
nature of time-space interactions is closely tied to spatial cognition and perception 
(Pendyala et al., 2002). For example, the spatial perception of, and preference for, a 
certain kind of land-use mix and built environment in residential choice may be based on 
household desires to relax time constraints through increased accessibility to activities. 
Possible future lines of enquiry in this area include: (1) the recognition of the types of 
time-space interactions in an activity-travel context, (2) data collection for understanding 
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time-space interactions, (3) trade-offs between temporal (activity timing and duration) 
and spatial (spatial location) decisions, (4) impact of information and communication 
technologies on time-space interactions, (5) variation of the time-space interactions based 
on activity type, time-of-day, and activity-travel environment characteristics, and (6) 
variation of the time-space interactions over longer periods of time (weeks, months and 
years). 
 In this context, recent developments in space-time geographic information 
system (GIS) methods (see for example, the 3D GIS approach by Kwan and Lee, 2004; 
the temporal GIS approach by Shaw and Xin, 2003; and the integrated spatio-temporal 
approach of Kang and Scott, 2006) offer very useful visualization, computation, and 
analytical methods. It is expected that these methods will further advance our 
understanding of human activity-travel behavior in general, and space-time interactions 
and constraints in particular. 
 
17.5 INTEGRATION WITH OTHER MODELS 
This section focuses on the integration of activity-based travel forecasting models with 
other model systems of interest in urban transportation planning, with the objective of 
building comprehensive urban modeling systems. 

17.5.1 The Need for Integration 
Conventional wisdom has long indicated that sociodemographics, land use, and 
transportation are intricately linked (Mitchell and Rapkin, 1954,). The recognition of the 
linkages among sociodemographics, land use, and transportation is important for realistic 
forecasts of travel demand. Conventional methods, however, use aggregate exogenous 
forecasts of sociodemographics and land use to feed into travel models and, 
consequently, cannot capture the multitude of interactions that arise over space and time 
among the different decision makers. The shortcomings of the conventional approach 
have led researchers to develop approaches that capture sociodemographic, land-use, and 
travel behavior processes in an integrated manner. Such behavioral approaches 
emphasize the interactions among population socioeconomic processes, the households’ 
long-term choice behaviors, and the employment, housing, and transportation markets 
within which individuals and households act (Waddell et al., 2001). From an activity-
travel forecasting perspective, these integrated urban modeling systems need to consider 
several important issues that are outlined in this section. 

17.5.1.1 Generation of Disaggregate Sociodemographic Inputs for forecast years 
Activity-based travel forecasting systems require highly disaggregate sociodemographics 
as inputs, including data records of each and every individual and household in the study 
area. However, it is practically infeasible to collect the information for each and every 
household and individual in any study area. Hence, disaggregate population generation 
procedures are used to create synthetic records of each and every individual and 
household for activity-travel microsimulation purposes (see Bowman, 2005 for reviews 
of synthetic population generators). However, to be able to forecast the individual 
activity-travel patterns and aggregate transport demand at a future point in time, activity-
based travel demand models require, as inputs, the disaggregate sociodemographics, and 
the land-use and transportation system characteristics of that point in time. While the 
above mentioned SPG procedures can generate the disaggregate sociodemographic inputs 
for the base year (i.e., the year at which the activity-travel prediction starts and for which 
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the aggregate demographic inputs and the survey data are available), other model systems 
are required to forecast the disaggregate sociodemographics at a future point in time.  

Individuals and households evolve through a sociodemographic process over 
time. As the sociodemographic process unfolds, individuals may move onto different life-
cycle stages such as begin/finish schooling, enter/exit the labor market, and change jobs. 
Similarly, households may decide to own a house as opposed to rent, move to another 
location, and acquire/dispose off a vehicle. Such sociodemographic processes need to be 
modeled explicitly to ensure that the distribution of population attributes (personal and 
household) and that of land-use characteristics are representative at each point of time 
and are sufficiently detailed to support the activity-travel forecasting models. There have 
been relatively limited attempts to build models of sociodemographic evolution for the 
purpose of travel forecasting. Examples in the transportation field include the 
CEMSELTS system by Bhat and Colleagues (Eluru et al., 2008), DEMOgraphic (Micro) 
Simulation (DEMOS) system by Sundararajan and Goulias (2003), and the Micro-
analytic Integrated Demographic Accounting System (MIDAS) by Goulias and Kitamura, 
1996. Examples from the non-transportation field include DYNACAN (Morrison, 1998), 
and LIFEPATHS (Gribble, 2000).   

17.5.1.2 Connecting Long-term and Short-term Choices 
Most of the travel demand models treat the longer-term choices concerning the housing 
(such as residential tenure, housing type, and residential location), vehicle ownership and 
employment choices (such as enter/exit labor market and employment type) as exogenous 
inputs. Consequently, the land-use (in and around which the individuals live, work and 
travel to) is treated as exogenous to travel demand models. In such cases, the possibility 
that households can adjust with combinations of short- and long-term behavioral 
responses to land-use and transportation policies is systematically ignored (Waddell, 
2001).  A significant increase in transport costs, for example, could result in a household 
adapting with any combination of daily activity and travel pattern changes, vehicle 
ownership changes, job location changes, and residential location changes.  

While most of the travel forecasting models treat the long-term choices and hence 
the land-use as exogenous to travel behavior, there have been recent attempts to model 
the longer-term and shorter-term choices in an integrated manner, including 
OPUS/Urbansim (Waddell et al., 2006), ILUTE (Salivini and Miller, 2005), and 
ILUMASS (Strauch et al., 2003). There have also been models studying the relationships 
between individual elements of land-use related choices and travel behavior choices. 
However, most of these models and model systems are trip-based. That is, although these 
studies attempt to study the land-use and travel behavior processes in an integrated 
manner, the travel behavior aspect of these studies is based on a trip-based approach. 
There have been a few attempts of integrated land-use and activity-travel behavior studies 
using the activity-based approach to activity-travel analysis (see Ben-Akiva and 
Bowman, 1998; Pinjari et al., 2007). Also, ILUTE and OPUS are recent prototype based 
systems of more comprehensive integrated land-use and activity-travel forecasting 
systems. 

17.5.1.3 Demand-supply interactions 
The end use of travel forecasting models is, in general, the prediction of traffic flow 
conditions under alternative sociodemographic, land use, and transportation level-of-
service scenarios. The traffic flow conditions, which are usually predicted after a traffic 
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assignment procedure, are a result of the interactions between the individual-level 
demand for travel, and the travel options and the level-of-service (or the capacity) 
supplied by the transportation system. It is important to consider such demand-supply 
interactions for accurate predictions of activity-travel behavior, and the resulting traffic 
flow conditions. Further, since the travel level-of-service (and hence the available 
transportation capacity) varies with the temporal variation in travel demand, and the 
demand for travel is, in-turn, dependent on the transportation level-of-service, the 
interactions may be time-dependent and hence dynamic in nature. Thus, it is important to 
consider the dynamics of the interactions between travel demand and the supply of 
transportation capacity. See Lin et al. (2007) for a review of the literature on the 
integration of transportation demand and supply analysis, and for a development of an 
integrated activity-based travel forecasting and dynamic traffic assignment modeling 
system. 

Similar to how transportation market processes (i.e., the interactions between 
individual-level travel demand and the transportation supply) influence the individual-
level activity-travel patterns, the housing and labor market processes influence the 
residential and employment choices of individuals. In fact, individuals act within the 
context of, and interact with, housing, labor, and transportation markets to make their 
residential, employment, and activity-travel choices. While the transportation market 
process may occur over shorter time frames (such as days or weeks), the employment and 
housing market processes are likely to occur over longer periods of time. That is, in the 
short-term, the daily activity-travel patterns are directly influenced by the dynamics of 
the interaction between travel demand and supply, while in the long-term the activity-
travel behavior is indirectly affected by the impact of housing and labor market processes 
on the residential and employment choices, and also on the land-use and transportation 
system. If the activity-travel behavior of individuals and households is to be captured 
properly over a longer time frame, the interactions with, and the evolution over time of, 
all these markets should be explicitly considered, along with the sociodemographic 
processes and the long-term housing and employment choices.   

17.5.2 An Integrated Urban Modeling System 
In view of the preceding discussion, travel demand models should be integrated with 
other models that can forecast, over a multi-year time frame, the sociodemographic 
processes and the housing and employment market processes. The integrated model 
system should be able to capture the above discussed supply-demand interactions in the 
housing, employment, and transportation markets. A conceptual framework of such a 
system, labeled as the Comprehensive Econometric Microsimulator for Urban Systems 
(CEMUS), being developed at the University of Texas, is provided in the diagram below. 
 



 27

 
 

Figure 17.4 Schematic of the CEMUS Model System 
CEMUS places the focus on households and individuals, and businesses and developers 
that are the primary decision makers in an urban system. CEMUS takes as inputs the 
aggregate socioeconomics and the land-use and transportation system characteristics for 
the base year, as well as policy actions being considered for future years. The aggregate-
level base year socioeconomic data are first fed into a  synthetic population generator 
(SPG) module to produce a disaggregate-level synthetic  dataset describing a subset of 
the socioeconomic characteristics of all the households and individuals residing in the 
study area (see Guo and Bhat, 2007a for information on the SPG module).  Additional 
base-year socioeconomic attributes related to mobility, schooling, and employment at the 
individual level, and residential/vehicle ownership choices at the household level, that are 
difficult to synthesize (or cannot be synthesized) directly from the aggregate 
socioeconomic data for the base year are simulated by the Comprehensive Econometric 
Microsimulator for SocioEconomics, Land-use, and Transportation System 
(CEMSELTS) module.  The base year socioeconomic data, along with the land-use and 
transportation system attributes, are then run through the Comprehensive Econometric 
Microsimulator for Daily Activity-travel Patterns (CEMDAP) to obtain individual-level 
activity-travel patterns.  The activity-travel patterns are subsequently passed through a 
dynamic traffic micro-assignment scheme to determine path flows, link flows, and 
transportation system level-of-service by time of day (see Lin et al., 2007 for a discussion 
of recent efforts on integrating an activity-travel simulator and a dynamic traffic 
microsimulator). The resulting transportation system level-of-service characteristics are 
fed back to CEMSELTS to generate a revised set of activity-travel environment 
attributes, which is passed through CEMDAP along with the socioeconomic data to 
generate revised individual activity-travel patterns. This “within-year” iteration is 
continued until base-year equilibrium is achieved. This completes the simulation for the 
base year.   
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 The next phase, which takes the population one step forward in time (i.e. one 
year), starts with CEMSELTS updating the population, urban-form, and the land-use 
markets (note that SPG is used only to generate the disaggregate-level synthetic 
population for the base-year and is not used beyond the base year). An initial set of 
transportation system attributes is generated by CEMSELTS for this next time step based 
on (a) the population, urban form, and land-use markets for the next time step, (b) the 
transportation system attributes from the previous year in the simulation, and (c) the 
future year policy scenarios provided as input to CEMUS. The CEMSELTS outputs are 
then input into CEMDAP, which interfaces with a dynamic micro-assignment scheme in 
a series of equilibrium iterations for the next time step (just as for the base year) to obtain 
the “one time step” outputs. The loop continues for several time steps forward until the 
socioeconomics, land-use, and transportation system path/link flows and transportation 
system level of service are obtained for the forecast year specified by the analyst. During 
this iterative process, the effects of the prescribed policy actions can be evaluated based 
on the simulated network flows and speeds for any intermediate year between the base 
year and the forecast year. 
 
17.6. SUMMARYAND DISCUSSION  
Over the past three decades, the activity-based approach has received significant attention 
and seen considerable progress. This chapter discusses the fundamentals of the activity-
based approach to travel demand modeling, and presents an overview of various activity-
based travel forecasting systems. Further, the chapter discusses the recent progress in 
understanding the time, space, and inter-personal interaction aspects of activity-travel 
behavior and identifies future research directions. Finally, the chapter emphasizes the 
need to integrate activity-travel forecasting systems with other systems to design 
comprehensive and integrated urban modeling systems. 

It is worth noting here that several research directions identified in the chapter 
correspond to understanding the decision-making processes that lead to observed activity-
travel patterns. For example, in the context of activity-travel timing outcomes, there has 
been an increasing recognition that observed activity-travel timing outcomes are a result 
of an underlying activity scheduling process that involves the planning and execution of 
activities over time (see Doherty et al., 2002). Similarly, in a spatial context, there is a 
need to understand individuals’ perceptions of space when making activity-travel 
decisions. Further, in the context of inter-individual interactions, more work is needed to 
understand the negotiation and altruistic processes among individuals leading up to 
observed assignment of activity-travel tasks and allocation of vehicles. However, to date, 
the dominant approach to understanding activity-travel behavior is the analysis of the 
relationship between exogenous socio-demographics and activity-travel environment 
characteristics on the one hand, and the revealed activity-travel patterns on the other. This 
approach does not shed light on the underlying mental processes and behavioral decision-
making mechanisms that lead to observed activity-travel patterns. Specifically, we lack a 
detailed understanding of (1) how households and individuals acquire and assimilate 
information about their environment, (2) how this information or perception is used to 
make activity-travel decisions, (3) what aspects of activity travel behavior (and to what 
extent) are pre-planned (subject to dynamic adjustment and re-adjustment) versus 
unplanned, (4) the order in which decisions are made, and (5) how individuals interact 
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with other individuals and their activity-travel environment when making activity-travel 
decisions. One contributing factor for the limited amount of research on decision 
processes is the lack of detailed data on decision-making mechanisms leading up to the 
revealed activity-travel patterns. Recent attempts to construct surveys designed to collect 
information on the activity scheduling process include, for example, Doherty et al. 
(2004), Roorda and Miller (2005), Mohammadian and Doherty (2006), and Lee and 
McNally (2006). In addition to the need for such detailed data, theoretical developments 
are needed to understand the decision-making processes that lead up to observed activity-
travel patterns. In this context, alternatives to the utility maximization approach, such as 
lexicographic ordering and satisficing decision-making rules, behavioral theories of 
bounded rationality, loss sensitivity and subordinateness, variety seeking etc. may need to 
be explored. A related issue that must be addressed is heterogeneity in decision-making 
processes across decision-making agents. 
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