
 

 

Recent Methodological Advances Relevant to Activity and Travel Behavior Analysis 

 

 

Chandra R. Bhat 

Department of Civil Engineering, ECJ 6.8, University of Texas at Austin, Austin, TX, 78712 

Email: bhat@mail.utexas.edu 

 

 

Resource Paper Prepared for the IATBR Conference held in Austin, Texas, September 1997 

 

 

ABSTRACT 

This paper presents an overview of the considerable progress in modeling methodology that has 

been made in recent years and that is directly relevant to improved transportation policy analysis 

and travel demand forecasting. The overview is organized under three broad classes of models: 

discrete choice models, hazard-based duration models, and limited-dependent variable models. 

Because of the objective of the paper, the focus here is on the methodological aspects of various 

studies rather than on the empirical findings from the studies. Some important methodological 

topics have necessarily been omitted from this review because of space considerations. We have 

tried to specifically identify these topics at the beginning of the paper and provide references to 

recent reviews on these topics.  
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1.  INTRODUCTION 

This paper reviews recent methodological advances relevant to modeling activity and travel 

behavior. The overview of the state-of-the-art in modeling is motivated by two considerations. 

First, discrete-choice models that have been well established in the past (such as the multinomial 

logit and nested logit models) have been generalized in several ways to make them more realistic 

in their representations of travel choice behavior. Second, the increasing realization of the need 

to model travel as part of a larger (and holistic) activity-travel pattern has led to the analysis of 

activity attributes (such as activity participation, activity duration, home-stay duration, etc.) 

either in isolation or jointly with one another. This has led to the adoption of relatively non-

traditional (in the travel analysis field) methodologies such as duration analysis, limited-

dependent variable models, and computational process models.  

 Several points should be noted before proceeding to the remainder of the paper. First, this 

paper is not intended to provide detailed information regarding the structures or estimation 

procedures for the models reviewed. Such a task would not be feasible within the space 

constraints of a single paper. Second, the paper does not touch on methodological developments 

in survey data collection techniques or analytic imputation techniques for missing data. These 

issues have been addressed in papers presented at a recent conference in Stockholm (see Stopher, 

1996 and Brownstone, 1996). Third, the paper does not address methodological advances in joint 

estimation from revealed preference (RP) as well as stated preference (SP) data. Instead, the 

paper focuses on estimation from revealed preference data only. The reader is referred to 

Hensher (1994a) for an overview of the methods of RP-SP estimation. Fourth, this paper does 

not review computational process models since comprehensive reviews of these models have 

been conducted not very long ago by pioneers of the approach who are more knowledgeable 
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regarding the approach than the current author (see Gärling et al., 1994; Golledge et al., 1994; 

Kitamura and Fujii, 1996; and Kurani and Kitamura, 1996). An additional reason for not 

focusing on computation process models (CPMs) here is that while there has been considerable 

advancement in these methods, some basic issues related to statistical estimation and calibration 

of CPMs are yet to be defined and resolved (Golledge et al., 1994). Fifth, we focus on methods 

for cross-sectional data rather than longitudinal (or panel) data in the current paper. In concept, 

the methods discussed here for cross-sectional analysis can be extended to panel analysis after 

accommodating the additional econometric issues introduced by panel data. Finally, the paper 

does not review advances in methods related to demand-supply interaction analysis or demand-

supply equilibration.  

 The paper is organized as follows. The next section focuses on discrete choice models. 

Section 3 presents models for time duration. Section 4 discusses limited-dependent variable 

models in activity-travel behavior analysis. Section 5 concludes the paper. 

 

2.  DISCRETE CHOICE MODELS 

The multinomial logit (MNL) model has been the most widely used structure for modeling 

discrete choices in travel behavior analysis. The random components of the utilities of the 

different alternatives in the MNL model are assumed to be independent and identically 

distributed (IID) with a type I extreme-value (or Gumbel) distribution (McFadden, 1973). The 

MNL model also maintains an assumption of homogeneity in responsiveness to attributes of 

alternatives across individuals (i.e., an assumption of response homogeneity). For example, in a 

mode choice model, the MNL maintains the same utility parameters on the level-of-service 

attributes across individuals. Finally, the MNL model also maintains an assumption that the error 
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variance-covariance structure of the alternatives is identical across individuals (i.e., an 

assumption of error variance-covariance homogeneity). The three assumptions together lead to 

the simple and elegant closed-form mathematical structure of the MNL. However, these 

assumptions also leave the MNL model saddled with the “independence of irrelevant 

alternatives” (IIA) property at the individual level (Ben-Akiva and Lerman, 1985).1 In the next 

three sections, we will discuss generalizations of the MNL structure along each of the three 

dimensions mentioned above: a) Relaxation of the IID (across alternatives) error structure, b) 

Relaxation of response homogeneity, and c) Relaxation of the error variance-covariance structure 

homogeneity. While we discuss each of the dimensions separately, one can combine extensions 

across different dimensions to formulate several more generalized and richer structures. 

 

2.1.  Relaxation of the IID (across alternatives) error structure 

The rigid inter-alternative substitution pattern of the multinomial logit model can be relaxed by 

removing, fully or partially, the IID assumption on the random components of the utilities of the 

different alternatives. The IID assumption can be relaxed in one of three ways: a) allowing the 

random components to be correlated while maintaining the assumption that they are identically 

distributed (identical, but non-independent random components), b) allowing the random 

components to be non-identically distributed (different variances), but maintaining the 

independence assumption (non-identical, but independent random components), and c) allowing 

the random components to be non-identical and non-independent (non-identical, non-

independent random components). We discuss each of these alternatives below. 

                                                 
1 Travel demand literature, in general, attributes the IIA property to the IID assumption of the 
error covariance structure and does not discuss the assumptions of response homogeneity and 
error variance-covariance homogeneity.  
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2.1.1.  Identical, non-independent random components 

The distribution of the random components in models which use identical, non-independent 

random components can be specified to be either normal or type I extreme value. Discrete choice 

literature has mostly used the type I extreme value distribution since it nests the multinomial 

logit and results in closed-form expressions for the choice probabilities. 

 The models with the type I extreme value error distribution belong to the Generalized 

Extreme Value (GEV) class of random utility-maximizing models. Five model structures have 

been formulated and applied within the GEV class. These are: the Nested Logit (NL) model, the 

Paired Combinatorial Logit (PCL) model, the cross-nested logit (CNL) model, the Ordered GEV 

(OGEV) model, and the Multinomial Logit-Ordered GEV (MNL-OGEV) model.  

 The nested logit (NL) model permits covariance in random components among subsets 

(or nests) of alternatives (each alternative can be assigned to one and only one nest). Alternatives 

in a nest exhibit an identical degree of increased sensitivity relative to alternatives not in the nest 

(Williams, 1977 and Daly and Zachary, 1978). Each nest in the NL structure has associated with 

it a dissimilarity (or logsum) parameter that determines the correlation in unobserved 

components among alternatives in that nest (see Daganzo and Kusnic, 1993). The range of this 

dissimilarity parameter should be between 0 and 1 for all nests if the NL model is to remain 

globally consistent with the random utility maximizing principle. A problem with the NL model 

is that it requires a priori specification of the nesting structure. This requirement has at least two 

drawbacks. First, the number of different structures to estimate in a search for the best structure 

increases rapidly as the number of alternatives increases. Second, the actual competition 

structure among alternatives may be a continuum that cannot be accurately represented by 
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partitioning the alternatives into mutually exclusive subsets. The NL model has been applied to 

multidimensional choice contexts (for example, see Waddell 1993 and Evers, 1990) and 

unidimensional contexts where subsets of the available alternatives share common unobserved 

components of utility (for example, see Forinash and Koppelman, 1993 and Brownstone and 

Small, 1989). 

 The paired combinatorial logit (PCL) model initially proposed by Chu (1989) and 

recently examined in detail by Koppelman and Wen (1997) generalizes, in concept, the nested 

logit model by allowing differential correlation between each pair of alternatives (the nested logit 

model, however, is not nested within the PCL structure). Each pair of alternatives in the PCL 

model has associated with it a dissimilarity parameter (subject to certain identification 

considerations that Koppelman and Wen are currently studying) that is inversely related to the 

correlation between the pair of alternatives. All dissimilarity parameters have to lie in the range 

of 0 to 1 for consistency with random utility maximization. In the intercity mode choice 

empirical analysis of Koppelman and Wen, the PCL model which allows correlation between air 

and car modes as well as between train and car modes performed better than the nested logit 

models which nests air and car only or train and car only. Koppelman and Wen derive the 

expressions for the self- and cross-elasticities in the PCL model and show empirically that the 

policy impacts suggested by the restrictive MNL and nested logit models can be quite different 

from those suggested by the statistically superior (in their empirical context) PCL model. 

 Another generalization of the nested logit model is the cross-nested logit (CNL) model of 

Vovsha (1996). In this model, an alternative need not be exclusively assigned to one nest as in 

the nested logit structure. Instead, an alternative can appear in different nests with different 

probabilities based on what Vovsha refers to as allocation parameters. A single dissimilarity 
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parameter is estimated across all nests in the CNL structure. Unlike in the PCL model, the nested 

logit model can be obtained as a special case of the CNL model when each alternative is 

unambiguously allocated to one particular nest.2 Vovsha proposes a heuristic procedure for 

estimation of the CNL model. This procedure appears to be rather cumbersome and its heuristic 

nature makes it difficult to establish the statistical properties of the resulting estimates. 

  The ordered GEV model was developed by Small (1987) to accommodate correlation 

among the unobserved random utility components of alternatives close together along a natural 

ordering implied by the choice variable (examples of such ordered choice variables might 

include car ownership, departure time of trips, etc.). The simplest version of the OGEV model 

(which Small refers to as the standard OGEV model) accommodates correlation in unobserved 

components between the utilities of each pair of adjacent alternatives on the natural ordering; 

that is, each alternative is correlated with the alternatives on either side of it along the natural 

ordering.3 The standard OGEV model has a dissimilarity parameter that is inversely related to 

the correlation between adjacent alternatives (this relationship does not have a closed form, but 

the correlation implied by the dissimilarity parameter can be obtained numerically). The 

dissimilarity parameter has to lie in the range of 0 to 1 for consistency with random utility 

maximization. Empirical applications of the OGEV model have not been very successful thus far 

(that is, the OGEV model was not significantly better than the MNL or the dissimilarity 

                                                 
2 A related model is the cross-correlated logit (CCL) model of Williams (1977). The CCL model 
allows correlation among alternatives across both dimensions in a two-dimensional choice model 
by specifying the error covariance matrix to include variance terms specific to each dimension 
(the error terms specific to each dimension and to the combination of dimensions are assumed to 
be gumbel distributed). Vovsha's CNL model, on the other hand, enables a flexible correlation 
structure by allowing the same alternative to appear in multiple nests. The CCL model is not 
consistent with random utility maximization, while the CNL model is.  
3 The reader will note that the nested logit model cannot accommodate such a correlation 
structure because it requires alternatives to be grouped into mutually exclusive nests.  
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parameter exceeded one). However, it is important to note that only two such attempted 

applications have been documented to date, both by Small (1987). 

 The MNL-OGEV model formulated by Bhat (1997a) generalizes the nested logit model 

by allowing adjacent alternatives within a nest to be correlated in their unobserved components. 

This structure is best illustrated with an example. Consider the case of a multi-dimensional 

model of travel mode and departure time for nonwork trips. Let the departure time choice 

alternatives be represented by several temporally contiguous discrete time periods in a day such 

as AM peak (6AM-9AM), AM mid-day (9AM-12Noon), PM mid-day (12Noon-3PM), PM peak 

(3PM-6PM), and other (6PM-6AM). An appropriate nested logit structure for the joint mode-

departure time choice model may allow the joint choice alternatives to share unobserved 

attributes in the mode choice dimension, resulting in an increased sensitivity among time-of-day 

alternatives of the same mode relative to the time-of-day alternatives across modes. However, in 

addition to the uniform correlation in departure time alternatives sharing the same mode, there is 

likely to be increased correlation in the unobserved random utility components of each pair of 

adjacent departure time alternatives due to the natural ordering among the departure time 

alternatives along the time dimension. Accommodating such a correlation generates an increased 

degree of sensitivity between adjacent departure time alternatives (over and above the sensitivity 

among non-adjacent alternatives) sharing the same mode. A structure that accommodates the 

correlation patterns just discussed can be formulated by using the multinomial logit (MNL) 

formulation for the higher-level mode choice decision and the standard ordered generalized 

extreme-value (OGEV) formulation (see Small, 1987) for the lower-level departure time choice 

decision (i.e., the MNL-OGEV model). The MNL-OGEV structure, in the context of the mode-

departure time example, has two dissimilarity parameters: one is associated with the correlation 
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among joint alternatives sharing the same mode, and the other is associated with the increased 

correlation between adjacent departure time alternatives of the same mode. For consistency with 

random utility maximization, both these parameters should be less than 1 and the latter 

dissimilarity parameter should be smaller than the former dissimilarity parameter.  

 The advantage of all the GEV models discussed above is that they allow partial 

relaxations of the independence assumption among alternative error terms while maintaining 

closed-form expressions for the choice probabilities. The problem with these models is that they 

are consistent with utility maximization only under rather strict (and often empirically violated) 

restrictions on the dissimilarity parameters. The origin of these restrictions can be traced back to 

the requirement that the variance of the joint alternatives be identical in the GEV models. 

 

2.1.2.  Non-identical, independently distributed random components 

 The concept that heteroscedasticity in alternative error terms (i.e., independent, but not 

identically distributed error terms) relaxes the IIA assumption is not new (see Daganzo, 1979), 

but has received little (if any) attention in travel demand modeling and other fields. In fact, the 

IIA property has become virtually synonymous with the assumption of lack of similarity (or 

independence of random components) among the choice alternatives in travel demand literature. 

Four models have been proposed which allow non-identical random components. The first is the 

negative exponential model of Daganzo (1979), the second is the heteroscedastic multinomial 

logit (HMNL) model of Swait and Stacey (1996), the third is the oddball alternative model of 

Recker (1996) and the fourth is the heteroscedastic extreme-value (HEV) model of Bhat (1995). 

 Daganzo (1979) used independent negative exponential distributions with different 

variances for the random error components to develop a closed-form discrete choice model that 
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does not have the IIA property. His model has not seen much application since it requires that the 

perceived utility of any alternative not exceed an upper bound (this arises because the negative 

exponential distribution does not have a full range).4 Daganzo's model does not nest the 

multinomial logit model. 

 Swait and Stacey (1996) allowed heteroscedasticity by specifying the variance of the 

alternative error terms to be functions of observed alternative characteristics. The error terms 

themselves are assumed to be type I extreme-value. The scale parameter iθ  characterizing the 

variance of each alternative i is written as )exp( ii zβ′=θ , where iz  is a vector of attributes 

associated with alternative i and β  is a corresponding vector of parameters to be estimated. The 

resulting model has a closed-form structure, though it also places the restriction that the differing 

variances of the alternatives can be attributed solely to observed alternative characteristics. Swait 

and Stacey applied the model to brand choice modeling using scanner panel data. 

Recker (1996) proposed the oddball alternative model that permits the random utility 

variance of one “oddball” alternative to be larger than the random utility variances of other 

alternatives. This situation might occur because of attributes that define the utility of the oddball 

alternative, but are undefined for other alternatives. Then, random variation in the attributes that 

are defined only for the oddball alternative will generate increased variance in the overall 

random component of the oddball alternative relative to others. For example, operating schedule 

and fare structure define the utility of the transit alternative, but are not defined for other modal 

alternatives in a mode choice model. Consequently, measurement error in schedule and fare 

structure will contribute to the increased variance of transit relative to other alternatives. The 
                                                 
4 It is useful only in instances where there is a clear bound to the perceived attractiveness of an 
alternative, such as “in route choice models where it may not be unreasonable to assume that the 
perceived attractiveness of a route cannot be positive, since perceived travel time cannot be 
reasonably expected to be negative” (Daganzo, 1979; p16). 



 

10 

model has a closed-form structure for the choice probabilities based on convenient distributional 

assumptions on the random components. However, the model is quite restrictive in requiring that 

all alternatives except one have identical variance. 

Bhat (1995) formulated the heteroscedastic extreme-value (HEV) model which assumes 

that the alternative error terms are distributed with a type I extreme value distribution. The 

variance of the alternative error terms is allowed to be different across all alternatives (with the 

normalization that the error terms of one of the alternatives has a scale parameter of one for 

identification). Consequently, the HEV model can be viewed as a generalization of Recker's 

oddball alternative model. The HEV model is applied to an intercity mode choice context. The 

motivation is that unequal error variances are likely to occur when the variance of an unobserved 

variable that affects choice is different for different alternatives. For example, if comfort is an 

unobserved variable whose values vary considerably for the train mode (based on, say, the 

degree of crowding on different train routes) but little for the automobile mode, then the random 

components for the automobile and train modes will have different variances (Horowitz, 1981). 

The HEV model does not have a closed-form solution for the choice probabilities, but involves 

only a one-dimensional integration regardless of the number of alternatives in the choice set. 

Bhat develops an efficient Gauss-Laguerre quadrature technique to approximate the one-

dimensional integral. The HEV model can be modified to accommodate variations in the scale 

parameter because of observed alternative attributes, as done by Swait and Stacey (1996).5 

 The advantage of the heteroscedastic class of models discussed above is that they allow a 

flexible cross-elasticity structure among alternatives than many of the GEV models discussed 

                                                 
5 The reader is referred to Hensher (1996a; 1996b) and Hensher et al. (1996) for applications of 
the HEV model to estimation from revealed and stated preference data. The HEV model has also 
been applied in a marketing context by Allenby and Ginter (1995). 
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earlier. Specifically, the models (except the oddball model) permit differential cross-elasticities 

among all pairs of alternatives. The limitation (relative to the GEV models) is that the choice 

probabilities do not have a closed-form analytical expression in the HEV model. 

  

2.1.3.  Non-identical, non-independent random components 

Models with non-identical, non-independent random components use one of two general 

structures: the first is an error-components structure and the second is the general multinomial 

probit (MNP) structure. 

The error-components structure partitions the overall error into two components: one 

component which allows the random components to be non-identical and non-independent, and 

the other component which is specified to be independent and identically distributed across 

alternatives. In particular, consider the following utility function for alternative i: 

iii

iii

zV
VU

ε+µ′+=
ζ+=

     
                 (1) 

where iV  and iζ  are the systematic and random components of utility, and iζ  is further 

partitioned into two components, izµ′  and iε . iz  is a vector of observed data associated with 

alternative i, µ  is a random vector with zero mean and density )|( Σµg , Σ  is the variance-

covariance matrix of the vector µ , and iε  is independently and identically standard distributed 

across alternatives with density function f(.). The component izµ′  induces heteroscedasticity and 

correlation across unobserved utility components of the alternatives (see Train, 1995). While 

different distributional assumptions might be made regarding f(.) and g(.), it is typical to assume 

a standard type I extreme value for f(.), and a normal distribution for g(.). This results in an error-

components model with a logit kernel. On the other hand, if a standard normal distribution is 
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used for f(.), the result is a error-components probit model. Both these structures will involve 

integrals in the choice probability expressions which do not have a closed-form solution. The 

estimation of these models is achieved using logit simulators (in the first case) or probit 

simulators (in the second case). Different and very general patterns of heteroscedasticity and 

correlation in unobserved components among alternatives can be generated by appropriate 

specification of the µ  and iz  vectors. For example, iz  may be specified to be a row vector of 

dimension M with each row representing a group m of alternatives sharing common unobserved 

components. The row(s) corresponding to the group(s) of which i is a member take(s) a value of 

one and other rows take a value of zero. The vector µ  (of dimension M) may be specified to 

have independent elements, each element having a variance component 2
mσ . The result of this 

specification is a covariance of 2
mσ  among alternatives in group m and heteroscedasticity among 

the groups of alternatives. This structure is less restrictive than the nested logit structure in that 

an alternative can belong to more than one group. Also, by structure, the variance of the 

alternatives is different (see Bhat, 1997b for application of this structure to a multi-dimensional 

choice context).6 More general structures for izµ′  in equation (1) are presented by Ben-Akiva 

and Bolduc (1996) and Brownstone and Train (1996).      

                                                 
6 Appropriate identification conditions will have to be imposed in this structure. In the most 
general case, each group can represent a pair of alternatives. If there are I alternatives, the 
number of pairs of alternatives is I(I-1)/2. However, we cannot accommodate a covariance term 
for each pair; one of the pairs should be normalized to have a covariance of zero, so the 
covariance of the other pairs is relative to that of the base pair. Unfortunately, the covariances are 
generated by variance terms and so are pre-specified to be positive. Thus, the normalization of 
which pair to select as the base is not innocuous; the base pair should be the one with least 
covariance, which of course we do not know a priori (see also Ben-Akiva and Bolduc, 1996 for 
a related discussion). Thus, in general, we have to impose a restrictive structure for the 
covariance patterns based on a priori theoretical considerations.    
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 The general multinomial probit (MNP) structure does not partition the error terms, and 

estimates (subject to certain identification considerations) the variance-covariance matrix of the 

overall random components among the different alternatives (see Bunch and Kitamura, 1990; 

Lam, 1991; Lam and Mahmassani, 1991; and Chintagunta and Honore, 1996). The advantage of 

the MNP model is that the structure is more general than the error-components models (the error 

components structure essentially parameterizes the variance-covariance matrix in an MNP model 

using an a priori structure). However, McFadden and Train (1996) have shown that the error-

components formulation can approximate a multinomial probit formulation as closely as one 

needs it to. Also, the MNP model introduces several additional parameters in the covariance 

matrix which generates a number of conceptual, statistical and practical problems, including 

difficulty in interpretation, highly non-intuitive model behavior, low precision of covariance 

parameter estimates, and increased difficulty in transferring models from one space-time 

sampling frame to another (see Horowitz, 1991 and Currim, 1982). Further, the error-

components models can be estimated using simulators which are conceptually simple and easy to 

program. These simulators involve simultaneous draws from the appropriate density function 

with unrestricted ranges for all alternatives. Consequently, they are inherently faster than 

simulators for the MNP model where the range for the random draw of one alternative is 

dependent on the value of the earlier draws for other alternatives (see Brownstone and 

Train, 1996). 

 

2.2.  Relaxation of response homogeneity 

The standard multinomial logit, and other models which relax the IID assumption across 

alternatives, typically assume that the parameters determining the sensitivity to attributes of the 
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alternatives are the same across individuals in the population. Ideally, we should obtain 

individual-specific parameters for the subjective evaluations of alternative attributes. However, 

the data used for travel behavior modeling is usually cross-sectional. This precludes estimation at 

the individual level and constrains the modeler to pool the data across individuals. In such pooled 

estimations, the analyst should accommodate differences in responsiveness to alternative 

attributes (response heterogeneity) across individuals. In particular, if the assumption of 

homogeneity is imposed when there is heterogeneity, the result is biased and inconsistent 

parameter and choice probability estimates (see Chamberlain, 1980). 

Response homogeneity may be relaxed in one of two ways. In the first approach (which 

we will refer to as the varying coefficients approach), the coefficients on alternative attributes are 

allowed to vary across individuals while maintaining a single utility function. In the second 

approach (which we will refer to as the segmentation approach), individuals are assigned to 

segments based on their personal/trip characteristics and a separate utility function is estimated 

for each segment. Each of these approaches is discussed in the subsequent two sections. 

 

2.2.1.  Varying coefficients approach 

Consider the utility qiU  that an individual q associates with an alternative i and write it 

as: 

qiqqiqiiqi xzU η′+ε+δ′+α=                 (2) 

where iα  is an individual-invariant bias constant, qz  is a vector of observed individual 

characteristics, iδ  is a vector of parameters to be estimated, qiε  is a random term representing 

idiosyncrasies in preferences, and qη  is a vector representing the responsiveness of individual q 
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to a corresponding vector of alternative-associated variables qix . The qiε  terms may be specified 

to have any of the structures discussed in Section 2. Conditional on qη  and the assumption 

regarding the qiε  terms, the form of the conditional choice probabilities can be developed. The 

unconditional choice probabilities corresponding to the conditional choice probabilities will 

depend on the response heterogeneity specification adopted for the qη  vector. Three 

specifications are possible, as discussed next. 

 The first specification allows for systematic response heterogeneity by writing each 

element qkη  of the vector qη  as a function of a vector qkw  of relevant observed individual 

characteristics: )( qkkkqk wfβ+γ=η ( qkη  represents the response coefficient of the qth individual 

to the kth alternative attribute. If we pre-specify a functional form for )( qkwf , then the 

unconditional choice probabilities take the same structure as the conditional (on qη ) choice 

probabilities. A problem with the specification of the form )( qkkkqk wfβ+γ=η , however, is that 

it does not guarantee the correct sign of the response coefficient qkη  for all individuals. For 

example, in a mode choice context, we expect the effect of the travel time and cost variables to 

be negative for all individuals, which is not guaranteed by writing )( qkkkqk wfβ+γ=η . An 

alternative method that accommodates systematic response heterogeneity and, at the same time, 

ensures the appropriate sign on the response coefficients is to specify )exp( qkkkqk wβ′+γ±=η . 

The ‘+’ sign is applied for a non-negative response coefficient and the ‘-‘ sign is applied for a 

non-positive response coefficient. The unconditional choice probabilities with this exponential 

specification are the same as the conditional probabilities after replacing qkη  with 

)exp( qkkk wβ′+γ± . The resulting model, however, now has a non-linear-in-parameters utility 
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function. It is important to emphasize that incorporating systematic heterogeneity may contribute 

to a more realistic representation of response sensitivity, but does not relax the IIA property (if 

the IID error assumption across alternatives of the MNL is maintained). 

 The second specification for the response coefficients allows random variation is 

sensitivity, but does not accommodate differences in sensitivity due to observed individual 

attributes. One form for the random variation may be qkkqk v+γ=η , where kγ  is the mean 

response sensitivity across all individuals in the population and qkv  is a term representing 

random taste variation of individual q from the mean. Alternatively, if the response coefficient 

needs to be of a particular sign, then one can use an alternative form: )exp( qkkqk v+γ±=η . qkv  

is typically assumed to be normally distributed, which implies that the response coefficients are 

normally distributed if one uses the first form and log-normally distributed if one uses the second 

form. Applications of random response heterogeneity include Fisher and Nagin, 1985, Revelt 

and Train, 1996, Train, 1996, Ben-Akiva et al., 1993, Gonül and Srinivasan, 1993, and 

Mehndiratta, 1996. The qkv  terms in the random response heterogeneity specification represent 

the random tastes of person q and are common to the utility of all alternatives i. Therefore, 

variance in the qkv  terms across individuals induces a correlation among the utility of different 

alternatives (see McFadden and Train, 1996). As a result, the random response specification does 

not exhibit the restrictive independence from irrelevant alternatives (IIA) property even if the IID 

error assumption across alternatives of the MNL is maintained. 

   The third (and most general) specification for the response coefficients superimposes 

random response heterogeneity over the systematic response heterogeneity: 

)exp( qkqkkkqk vw +β′+γ±=η , where qkv  is a term representing random taste variations across 
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individuals with the same observed characteristics qkw . Bhat (1996a) adopts such a specification 

in an intercity mode choice context. 

 

2.2.2.  Segmentation approaches 

Two segmentation approaches may be identified depending on whether the assignment of 

individuals to segments is exogenous (deterministic) or endogenous (probabilistic).  

 The exogenous segmentation approach to capturing heterogeneity assumes the existence 

of a fixed, finite number of mutually-exclusive market segments (each individual can belong to 

one and only one segment). The segmentation is based on key socio-demographic variables (sex, 

income, etc.). Within each segment, all individuals are assumed to have identical preferences and 

identical sensitivities to level-of-service variables (i.e., the same utility function). In the 

exogenous segmentation approach, the assignment of individuals to segments is deterministic 

and is implicit in the definition of the segments. A choice model is estimated subsequently for 

each segment. The total number of segments is a function of the number of segmentation 

variables and the number of segments defined for each segmentation variable. Ideally, the 

analyst would consider all socio-demographic and trip-related variables available in the data for 

segmentation (we will refer to such a segmentation scheme as full-dimensional exogenous 

market segmentation). However, the full-dimensional segmentation approach has a practical 

limitation; the total number of segments grows very fast with the number of segmentation 

variables, creating both interpretational and estimation problems due to inadequate observations 

in each segment (with typical sample sizes used for mode choice analysis). To overcome this 

limitation, researchers have resorted to a Limited-Dimensional Exogenous Market Segmentation 

method, which uses only a subset of the demographic and trip variables (typically one or two) for 
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segmentation. It is not uncommon for the subset of variables to be decided a priori based on 

judgment, though one could estimate models with different subsets and then select the preferred 

subset for segmentation. The advantage of the limited-dimensional approach is that it is practical 

(the parameters can be efficiently estimated with data sizes generally available for mode choice 

analysis) and is easy to implement. The disadvantage is that its practicality comes at the expense 

of suppressing potentially higher-order interaction effects of the segmentation variables on 

response to alternative attributes. In addition, an intrinsic problem with the exogenous market 

segmentation methods is that the threshold values of the continuous segmentation variables (for 

example, income) which define segments have to be established in a rather ad hoc fashion. Also, 

the exogenous approach does not relax the IIA property if the IID (across alternatives) 

assumption on the random components is maintained. 

The endogenous market segmentation approach attempts to accommodate heterogeneity 

in a practical manner not by suppressing higher-order interaction effects of segmentation 

variables (on response to alternative attributes), but by reducing the dimensionality of the 

segment-space. Each segment, however, is allowed to be characterized by a large number of 

segmentation variables. The appropriate number of segments representing the reduced segment-

space is determined statistically by successively adding an additional segment till a point is 

reached where an additional segment does not result in a significant improvement in fit. 

Individuals are assigned to segments in a probabilistic fashion based on the segmentation 

variables. The approach jointly determines the number of segments, the assignment of 

individuals to segments, and segment-specific choice model parameters. Since this approach 

identifies segments without requiring a multi-way partition of data as in the full-dimensional 

exogenous market segmentation method, it allows the use of many segmentation variables in 
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practice and, therefore, facilitates incorporation of the full order of interaction effects of the 

segmentation variables on preference and sensitivity to alternative attributes. The method also 

obviates the need to (arbitrarily) establish the threshold values defining segments for continuous 

segmentation variables. The approach does not exhibit the individual-level independence from 

irrelevant alternatives (IIA) property of the exogenous segmentation approach even if a 

multinomial logit structure is maintained within each segment. A potential disadvantage is that 

the model estimation can be unstable. However, Bhat (1997c) has recently proposed a stable and 

effective hybrid estimation approach for the endogenous segmentation model that combines an 

Expectation-Maximization (EM) algorithm with standard likelihood maximization routines. 

Other applications of the endogenous segmentation approach may be found in Gopinath and 

Ben-Akiva (1995), Swait (1994), Gupta and Chintagunta (1994), Dayton and Macready (1988), 

and Swait and Sweeney (1996).7 

 

2.3.  Relaxation of error variance-covariance structure homogeneity 

The assumption of error variance-covariance structure homogeneity across individuals can be 

relaxed either by a) allowing the variance components to vary across individuals (variance 

relaxation), b) allowing the covariance components to vary across individuals (covariance 

relaxation), and c) allowing both variance and covariance components to vary across individuals 

(variance-covariance relaxation). 

 

                                                 
7 In concept, the endogenous segmentation approach is equivalent to a random-coefficients 
approach with non-parametric discrete probability distributions for the heterogeneity 
specification (see Jain et al., 1994 and Chintagunta and Honore, 1996).   
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2.3.1.  Variance relaxation 

Swait and Adamowicz (1996) formulate a heteroscedastic multinomial logit (HMNL) model that 

allows the variance of alternatives to vary across individuals based on attributes characterizing 

the individual and her/his environment (the variance, however, does not vary across alternatives). 

The motivation for such a model is that individuals with the same deterministic utility for an 

alternative may have different abilities to accurately perceive the overall utility offered by the 

alternative. The HMNL model has exactly the same structure as the heteroscedastic model 

described in Section 2.1.2, though the motivations for their development are different. Swait and 

Adamowicz apply their model to analyze market structure in a consumer behavior study and find 

evidence of varying variance components across individuals. McMillen (1995) also proposes a 

heteroscedastic model in the context of spatial choice. Both the above studies specify the 

variance of alternatives to be a deterministic function of individual-related characteristics and do 

not relax the IIA property if the IID (across alternatives) structure on the random components is 

maintained. Steckel and Vanhonacker (1988), on the other hand, develop a heteroscedastic logit 

model that treats the heteroscedasticity across individuals in the variance of alternatives as a 

random variable. This random variable is assumed to take an exponential distribution, and 

appears as a parameter in a generalized type I extreme value distribution for the random 

components of utility. The resulting mixing distribution for the random components of utility 

provides a closed-form expression for choice probabilities. Steckel and Vanhonacker show that 

their model is not saddled with the IIA property. 
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2.3.2.  Covariance relaxation 

Bhat (1997d) develops a nested logit model that allows heterogeneity across individuals in the 

magnitude of covariance among alternatives in a nest. The heterogeneity is incorporated by 

specifying the logsum (dissimilarity) parameter(s) in the nested logit model to be a deterministic 

function of individual-related characteristics. The model is applied to intercity mode choice 

analysis, where such heterogeneity may be likely to occur. For example, consider a nested model 

with car and train grouped as surface modes and air treated as a non-nested alternative. The 

degree of (increased) sensitivity (or cross-elasticity) between the two surface transportation 

modes relative to the air mode may differ based on characteristics of the traveler such as income 

(lower income may imply greater sensitivity between the surface modes) and attributes of the 

traveler's trip such as trip distance (shorter trip distances may lead to greater sensitivity between 

surface modes). Kamakura et al. (1996) adopt a different approach to accommodating covariance 

heterogeneity across individuals in their joint product form type-brand choice marketing analysis 

of peanut butter purchase behavior (there are two major product forms; creamy and crunchy; and 

several major brands such as Peter Pan and Skippy). They specify two nesting structures based 

on whether product form type (brand choice) is at the top (bottom) level of bottom (top) level 

and then assign individuals to each nesting structures probabilistically.  

 The author is not aware of any study that allows both variance and covariance 

components to vary across individuals (variance-covariance relaxation), though in concept the 

extension involves just a combination of the variance and covariance relaxations discussed 

earlier. 

 



 

22 

3.  HAZARD DURATION MODELS  

Hazard-based duration models are ideally suited to modeling duration data. Such models focus 

on an end-of-duration occurrence (such as end of shopping activity participation) given that the 

duration has lasted to some specified time (Kiefer, 1988; Hensher and Mannering, 1994). This 

concept of conditional probability of “failure” or termination of activity duration recognizes the 

dynamics of duration; that is, it recognizes that the likelihood of ending a shopping activity 

participation depends on the length of elapsed time since start of the activity. 

 Hazard-based duration models, which had their roots in biometrics and industrial 

engineering, are being increasingly used to model duration time in the fields of economics, 

transportation, and marketing (see Kiefer, 1988, Hensher and Mannering, 1994, and Jain and 

Vilcassim, 1991 for a review of the applications of duration models in economics, transportation, 

and marketing, respectively). To include an examination of covariates which affect duration 

time, most studies use a proportional hazard model which operates on the assumption that 

covariates act multiplicatively on some underlying or baseline hazard. 

 Two important specification issues in the proportional hazard model are a) the 

distributional assumptions regarding duration (equivalently, the distributional assumptions 

regarding the baseline hazard) and b) the assumptions about unobserved heterogeneity (i.e., 

unobserved differences in duration across people). We discuss each of these issues in Sections 

3.1 and 3.2, respectively. The extension of the simple univariate duration model to include 

multiple duration processes, multiple spells from the same individual, and related issues is the 

focus of Section 3.3.    

 



 

23 

3.1.  Baseline hazard distribution 

The distribution of the hazard may be assumed to be one of many parametric forms or may be 

assumed to be nonparametric. Common parametric forms include the exponential, Weibull, log-

logistic, gamma, and log-normal distributions. Different parametric forms imply different 

assumptions regarding duration dependence. For example, the exponential distribution implies 

no duration dependence; that is, the time to “failure” is not related to the time elapsed. The 

Weibull distribution generalizes the exponential distribution and allows for monotonically 

increasing or decreasing duration dependence. The form of the duration dependence is based on 

a parameter that indicates whether there is positive duration dependence (implying that the 

longer the time has elapsed since start of the duration, the more likely it is to exit the duration 

soon), negative duration dependence (implying that the longer the time has elapsed since start of 

the duration, the less likely it is to exit the duration soon), or no duration dependence (which is 

the exponential case). The log-logistic distribution allows a non-monotonic hazard function. The 

choice of the distributional form for the hazard function may be made on theoretical grounds. 

However, a serious problem with the parametric approach is that it inconsistently estimates the 

baseline hazard and the covariate effects when the assumed parametric form is incorrect (Meyer, 

1990). Sometimes, there may be little theoretical support for any particular parametric shape. In 

such cases, one might consider using a nonparametric baseline hazard. The advantage of using a 

nonparametric form is that even when a particular parametric form is appropriate, the resulting 

estimates are consistent and the loss of efficiency (resulting from disregarding information about 

the hazard’s distribution) may not be substantial (Meyer, 1987).  

 Within the nonparametric approach, one may use the partial likelihood framework 

suggested by Cox (1972) which estimates the covariate effects but not the baseline hazard, or the 
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approach suggested by Han and Hausman (1990) which estimates both the covariate effects and 

the baseline hazard parameters (also sometimes referred to as the incidental or nuisance 

parameters) simultaneously (the Han and Hausman approach is an alternative formulation of the 

approach originally proposed by Prentice and Gloeckler, 1978 and extended by Meyer, 1987). 

Between the Cox and Han and Hausman (HH) approaches, the HH approach has many 

advantages. First, in many studies, the dynamics of duration is itself of direct interest; the Cox 

approach, however, conditions out the nuisance parameters. Second, the Cox approach becomes 

cumbersome in the presence of many tied failure times (Kalbfleisch and Prentice, 198, page 

101). Third, unobservable heterogeneity (which we discuss in the next section) cannot be 

accommodated within the Cox partial likelihood framework without the presence of multiple 

integrals of the same order as the number of observations in the risk set at each time period. 

Estimation in the presence of such large orders of integration is impractical even with recent 

advances in the computation of multidimensional integrals. In addition, the HH approach is the 

only appropriate method when duration models are to be estimated from interval-level data 

arising from the grouping of underlying continuous duration times. The parametric and Cox 

approaches use density function terms in their respective likelihood functions which are 

appropriate only for estimation from continuous duration data. If they are used to model grouped 

(or interval-level) duration data, the resulting estimates would generally be inconsistent (Prentice 

and Gloeckler, 1978). 

 Most studies of duration to date have made an a priori assumption of a parametric 

hazard. The most relevant duration studies for activity-travel modeling include a) the homestay 

duration models for commuters (i.e., the time between coming home from work and leaving 

home for another out-of-home activity participation) of Mannering et al. (1992) and Hamed and 
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Mannering (1993), b) the sex-differentiated shopping duration models of Niemeier and Morita 

(1996), c) the shopping activity duration during the evening work-to-home commute of Bhat 

(1996b), and d) the delay duration model for border crossings by Paselk and Mannering (1992). 

These studies have been reviewed in greater detail by Pas (1996). Of these studies, Bhat (1996b) 

uses a nonparametric baseline hazard specification, while others use a parametric baseline hazard 

specification. Some studies in the marketing literature have used general parametric forms which 

nest the more frequently used Weibull, exponential and Gompertz distributions. Examples 

include Jain and Vilcassim (1991) and Vilcassim and Jain (1991). 

 

3.2.  Unobserved heterogeneity 

Unobserved heterogeneity arises when unobserved factors (i.e., those not captured by the 

covariate effects) influence durations. It is well established now that failure to control for 

unobserved heterogeneity can produce severe bias in the nature of duration dependence and the 

estimates of the covariate effects (Heckman and Singer, 1984; Lancaster, 1985; Sharma, 1987). 

 The standard procedure used to control for unobserved heterogeneity is the random 

effects estimator (see Flinn and Heckman, 1982). This involves specification of a distribution for 

the unobserved heterogeneity (across individuals) in the population. Two general approaches 

may be used to specify the distribution of unobserved heterogeneity. One approach is to use a 

parametric distribution such as a gamma distribution or a normal distribution (most earlier 

research has used a gamma distribution). The problem with the parametric approach is that there 

is seldom any justification for choosing a particular distribution; further, the consequence of a 

choice of an incorrect distribution on the consistency of the model estimates can be severe (see 

Heckman and Singer, 1984). A second approach to specifying the distribution of unobserved 
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heterogeneity is to use a nonparametric representation for the distribution and to estimate the 

distribution empirically from the data. This is achieved by approximating the underlying 

unknown heterogeneity distribution by a finite number of support points and estimating the 

location and associated probability masses of these support points. The nonparametric approach 

enables consistent estimation since it does not impose a prior probability distribution. 

 Application of duration models in the transportation field have, for the most part, ignored 

unobserved heterogeneity (but see Bhat, 1996b and Hensher, 1994b). Researchers in the 

marketing and economics fields have paid more attention to unobserved heterogeneity. However, 

even in these fields, most applications have employed a parametric heterogeneity specification 

(see Gupta, 1991, Manston et al., 1986, Meyer, 1990, Han and Hausman, 1990, all of whom use 

a gamma distribution). Very few studies have adopted a nonparametric heterogeneity distribution 

(see Jain and Vilcassim, 1991 and Vilcassim and Jain, 1991). 

 Among the duration studies mentioned above, Bhat (1996b) uses a nonparametric 

baseline hazard (based on the Han and Hausman approach) and a nonparametric unobserved 

heterogeneity specification (based on the Heckman and Singer approach). By allowing a 

nonparametric distribution for both the baseline hazard and unobserved heterogeneity, this paper 

sheds light on the importance of allowing a nonparametric specification for the baseline hazard, 

for unobserved heterogeneity, and for both of these. The finding from the study indicates that, at 

least in the context of the empirical analysis of the paper, the nonparametric baseline-

nonparametric unobserved heterogeneity specification is preferable to other parametric 

specifications for the baseline or for heterogeneity or both. This result is important. It is contrary 

to the commonly held view that the choice of the mixing distribution may not be important if the 



 

27 

baseline hazard is nonparametrically specified (see Meyer, 1990; Han and Hausman, 1990; 

Manston et al., 1986). 

 

3.3.  Multiple duration processes 

The discussion thus far has focused on the case where durations end as a result of a single event. 

For example, the length of unemployment ends when an individual gains employment (see 

Meyer, 1990) or home stay duration ends when an individual leaves home to participate in an 

activity (Mannering et al. 1992). A limited number of studies have been directed toward 

modeling the more interesting and realistic situation of multiple duration-ending outcomes. For 

example, failure in the context of unemployment duration (i.e., exit from the unemployment 

spell) can occur either because of a new job, recall to the old job, or withdrawal from the labor 

force. Similarly, home stay duration may be terminated because of participation in out-of-home 

shopping activity, social activity, or personal business. 

 Previous research on multiple duration-ending outcomes (i.e., competing risks) has 

extended the univariate proportional hazard model to the case of two competing risks in one of 

three ways. The first method assumes independence between the two risks (see Katz, 1986 and 

Gilbert, 1992). Under such an assumption, estimation proceeds by estimating a separate 

univariate hazard model for each risk. Unfortunately, the assumption of independence is 

untenable in most situations and, at the least, should be tested. The second method generates a 

dependence between the two risks by specifying a bivariate parametric distribution for the 

underlying durations directly. For example, Diamond and Hausman (1985) specify a log 

bivariate-normal distribution for the durations. This method has the result of placing very strong 

(and non-testable) parametric restrictions on the form of the baseline cause-specific hazard 
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functions. The third method accommodates interdependence between the competing risks by 

allowing the unobserved components affecting the underlying durations to be correlated. Cox 

and Oakes (1984, page 159-161) develop a model which generates a positive dependence 

between the underlying durations based on common dependence on an observed random 

variable. More recently, Han and Hausman (1991) propose a model which allows unrestricted 

correlation in random unobserved components affecting the competing risks. This model permits 

nonparametric baseline hazard estimation, enables estimation from interval-level data of the type 

commonly found in econometrics and other fields, and retains an interpretation as an 

incompletely observed continuous-time hazard model.  

 A shortcoming of all the competing risk methods discussed above is that they tie the exit 

state of duration very tightly with the length of duration. The exit state of duration is not 

explicitly modeled in these methods; it is characterized implicitly by the minimum competing 

duration spell. Such a specification is restrictive, since it assumes that the exit state of duration is 

unaffected by variables other than those influencing the duration spells and implicitly determines 

the effects of exogenous variables on exit state status from the coefficients in the duration hazard 

models (this situation is analogous to the difference between a general endogenous switching 

regression equation system and the more restrictive disequilibrium market model of demand and 

supply; see Maddala, 1983, page 308).  

 Bhat (1996c) considers a generalization of the Han and Hausman competing risk 

specification where the exit state is modeled explicitly and jointly with duration models for each 

potential exit state. The resulting formulation follows strictly from the proportional hazard 

specification for the duration spells. This is in contrast to the Han and Hausman specification 

which uses an approximation to the proportional hazard specification. The model also extends 
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the Han and Hausman framework to multivariate competing risks.8 Bhat's formulation does not 

require placing parametric restrictions on the shapes of hazards within discrete time intervals, as 

required in the specifications of Han and Hausman, 1991 and Sueyoshi, 1992 (Han and Hausman 

and Sueyoshi maintain an assumption of a constant hazard within each discrete time-interval in 

deriving the competing-risk model specification). Another desirable characteristic of the model is 

that it is a generalized multiple durations model where the durations can be characterized either 

by multiple entrance states or by multiple exit states or by a combination of entrance and exit 

states. The focus of econometric literature has been on multiple durations due to multiple exit 

states (i.e., the competing risk model). However, in many applications, multiple durations may 

arise because of multiple entrance states. Examples of multiple entrance states include layoffs, 

being fired, or first-time labor force entry for unemployment duration, activity-type participation 

choice (shopping, recreation, visiting, etc.) for activity duration, and type of initial acquaintance 

(in college, though personal advertisement, etc.) for marriage durations. Ignoring the entrance 

state when there are common unobserved factors affecting entrance status and spell duration will 

lead to biased and inconsistent hazard model parameters due to classic sample selection 

problems. In this context, information on the absence of a duration spell itself may be valuable; 

that is, it may be important to consider the “no-entry” state (for example, the “employed” state in 

unemployment duration modeling, the “home” state in activity duration modeling, or the 

“unmarried” state in marriage duration modeling) as an explicit entrance state in modeling 

durations for other entrance states.  

                                                 
8 Sueyoshi (1992) has also extended the Han and Hausman framework to the multivariate case. 
However, like all earlier competing risk models, he characterizes the exit state implicitly based 
on the duration spells. Further, the Sueyoshi approach becomes cumbersome when dealing with 
multivariate competing risks since it requires computation of multivariate integrals. In contrast, 
Bhat's approach requires only the computation of bivariate integrals independent of the number 
of competing risks. 
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 Most multiple-duration hazard formulations do not accommodate unobserved 

heterogeneity because it makes the estimation difficult. However, with the computing 

capabilities available today, this should not be an excuse for ignoring unobserved heterogeneity. 

There has also been only limited work in accommodating dependence in the effect of unobserved 

variables across multiple spells from the same individual. Hensher (1994b) and Mealli and 

Pudney (1996) have formulated and estimated a competing risks model that captures both 

unobserved heterogeneity specific to each spell as well as unobserved "fixed" dependence across 

multiple spells from the same individual. These papers also serve as exhaustive reviews of recent 

competing risk formulations.9 Other issues in the context of hazard models not discussed here 

include incorporating the time-invariant effect of time varying covariates or allowing for time-

varying effects of time-invariant covariates. For recent work in these areas, the reader is referred 

to Hensher (1994b), McCall (1994) and Wedel et al. (1995). 

 

4.  LIMITED-DEPENDENT VARIABLE MODELS  

Limited-dependent variable models encompass a wide variety of structures which may be 

classified in one of two broad categories. The first category recognizes the discontinuous nature 

of a variable (such as the ordinal nature of number of activity stops or several zero values for 

out-of-home activity duration because of non-participation in out-of-home activity). The second 

category accommodates the interdependence between a discrete choice variable and another 

related continuous or grouped or ordinal variable (such as the interdependence between mode 

                                                 
9 Ettema et al., 1995 also formulate a competing risk model to model activity duration with the 
termination states being any one of several activity types such as in-home leisure, 
work/education, shopping, etc. They use an accelerated lifetime model to include the effect of 
covariates so that the covariates rescale time directly. Unfortunately, with such a specification, 
they are unable to capture unobserved heterogeneity and also they have to impose the assumption 
of independence among risks.  
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choice to work and the number of activity stops during the evening commute). In general, the 

structures for the second category subsume those of the first category as special cases. Thus, 

modeling out-of-home activity participation (a discrete choice) and out-of-home activity duration 

(a continuous choice) using a discrete/continuous framework is more general than considering 

duration as being a discontinuous variable with bunching of values at zero for individuals who 

do not participate in out-of-home activity. In this paper, we will focus on the more general 

second category of inter-related discrete and non-discrete variable systems. The non-discrete 

variable can take several forms. However, the three most interesting cases in the context of travel 

and activity modeling are the continuous, ordinal, and grouped forms. Further, the structure for 

the discrete/ordinal and discrete/grouped variable systems are very similar; so we will examine 

limited-dependent variable systems under two headings: discrete/continuous and discrete/ordinal 

models. 

 

4.1.  Discrete/continuous models 

The methods developed for, and applications of, discrete/continuous choices can be broadly 

classified under two categories based on the number of alternatives involved in the discrete 

choice decision. The first category is the dichotomous alternative case and the second is the 

polychotomous alternative case. By far, most of the attention to date has focused on the 

dichotomous case (see Heckman, 1976 and Lee, 1981 for estimation methods and Willis and 

Rosen, 1980 and Sakamoto and Chen, 1991 for applications; Amemiya, 1985 and Maddala, 1983 

provide a review of economic applications, while Winship and Mare, 1992 provide a review of 

sociological applications). In contrast to the dichotomous case, the polychotomous case has 

received much lesser attention (see Hay 1980, Dubin and McFadden 1983, Hanemann 1984, and 
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Lee 1983 for estimation methods and Hensher et al. 1992, Bhat 1996, Barnard and Hensher 

1992, Hamed and Mannering 1993, and Mannering and Winston 1985 for applications; 

Mannering and Hensher, 1987 provide a review of transportation-related applications). Almost 

all applications of the dichotomous case have used either a logit or probit approach to model the 

discrete choice in the discrete/continuous model. Applications of the polychotomous case have 

generally used a multinomial logit-based approach to model the discrete choice due to the 

resulting simplicity in structure.  

 Hamed and Mannering (1993) use the discrete/continuous model framework to model 

activity type choice, travel time duration to the activity, and activity duration. They use a limited-

information (two-stage) maximum likelihood method in their estimation where all variables 

specific to (or determined by) the activity type in which the traveler participated and appearing in 

the continuous travel time/activity duration equations are replaced by their expected values as 

obtained from the discrete activity type choice model. A similar limited-information procedure is 

used by Damm (1981) in his study of activity participation choice and activity duration, as well 

as by Hensher et al. (1992), Train (1986), and Mannering and Winston (1985) in their 

automobile brand type/automobile use models. 

 Barnard and Hensher (1992) estimate a discrete/continuous model of shopping 

destination choice and retail expenditure. They use Lee's (1983) transformation method for 

polychotomous choice situations with non-normal error distributions in the choice model. Bhat 

(1996d) has also used Lee's method for discrete/continuous models, but extends the method to 

jointly estimate a polychotomous discrete choice and two continuous choices (rather than a 

single continuous choice). Lee's method has two advantages over the other polychotomous (two-

stage) methods discussed earlier. First, Lee's method enables full-information maximum-
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likelihood estimation, while the other methods are two-stage methods in which the discrete 

choice model is estimated first and then the continuous choice model is estimated using one of 

several methods to account for selectivity bias (see Dubin 1985, page 158). Thus Lee's method 

facilitates asymptotically more efficient estimates in the discrete/continuous choice model. 

Second, the expressions for the asymptotic covariance matrices of the two-stage estimates are 

very complicated, while the asymptotic covariance matrix in Lee's method can be obtained 

directly from the maximum likelihood estimation. Lee's method is also very flexible and can 

accommodate any model formulation for the discrete choice decision with little change in the 

methodology.  

 

4.2.  Discrete/ordinal models 

There has been relatively little empirical work in the area of joint discrete/ordinal variable 

systems compared to the joint discrete/continuous systems reviewed in the previous section. As 

in the case of discrete/continuous systems, discrete/ordinal models can also be classified under 

the dichotomous and polychotomous categories based on the number of alternatives involved in 

the discrete choice decision. The next two paragraphs review studies in each of the two 

categories. 

 Bhat and Koppelman (1993) estimate a joint model of employment status (represented by 

a binary flag indicating whether or not an individual is employed) and annual income earnings. 

Observed income earnings in their data is in grouped form (i.e., observed only in grouped 

categories such as < 20,000, 20,000-39,999, 40,000-59,999, etc.). Since it is likely that people 

who are employed are also likely to be the people who can earn higher incomes, the two 

variables are modeled jointly. Bhat (1996) subsequently has used a similar structure to impute a 
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continuous income value from missing and grouped income observations in a data set. The 

motivation for this work is two fold. First, while income is measured in grouped form, it is the 

continuous measure of income that frequently appears as an explanatory variable in labor supply 

models, market research models and travel demand models (Killingsworth 1983, Koppelman et 

al. 1993, Golob 1989). Second, there might be systematic differences in unobserved 

characteristics affecting income between respondent and non-respondent households (or 

individuals). For example, it seems at least possible that households with above-average income, 

other things being equal, will be more reluctant than other households to provide information on 

income (see Lilliard et al., 1986). 

 Bhat (1997e) has recently developed a joint model of polychotomous work mode choice 

and number of non-work activity stops during the work commute (i.e., the total number of non-

work stops made during the morning home-to-work commute and evening work-to-home 

commute). The joint model provides an improved basis to evaluate the effect on peak-period 

traffic congestion of conventional policy measures such as ridesharing improvements and solo-

auto use dis-incentives. Traditional mode choice models address the question “What is the effect 

of a change in, say, solo-auto in-vehicle travel time (for example, due to conversion of an 

existing general-purpose lane to a high-occupancy lane) on work mode choice?”. If commute 

trips were the sole contributors to peak period congestion, then the shifts in work mode choice 

provide a direct indication of the potential impact on congestion. A more pertinent question to 

address today, however, is “What is the effect of a change in, say again, solo-auto in-vehicle time 

on work mode choice and number of non-work stops?”. This question is prompted by the 

recognition that vehicle trips due to non-work stops also add to peak period congestion. Thus, 

understanding the effect of a policy action on work mode choice and number of non-work stops 
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allows us to evaluate the effect on peak-period congestion through the impact on both direct 

commute vehicle-trips and additional vehicle-trips due to non-work stops.  

 

5.  SUMMARY AND CONCLUSIONS  

This paper has reviewed methodological developments in the econometric field of direct 

relevance to activity and travel behavior modeling. Clearly, there has been substantial progress in 

the development and practical applicability of the methodologies in the recent past. This progress 

can be traced to at least four factors: a) The need for realistic representations of the behavioral 

decision processes underlying activity-travel decisions, b) The ability to provide micro-level 

demographic inputs required by activity-travel models, c) Better tools for data storage and 

processing, and d) The advent of simulation techniques to approximate multi-dimensional 

integrals. 

 

5.1.  Need for realistic representation of behavioral decision processes 

The travel demand models used widely today were developed in the late sixties and have seen 

little change over the years. These models were developed primarily to evaluate alternative major 

capital improvements. While this continues to remain an important objective of travel demand 

models, there is a shift in emphasis from evaluating the long-term investment-based strategies to 

understanding travel behavior responses to shorter term congestion management policies such as 

alternate work schedules, telecommuting, and congestion-pricing. The traditional travel demand 

models are not suited to such a task because, due to their many simplifying assumptions and 

narrow “individual-trip” perspective, they are unable to examine the potentially complex 

behavioral responses to demand management actions (Spear, 1994). For example, a change in 
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work schedule to an early arrival home may lead to increased trip-making at the evening because 

of the additional time available to participate in out-of-home activities. If some of this travel is 

undertaken during the same time as the PM peak-period travel, the extent of congestion 

alleviation projected by traditional models will not be realized (see Jones et al., 1990). Similarly 

displacements of travel (and its associated consequences) to other times of day due to a change in 

activity patterns caused by adoption of work telecommuting strategies cannot be examined by 

traditional models (see Mokhtarian, 1993). Also, traditional models do not incorporate adequate 

richness in the substitution pattern among alternatives or the different sensitivities of individuals 

to changes in the transportation system. This can lead to inappropriate evaluations of travel 

demand management policies (Stopher, 1993). Finally, from a transportation and regional 

planning perspective, reasonably accurate forecasts of travel demand are needed to be better 

prepared for the future and to endeavor to avoid serious conflicts between transportation supply 

and demand. Inasmuch as the travel needs of the population is changing rapidly (due to changes 

in lifestyle, changes in activity needs of particular subgroups such as the elderly, changes in 

household structure and social environment, changes in urban structure, changes in technology, 

etc.), it is obvious that models with a sound behavioral casual linkage between travel patterns 

and the travel environment will be critical to good design and planning of future transportation 

infrastructure. 

 

5.2.  Ability to provide micro-level inputs for activity-travel models 

The need for realistic representations of activity and travel decisions requires modeling of these 

choices at the individual (or household) level. Once the individual-level models are estimated 

from a sample, they can be used to examine the impact of various policies (in the short-term) or 



 

37 

forecast activity-travel patterns (in the long term). In either case, detailed disaggregate-level 

inputs of the characteristics of the decision-making entities and other attributes (such as options 

available and constraints encountered) of the choice context are required. Oftentimes, such 

information is not readily available. For example, consider a destination choice model which has 

been estimated on a sample and is to be applied to study the policy impact of imposing 

congestion-pricing on selected spatial corridors. The destination choice model might include 

household and individual level characteristics as exogenous determinants (for example, older 

individuals might prefer destinations which are close by or higher income earning individuals 

may be willing to travel greater distances, etc.). It is quite possible, however, that we will not 

have observations of individuals in the sample making trips between certain zonal pairs. In such 

a case, we cannot study the impact of the congestion-pricing policy on trip-making between 

those zonal pairs. Similarly, in a forecasting context, there will be changes in the characteristics 

of the population and the currently available sample may become unrepresentative of the future 

population. In both the cases mentioned above, there is a need for a mechanism to generate the 

appropriate disaggregate-level inputs. This issue has been at the core of the debate on the 

practical usefulness of disaggregate-level models. Miller (1996) summarizes it well as follows "I 

believe a strong case can be made that a primary reason for the relatively slow diffusion of 

disaggregate modeling methods into travel demand forecasting practice is due to the difficulty 

practitioners have in generating the disaggregate forecast inputs required by these methods". 

However, with the development of micro-simulation techniques to generate the required 

disaggregate-level inputs either through updating of the current sample over time or by 

“synthesizing” a representative sample from other supplementary aggregate-level information 

such as census data, it is now possible to apply models which are more realistic in their 
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representations of behavior to policy analysis and forecasting. The reader is referred to the 

comprehensive review by Miller (1996) on techniques and research issues associated with micro-

simulation.  

 

5.3.  Better tools for data storage and processing 

The tools available for data storage and processing have seen dramatic improvement over the 

past few years. Desktop and even notebook computers are able to store data of large sizes and are 

remarkably fast in the retrieval and processing of such data. This has made possible the 

estimation of models deemed earlier to be impractical. The improved computer processing 

capabilities has also spurred the development of new and behaviorally rich model formulations. 

Another area that has developed quite considerably is Geographic Information Systems (GIS) 

technology. Fotheringham and Rogerson (1993) discuss the potential of integrating travel 

analysis methods with GIS technology. A specific application of GIS technology to activity-

travel analysis is the development of a measure of spatial accessibility for use in the modeling of 

multistop and multi-purpose travel (see Arentze et al., 1994a,b,c; Lee, 1996). Golledge et al. 

(1994) and Kwan (1994) have used GIS to calibrate a production system model of activity 

scheduling behavior. Caliper Corporation's TransCAD GIS software represents an important 

bridge in linking GIS developments with travel demand modeling practice. Specifically, 

TransCAD attempts to package advanced econometric modeling techniques within an interface 

that is user-friendly, enables spatial representation of the transportation network and geographic 

database management, and allows an intuitive spatial display of the results from the travel 

demand models. 
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5.4.  Advent of simulation techniques to approximate multi-dimensional integrals 

Recent advances in the field of Monte Carlo simulation methods to evaluate multi-dimensional 

integrals have contributed considerably to the feasibility in estimating complex discrete-choice 

and other limited-dependent variable models. Two types of simulators that are of particular 

interest in the activity-travel area are the probit-based and the logit-based simulators. The former 

is suitable for discrete-choice structures that use a normal distribution for the random 

components and the latter is appropriate for various extensions of the multinomial logit structure 

(see Chib and Greenberg, 1996, Hajivassiliou et al., 1996, and Brownstone and Train, 1996 for 

reviews of such simulation techniques). The underlying concept in such methods is to 

approximate the integration by computing the integrand at various values drawn from the 

appropriate multi-variate distribution of the variable vector over which the integration is being 

carried out and taking the mean across the computed integrand values. Several issues arise 

during the actual implementation of the approach, which we do not discuss here. The application 

of probit-simulators in the travel behavior field can be found in the work of Mahmassani and his 

colleagues who have used the multinomial probit structure to examine the day-to-day dynamics 

in departure time and route choice of commuters (see Lam and Mahmassani, 1991; Mahmassani 

and Jou, 1996; Mahmassani, 1997). Logit-based simulators have been used in the travel demand 

field by Brownstone and Train (1996), Bhat (1996a, 1997b), and Ben-Akiva and Bolduc (1996). 

 The formulation and estimation of behaviorally rich models has been greatly facilitated 

by the developments discussed above. However, the fields of micro-simulation, Geographic 

Information Systems, and simulation of integrals are continually evolving and by all accounts 

there is still considerable progress to be made. As these fields develop, and as practitioners and 

researchers in the activity-travel behavior field become familiar with them, there is bound to be 
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more empirical applications using these tools. This, along with the need for improved policy 

analysis and accurate demand forecasting, should contribute further toward the implementation 

of improved methodologies in the area of activity and travel behavior research. 
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