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ABSTRACT 
The Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns (CEMDAP) 
is a micro-simulation implementation of a continuous-time activity-travel modeling system. 
Given as input various socio-demographic, land-use, and transportation level-of-service 
attributes, the system provides as output the complete daily activity-travel patterns for all 
individuals of a population. This paper describes the current state of CEMDAP and highlights 
the salient features of the software. CEMDAP models not only the activity-travel pattern of 
adults, but also that of children, while incorporating the inter-dependencies between the activity-
travel patterns of children and their parents. The software implementation of CEMDAP has been 
developed using the Object-Oriented (OO) paradigm to support software extensibility and rapid 
implementation of system variants. Further, the implementation supports multithreading and data 
caching capabilities to enhance computational performance. The paper discusses these features, 
and also presents the results from an application of CEMDAP to the Dallas-Fort Worth area. 
Verification exercises establish the reasonableness of CEMDAP outputs. 
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1. INTRODUCTION 
CEMDAP, or the Comprehensive Econometric Microsimulator for Daily Activity-travel 
Patterns, is a disaggregate (individual-level), continuous-time, activity-travel forecasting system 
developed at The University of Texas at Austin. In a paper in 2004, Bhat et al. (1) described the 
methodological structure and the software implementation details of the first version of this 
microsimulation system.  Since then, CEMDAP has undergone substantial enhancements in the 
choice dimensions modeled and the forecasting sequence, as well as the software design. This 
paper describes the new econometric modeling system and the microsimulation framework 
embedded within CEMDAP, and also presents an application of the software to the Dallas-Fort 
Worth (DFW) area.  

The reader will note here that the design and architecture of CEMDAP is generic. In 
particular, the modeling platform can be applied to any metropolitan area, as long as local area 
models are estimated to produce the appropriate sensitivity parameters. Currently, we have 
estimated all the CEMDAP models using the DFW data, and the resulting 
specifications/parameters are embedded as default specifications/parameters. Moreover, the user 
can use the graphical interface in the program to modify the specifications and/or parameter 
values if local area specifications/parameters are available (see the CEMDAP user manual by 
Bhat et al. [2] for details on modifying the specifications). The system has also been designed to 
provide a friendly diagrammatic interface to help the user understand the logic of the system. 

The rest of the paper is organized as follows. Section 2 describes the econometric 
modeling system and the microsimulation framework embedded within CEMDAP, highlighting 
its many salient features. Section 3 is focused on the software design issues. Specifically, the 
software architecture and the strategies adopted for enhancing the computational performance 
are discussed. Section 4 provides an overview of the procedures used to generate inputs for 
applying CEMDAP to the DFW area. The validation of model application is discussed in Section 
5. Finally, Section 6 summarizes the paper. 

We should point out here that paper length considerations do not permit a comprehensive 
discussion of all structural, estimation, application, and validation details of this complex 
microsimulation system. The reader is referred to Pinjari et al. (3) for complete documentation.  
 
2. CEMDAP FRAMEWORK 
 
2.1 Modeling Framework 
CEMDAP comprises a suite of econometric models, each model corresponding to the 
determination of one or more activity/travel choices of an individual or household. These models 
may be broadly grouped into two systems: (1) The generation-allocation model system and (2) 
The scheduling model system. The first system of models is focused on modeling the decision of 
individuals/households to undertake different types of activities (such as work, school, shopping, 
and discretionary) during the day and the allocation of responsibilities among individuals (for 
example, determination of which parent would escort the child to and from school). Table 1 lists 
the precise econometric structure and the choice alternatives for each of the model components 
in this system. Further, there is a unique identifier associated with each model. (For example, 
“GA1” identifies the first model within the “generation-allocation” category, which is the 
decision of a child to go to school.) To facilitate easy cross-referencing, these identifiers have 
also been included in subsequent figures that we will reference (and that provide an overview of 
the microsimulation procedure implemented within CEMDAP for predicting the complete 
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activity-travel patterns of all individuals in a household). The second system (i.e., the scheduling 
model system) determines how the generated activities are scheduled to form the complete 
activity-travel pattern for each individual in the household, accommodating the space-time 
constraints imposed by work, school, and escort of children activities. That is, these models 
determine the choices such as number of tours, mode and number of stops for each tour, and the 
activity-type, location, and duration for each stop in each tour. Table 2 lists the econometric 
structures and the set of choice alternatives for each model in this second system. The first ten 
models in Table 2 (WS1-WS10) correspond to worker scheduling components, the next eleven  
models (NWS1-NWS11) are associated with non-worker scheduling components, the subsequent 
four models (JS1-JS4) relate to joint discretionary tour scheduling components, and the final 
seven models (CS1-CS7) focus on children scheduling components.  

The reader will observe from Tables 1 and 2 that the econometric structure for each 
choice dimension being modeled in CEMDAP falls under one of the six econometric model 
categories: binary logit, multinomial logit, hazard-duration, regression, ordered probit, and 
spatial location choice. The mathematical model structures of these model categories are 
provided in Bhat et al. (4). 

The model system described above has several salient features, which include the (1) use 
of a continuous-time approach that enables the evaluation of such time-of-day varying 
transportation control measures as dynamic congestion pricing strategies and parking policies at 
a fine resolution of time (up to a minute), (2) accommodation of within-individual space-time 
constraints and interactions in daily activity-travel pattern choices, (3) modeling of the activity-
travel patterns of children, (4) explicit consideration of the interdependencies between the 
activity-travel patterns of children and their parents (such as escort to and from school and joint 
participation in discretionary activities), (5) adoption of a sequencing structure of the models that 
accommodates intra-personal temporal constraints1, (6) use of a fine level of disaggregation in 
the out-of-home activity types considered (the current system uses 11 activity types for adults 
and 3 for children), (7) explicit distinction between the driver and the passenger in the mode 
choice alternatives instead of using an aggregate “shared ride” alternative, and (8) ability to be 
applied at any spatial and temporal resolution (currently, CEMDAP has been applied to a 4874 
zone system for the Dallas/Fort-Worth area in Texas, and accommodates varying level-of-service 
variables for five time periods of the day). The third through eighth features are new features 
added in the latest version of CEMDAP.  

The data used in the estimation of all the model components in Tables 1 and 2 were 
obtained from three main sources: (1) the 1996 DFW household activity survey, (2) the DFW 
zonal land-use database, and (3) the DFW inter-zonal transportation level of service data. All 
three data sets were acquired from the North Central Texas Council of Governments 
(NCTCOG). Details of data preparation and the estimation results of each model component are 
available in Pinjari et al. (3).  
 

                                                 
1 Specifically, the current version of CEMDAP models a tour entirely in terms of both the tour-level (mode, number 
of stops, departure time, and duration) and stop-level (activity-type, duration, travel time, and location) attributes 
prior to modeling a subsequent tour. This is different from the approach adopted in the previous version in which 
tour-level characteristics for all tours were modeled prior to determining the characteristics of stops within any tour. 
Our current approach provides better timing of the “return-home” trips of each tour and hence helps achieve better 
intra-personal temporal consistency. 
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2.2 Microsimulation Framework 
This section provides an overview of the microsimulation procedure implemented within 
CEMDAP for predicting the complete activity-travel patterns of all individuals in a household. 
This procedure is repeatedly applied to each household in the input synthetic population to 
completely determine the activity-travel patterns of all individuals in the study area. The overall 
prediction procedure (for a household) can be subdivided into two major sequential steps, 
corresponding to the two broad modeling systems identified in the modeling framework of the 
previous section. The mathematical procedures to predict the choice outcomes from various 
econometric models such as the multinomial logit, ordered probit, hazard duration model, and 
linear regression are available in Bhat et al. (5). 

The microsimulation prediction procedure (for a household) is represented schematically 
in Figure 1.2 Each step in the figure involves the application of several models in a systematic 
fashion. Figure 1 includes the identification numbers (from Tables 1 and 2) of models associated 
with each of the major steps. As can be observed from Figure 1, the generation-allocation model 
system is first applied and this comprises the following three sequential steps:  

(1) Work and school activity participation and timing decisions,  
(2) Children’s travel needs (such as mode to school and discretionary activity 

participation), and allocation of escort responsibilities to parents, and  
(3) Independent activities (such as shopping, recreation, and personal business) for 

personal and household needs.  
At the end of the prediction of activity generation and allocation decisions, the following 
information is available for the simulation day: (1) each child’s decision to go to school, the 
school start time and end time, the modes used to travel to and from school, the decision to 
undertake a joint discretionary activity with a parent, and the decision to undertake an 
independent discretionary activity; (2) which (if either) parent undertakes the drop-off activity, 
the pick-up activity, and the joint discretionary activity with each child in the household; (3) each 
employed adult’s decision to go to work, the work start time and end time, and the decision to 
undertake work-related activities; (4) each adult student’s decision to go to school, and the 
school start time and end time; (5) each adult’s decisions to undertake grocery shopping, 
personal or household business, social or recreational activities, eating out, and other serve-
passenger activities. 

Next, the scheduling model system is applied to predict the sequencing of the activities 
generated in the generation-allocation system, while accommodating the space-time constraints 
imposed by work, school, and escort-of-children activities. The complete scheduling is 
accomplished in the following sequence: 

(1) Work-to-home and home-to-work and commutes for each worker (determines the 
commute mode, number of stops each way, and the activity type, episode duration, 
travel time, and location for each commute stop.) 

                                                 
2 Due to space constraints, we are unable to discuss the complete details of the microsimulation prediction procedure 
or the procedures applied to assure intra-individual and inter-individual spatial and temporal consistency of the 
predicted activity-travel patterns. Further, the exact, detailed sequence of steps applied to determine the complete 
activity-travel patterns varies from one household to another depending on the household structure and the types of 
activities generated for the different members. We would like to invite readers to learn more details of the 
microsimulation procedure from Pinjari et al. (3), pages 17-56. This report is available at 
 http://www.ce.utexas.edu/prof/bhat/REPORTS/4080_8_draft_Dec11_2006.doc. 
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(2) Drop-off tour of the non-worker escorting children to school (determines the tour 
mode, the number of stops following the drop-off stop, and the activity type, episode 
duration, travel time, and location for each of these stops.) 

(3) Pick-up tour of the non-worker escorting children from school (determines the tour 
mode, the number of stops following the pick-up stop, and the activity type, episode 
duration, travel time, and location for each of these stops.) 

(4) School-to-home and home-to-school commutes for each school-going child. For 
children who are not escorted by their parents, it is assumed that there are no 
commute stops and the only attribute determined at this step is the commute duration. 
Note that the mode for school commute is already known from step 2 of the 
generation-allocation system. For children escorted by their parents, the attributes are 
simply copied from the corresponding pick-up or drop-off segments of the 
corresponding parent. 

(5) Joint tour of the adult pursuing discretionary activity jointly with children (determines 
the departure time for the tour, and the episode duration, travel time, and destination 
for the joint discretionary activity stop) 

(6) Independent home-based tours and work-based tours for each worker (determines the 
number of before-work, work-based, and after-work tours, and for each tour, 
home/work-stay duration, mode, and the number of stops, and for each stop in each of 
the tours, the activity type, episode duration, travel time, and location) 

(7) Independent home-based tours for each non-worker (determines the number of home-
based tours, and for each tour, home-stay duration before the tour, mode, and the 
number of stops, and for each stop in each of the tours, the activity type, episode 
duration, travel time, and location) 

(8) Independent discretionary activity tour for each child (determines the tour mode, and 
departure time, and the activity duration, travel time, and location of the discretionary 
activity stop) 

In addition to these stochastic models, several deterministic rules are also employed 
within each step based on a descriptive analysis of the DFW survey data. Examples include the 
following: (a) If a worker picks-up (drops off) his/her child from (at) school, this is taken as the 
only stop in his/her work-to-home (home-to-work) commute,  (b) The mode of travel for a pick-
up/drop-off activity is taken as drive with passenger and the mode of travel for the remaining 
part of a pick-up/drop-off tour is taken as drive alone, (c) The departure time and the travel time 
to the pick-up/drop-off stop is determined based on the school end/start time and the prevailing 
travel-times between work/home and school locations at the school end/start time, (d) The 
duration of a pick-up/drop-off episode is taken as 5 minutes, (d) The travel time to home/work in 
the final segment of a tour is determined based on the prevailing travel times between origin and 
destination locations in that time period,  (e) If a worker undertakes a joint discretionary activity, 
the number of after-work tours for him/her is fixed as one joint discretionary tour, and (f) The 
mode of travel for the adult in a joint discretionary tour is taken as drive with passenger and the 
number of stops is fixed to one in that tour.  

The forecasting sequence described in Figure 1 highlights CEMDAP’s interleaved 
approach to determining the activity-travel patterns of all individuals in a household. This idea is 
illustrated with the following example. In households with school-going children and employed 
parents, the child’s decision/need to go to school and the school timings are first determined. 
Next, the employed parents’ decisions to go to work and the work timings are determined 
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conditional on the child’s school-related choices (since, for example, a parent’s decision to go to 
work may be impacted by a child not being able to go to school due to sickness). The children’s 
travel needs (mode of travel to school) are determined subsequently conditional on both the 
child’s school timings, and parents’ work timings. Depending on the children’s school mode 
choice, (i.e., if the mode chosen is “driven by parents”), one of the parents is allocated the task 
of dropping off/picking up the children, and that parent’s work timings are adjusted to allow 
him/her to undertake the drop-off/pick-up activity. Thus, the activity-travel patterns of household 
members are not generated either purely sequentially (i.e., one person followed by another) or 
purely simultaneously (i.e., all persons together). Rather, while the individual decisions are 
modeled sequentially, the overall activity-travel patterns of all household members are generated 
in an interleaved, parallel, fashion. This approach enables incorporation of intra-household 
constraints and spatial/temporal consistency across the activity-travel patterns of household 
members while limiting the computational complexity.   
 
3. SOFTWARE DESIGN AND DEVELOPMENT 
The development of the CEMDAP software goes beyond a once-off implementation of a specific 
modeling system calibrated for a specific region. Rather, the goal is to create a generic library of 
routines that form the building blocks of an activity-based travel-demand modeling system. 
Correspondingly, CEMDAP has been developed using the Object-Oriented (OO) paradigm, 
which offers the advantages of code reuse, software extensibility, and rapid implementation of 
system variants. The software is written in Visual C++ using the Microsoft Visual Studio .NET 
development tool. 

CEMDAP uses PostgreSQL to store input databases, which allows the ability to work 
with a fine resolution of spatial units and/or large study areas. For computational efficiency 
considerations, CEMDAP supports multithreading and includes data caching techniques to store 
frequently accessed input data elements in the RAM. Also, the (pseudo)random numbers used to 
simulate the activity-travel patterns of each individual in CEMDAP are held to be the same 
across different policy scenario runs. This helps in minimizing the random simulation bias in 
policy analyses, and allows a disaggregate level (i.e., the individual level) assessment of policies.  

The rest of this section is organized as follows. Section 3.1 describes the software 
architecture. Section 3.2 discusses computational performance issues and methods adopted 
(multithreading and caching) to enhance the speed. Comprehensive details of the software 
architecture are available in Chapter 3 of Pinjari et al. (3). 

 
3.1 Software Architecture 
Figure 2 presents a schematic representation of the CEMDAP software architecture. The major 
components of this software are: the Input Database, the Data Coordinator, the Run-time Data 
Objects, the Modeling Modules, the Simulation Coordinator, the Application Driver, and the 
Output Files. Each of these components is further discussed below. 

The input data are stored in a relational database management system (DBMS). CEMDAP 
is designed to interact with this Input Database through an Open Database Connectivity (ODBC) 
interface. The ODBC provides a product-independent interface between client applications 
(CEMDAP, in this case) and database servers, allowing applications to be portable across 
database servers from different manufacturers. Another advantage of interfacing through an 
ODBC interface is that the database servers and the CEMDAP application can be run on 
different machines with no additional complexity in interacting with the database over the 
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network. Further, the ODBC interfacing with CEMDAP is enabled to accept inputs of any given 
spatial and temporal resolution, within the limits of the processing power at hand.  

The Data Coordinator is the component responsible for establishing the ODBC connection 
and interacting with the Input Database.  It extracts the content and the structural information of 
the data tables, and converts data into their corresponding data structures that are used within 
CEMDAP.  It is also responsible for all data queries to the database during the process of 
simulation. By limiting the database interaction to this one system entity, any changes pertaining 
to the database are easier to make. 

The Run-Time Data Objects are the main data structures that CEMDAP operates upon 
internally.  Instances of household, person, zone, zone to zone, and LOS entities are created by 
the Data Coordinator from the Input Database.  The remaining entities (i.e. pattern, tour, and 
stop) are created by the Simulation Coordinator as required during the simulation process. The 
Run-Time Data Objects also act as a cache for the data items accessed frequently by the 
Simulation Coordinator. 

Each Modeling Module in the system corresponds to a behavioral model in the framework 
described in Section 2. Once a Modeling Module is configured via the user interface, it possesses 
knowledge about the econometric structure and all the relevant parameters required to predict a 
particular activity-travel choice. Although the Modeling Modules are many, they are derived 
from a limited number of econometric structures. Currently, six types of econometric models are 
implemented in CEMDAP as model templates: regression, hazard duration, binary logit, 
multinomial logit, spatial location choice, and ordered probit models.  Additional econometric 
structures may be added to this library of model templates. 

The Simulation Coordinator is responsible for controlling the flow of the simulation.  It 
coordinates the logic and sequence in which the Modeling Modules are called, performs 
consistency checks, and keeps track of the progress of the overall simulation.  The Simulation 
Coordinator holds a reference to the Data Coordinator and operates on the Run-Time Data 
Objects which are created and manipulated as choice outcomes are predicted with each modeling 
component.  

The Application Driver starts and runs the application. On startup, it triggers the user 
interface and obtains handles to the Simulation Coordinator as well as the Data Coordinator. It 
references the ODBC driver for opening and closing the database connection. It also co-ordinates 
the functionality offered to the users, such as selecting the input data source, choosing the output 
path, loading/saving the CEMDAP model specification files, and running the simulation. 

The Output of CEMDAP is stored in flat-files (plain tabbed formatted files). As the 
activity-travel patterns are generated sequentially (one household at a time) the CEMDAP 
outputs can be streamed to flat files. Further, data in flat-file formats can be easily read by 
spreadsheet, statistical, and DBMS programs thereby providing the user with the flexibility of 
analyzing the results with any type of software. 

 
3.2 Computational Performance Enhancement 
There are two critical aspects which impact the run-time performance (speed) of the CEMDAP 
software. First, the simulation procedure generates the activity-travel patterns for one household 
at a time until all the households in the population have been processed. Typically, the synthetic 
population for a study area might comprise several million households, thereby requiring 
substantial run time for the simulation of the activity-travel patterns of the entire population. 
Second, the input data are stored in an external relational database and interfaced with the 
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program via the ODBC. With increasing number of queries, data access through the ODBC 
interface can significantly increase the processing time and degrade the system performance. 
CEMDAP employs the multithreading technique to address the first issue and data caching to 
address the second. These strategies are described below. 

Multithreading functions by loading the data and information pertaining to multiple tasks 
(instead of a single task) into the memory of a processor and hence improves the overall 
utilization of the computational resources. The processor rapidly switches between the various 
tasks at a fixed time interval called the “time slice”. In CEMDAP, multithreading is enabled by 
loading the input data related to several households into the processor. It should be noted here 
that the time slice has to be small enough to allow a large number of tasks (households in this 
case) to be handled. At the same time, each time slice has to be large enough so that each task is 
allocated a sufficient amount of processor time to get useful work done. The number of threads 
that can be run at a time (or the number of households that can be loaded into the memory of the 
processor at a time) depends on the processor speed and the Random Access Memory (RAM) of 
the machine. CEMDAP allows customization of the extent of multithreading via direct changes 
to the code. 

Data Caching involves loading selected sections of the input data into the computer’s 
RAM to reduce the number of data access calls through the ODBC interface. In the case of 
CEMDAP, caching is done especially for the inter-zonal level-of-service (LOS) data. This is 
because the LOS data tables are typically very large (the LOS file for the DFW application has 
4874*4874 zonal pairs and five time-of-day periods) and accessed frequently (for example, inter-
zonal travel times are required for location choice predictions and, hence, the number of times 
the LOS database has to be accessed for a single individual is at least equal to the number of 
activity stops made by him/her). It may be possible to cache the entire LOS data for achieving 
greater simulation speeds. However, any move toward finer spatial and/or temporal resolutions 
and larger study areas would cause a significant increase in the LOS data size, and limit the 
extent to which the LOS data can be cached. Hence, cleverly designed partial-data caching 
routines are built into CEMDAP so that frequently used data are temporarily cached. For 
example, the LOS data corresponding to an origin zone is cached until all the households 
belonging to that particular zone have been processed. Similarly, the commute LOS data (the 
LOS data between residential and employment zones during the commute start and end times) of 
a worker is cached when (s)he is being processed. The optimal extent of data-caching depends on 
the machine configuration (RAM and the processor speed), and the size and organization of the 
input data (i.e., the spatial and temporal resolution at which the LOS files are loaded). The extent 
of data caching in CEMDAP can be customized via direct changes to the code. 

 
4. GENERATING INPUTS FOR CEMDAP 
The application of CEMDAP for a study area requires two major categories of inputs: (1) the 
estimated model parameters and (2) data inputs for the forecast year (disaggregate characteristics 
of the population, zonal-level land use descriptors, and inter-zonal transportation level of service 
(LOS) variables by time of day).  In the rest of this section, we briefly discuss how the data 
inputs were generated for the Dallas-Fort Worth (DFW) region for the base year of 2000. The 
specific focus here is on the generation of the detailed socioeconomic characteristics of the 
population, since the land-use and LOS files were directly available from NCTCOG. The other 
category of input, i.e., the model parameters, were estimated using the 1996 household DFW 
travel survey, as discussed earlier. 
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CEMDAP requires detailed, individual- and household-level population characteristics as 
input. The individual-level attributes include age, gender, availability of driver’s license, 
ethnicity, education level, income, employment-related characteristics (such as work location, 
weekly duration, flexibility, and industry type), and school-related characteristics (such as school 
location and grade). Household-level attributes include household size, composition, residential 
location, tenure, housing unit type, and automobile ownership. The age, gender, and ethnicity 
attributes at the individual level, and the household size, composition, and residential location 
attributes at the household level, are generated for the base year using the Synthetic Population 
Generation (SPG) module which implements an iterative proportional fitting (IPF) algorithm. 
Other base year socioeconomic attributes related to driver’s license, schooling, and employment 
at the individual level, and residential tenure, housing unit type, and vehicle ownership at the 
household level, that are difficult to synthesize (or cannot be) synthesized directly from the 
aggregate socioeconomic data for the base year are simulated by the Comprehensive 
Econometric Microsimulator for SocioEconomics, Land-use, and Transportation System 
(CEMSELTS).3   

The details of the procedures used in SPG are provided in Guo and Bhat (6), while the 
details of the procedures used in CEMSELTS are available in Eluru et al. (7). For the current 
application, three individual-level variables and four household-level variables were used as 
control variables in the SPG module. The individual-level variables include: (a) gender (2 
categories), (b) race (7 categories), and (c) age (10 categories), while the household-level 
variables include: (a) family/non-family indicator (2 categories), (b) household type (5 
categories), household size (7 categories), (c) presence of children (2 categories), and (d) age of 
household head (2 categories).The Census 2000 summary file SF1 is used to create the 
aggregate target dataset for the above mentioned control variables, and data from the US 
Census’ Public Use Microdata Samples (PUMS) is used as the disaggregate “seed” data. 
Together, these two data sets are used to synthesize the base year population by gender, race, and 
age at the individual level and by family/household type, household size, presence of children, 
and age of household head at the household level.4  The remaining data on schooling grade and 
school location for students, and employment characteristics (whether or not employed, 
employment industry, employment location, work duration, work flexibility, and personal 
income) at the individual level are generated in CEMSELTS. Also, housing tenure (own or rent 
home), housing unit type (Single-family detached, Single-family attached, Apartment, and 
Mobile home or trailer), and household vehicle ownership at the household level are generated in 
CEMSELTS.  

                                                 
3 The base year synthetic disaggregate-level sociodemographic data generated by SPG and the base-year activity-
travel environment attributes are used by CEMSELTS to generate additional disaggregate-level base-year 
socioeconomic data. The reader will note that an advantage of using stochastic models in CEMSELTS to generate 
some of the base year socioeconomic characteristics is that the synthetic population has more variation than would 
be obtained by simply expanding the disaggregate-level sample (usually the Public-Use Microdata Samples or 
PUMS data) employed in the SPG module. Also, SPG is used only to generate the disaggregate-level synthetic 
population for the base-year and is not used beyond the base year. CEMSELTS generates all the socioeconomic 
attributes of the population for any future year (see Eluru et al. [7]). 
4 The population synthesized by SPG locates households in block groups, since this is the spatial level used by the 
Census 2000 summary file SF1. The corresponding Traffic Analysis Zone (TAZ) locations, as required by 
CEMDAP, were generated by mapping the block groups to TAZs using a GIS software with the assumption that the 
households within a block group are uniformly distributed in space. 
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The disaggregate input population generated for the year 2000 DFW application using the 
methodology discussed above comprises 4,815,916 individuals from 1,785,653 households. The 
characteristics of this population have been validated against aggregate marginal distributions 
available from the 2000 PUMS and the 2000 US Census. As an example, Figure 4 illustrates the 
verification exercise carried out at an aggregate level for selected socio-demographic 
characteristics of the population from Tarrant County. The predicted distributions of the 
population closely track the Census distributions. 
 
5. MODEL VERIFICATION 
The verification of the DFW application of CEMDAP involved two efforts. First, the survey data 
used in model estimation were input to CEMDAP and the predicted activity-travel patterns were 
compared to the observed patterns (Section 5.1). Second, the activity-travel patterns were 
generated for the entire DFW population for the year 2000 (using inputs generated as described 
in Section 4). The generated patterns were then aggregated and compared with the travel-demand 
measures generated by the current DFW trip-based model and observed link counts (Section 
5.2).  
 
5.1 Validation Against the Estimation Data 
The validation against the estimation data was undertaken at the aggregate level by comparing 
the predicted percentage shares of discrete choices and distributions of continuous choices with 
the observed percentage shares and distributions in the estimation survey sample. 

Table 3 compares selected pattern-, tour-, and trip-level characteristics predicted by 
CEMDAP with those observed in the estimation survey data [see (3) for additional validation 
results]. Overall, the CEMDAP outputs match reasonably with the observed patterns in the DFW 
survey. Among the pattern-level characteristics (first part of Table 3), the predicted and observed 
number of non-school tours for children show some difference. This may be attributed to the 
small sample from which the models for children’s non-school travel were estimated. An 
examination of the tour-level characteristics (second part of Table 3) shows that CEMDAP is 
under-predicting the average number of stops in the home-work and work-home commutes. In 
the context of trip-level characteristics (last part of Table 3), CEMDAP performs well in 
predicting the average number of daily trips per person for all trip types (i.e., home-based work, 
home-based non-work, and non home-based trip types). However, we find a slight under-
prediction in the average travel times for all trip types, possibly because CEMDAP directly uses 
the inter-zonal travel time values from the LOS files for certain trip segments (such as the return-
home trips) as opposed to the door-to-door travel times reported in surveys. We also find an 
over-prediction of PMT and VMT for home-based other trips and an under-prediction of PMT 
and VMT for non home based trips. However, overall, the statistics are similar in range between 
the CEMDAP-predicted values and the actual survey observations. 

Figure 5 presents the distribution of the work start and end times in the DFW survey data 
and as predicted by CEMDAP.  CEMDAP replicates the overall shape of the profile; however, 
the sharp peaks observed in the survey are not captured.  
 
5.2 Comparison with the DFW Trip-based Model and Observed Link Counts 
The comparison of CEMDAP with the DFW’s current trip-based model involved the following 
steps. First, the travel-demand patterns predicted by the DFW’s current trip-based model for the 
year 1999 (4,848,237 persons from 1,808,402 households) were obtained. Second, the activity-
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travel patterns for the entire DFW synthetic population for the year 2000 (4,815,916 individuals 
from 1,785,653 households generated as described in Section 4) were generated using 
CEMDAP. Third, the CEMDAP-generated activity-travel patterns were aggregated into origin-
destination (O-D) trip tables by time-of-day for each auto mode (single occupancy and multiple 
occupancy). Fourth, estimates of external trips and truck trips were borrowed from the trip-based 
model and suitably added to the OD matrices from CEMDAP. Fifth, static traffic assignments 
were conducted, with the OD matrices as inputs into the traffic assignment procedures in DFW’s 
current modeling software (CEMDAP does not perform traffic assignment). The results from this 
step are deemed as CEMDAP’s travel predictions.  

Table 4 presents a summary of the overall travel indicators from the CEMDAP and DFW 
trip-based model results. While the travel indicators such as total number of person trips, total 
number of vehicle trips, and average trip speed are quite close, other measures such as average 
trip length and total vehicle miles traveled (VMT) show some differences (with CEMDAP 
predicting higher values). Further, on examining the travel volumes by trip purpose, we find that 
CEMDAP predicts fewer home-based work trips and greater numbers of home-based-other and 
non-home-based trips than the DFW model. These differences can be attributed to the difference 
between the number of employed individuals in the CEMDAP input as predicted from 
CEMSELTS (the percentage of employed individuals was 48.1% of the overall population from 
CEMSELTS, which matches well with the 49.4% employment rate for the DFW population from 
the 2000 Census data statistics), and the number of employed individuals used in the DFW trip-
based model input (which is 62.3% of the DFW population).  

It is important to note here that the results above cannot be directly interpreted as over-
predictions or under-predictions by any one modeling approach, as neither predictions represent 
the “ground truth”. The intent of the above comparison is to just ensure that CEMDAP does not 
produce results that are completely unreasonable. Another way to check the CEMDAP results is 
to examine the link flows predicted by CEMDAP with link vehicle counts. The results (%RMSE 
values) are presented in the second part of Table 4 by roadway functional class. Overall, the 
validation results indicate that the performances of both CEMDAP and the trip-based model 
(without K factors) against the ground “truth” are close to each other.  
 The aggregate-level comparisons of the CEMDAP results with the trip-based model 
results and observed ground counts (as discussed above) are intended to establish the preliminary 
reasonableness of CEMDAP outputs. It is also important to note here that, unlike the DFW trip-
based model, the CEMDAP results have not been “calibrated/adjusted” in any way. Rather the 
CEMDAP results are direct predictions based on the estimated models from the DFW survey 
data. Besides, CEMDAP provides several other details of the activity-travel characteristics (such 
as activity episode durations, extent of trip chaining, and inter-personal constraints/consistency) 
which are simply not provided by trip-based models Further, the use of the static assignment 
process does, to an extent, “undo” the benefits of a continuous-time modeling system. This is 
because the activity-travel patterns are grouped into aggregate time periods in the static 
assignment stage and the static assignment process does not consider the dynamics of vehicle 
delays. 

The activity-based predictions may be validated in a more rigorous manner by using a 
dynamic traffic assignment procedure to predict the traffic volumes. In any case, the real validity 
of any model should be measured in terms of its ability to forecast well into the future and 
respond appropriately to transport policies. In this context, the focus should be on the level of 
behavioral fidelity captured in the model. The better the behavioral fidelity of a model, the better 
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it will be in terms of transferability in time and space (especially if the demographics and travel 
environment change substantially over time and space). The behavioral fidelity of CEMDAP and 
trip-based models can be qualitatively examined by comparing the outputs of the two models for 
several policy scenarios. While we have undertaken such an extensive exercise (see Pinjari et al. 
[3], Chapter 6), one problem is that one still does not know which output predictions are the right 
ones in the absence of “ground truth”. One fruitful way forward to assess activity-based models 
and trip-based models would be to compare before-after results in response to such policy 
actions as implementation of auto-use disincentives (congestion pricing, toll roads), car pooling 
incentives (HOV lanes), transit improvements, and land-use changes, etc.. Such an exercise is 
planned as part of our future work in the Dallas-Fort Worth area.  

 
6. SUMMARY AND FUTURE WORK 
This paper describes the current state of CEMDAP and highlights the salient features of the 
software. CEMDAP models not only the activity-travel pattern of adults, but also that of 
children, while incorporating the inter-dependencies between the activity-travel patterns of 
children and their parents. The software implementation of CEMDAP has been developed using 
the Object-Oriented (OO) paradigm to support software extensibility and rapid implementation 
of system variants. Further, the implementation supports multithreading and data caching 
capabilities to enhance computational performance. The paper discusses these features, and also 
presents the results of an application of CEMDAP to the Dallas Fort Worth area. The results 
indicate the reasonableness of the activity-travel predictions from CEMDAP, and the readiness 
of the system for more rigorous before-after sensitivity testing. 
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FIGURE 1  Activity-travel forecasting sequence.

Application of the Generation-Allocation Model System 

Work and school activity participation and timing decisions 
(Models GA1 -GA9 of Table 1 are applied in this step) 

Children’s travel needs and allocation of escort responsibilities to parents 
(Models GA10 - GA15 of Table 1 are applied in this step) 

Independent activity participation decisions 
(Models GA16- GA22 of Table 1 are applied in this step) 

Application of the Scheduling Model System 

Work-to-home and home-to-work commute characteristics for each worker 
(Models WS1- WS3, and WS10 - WS13 of Table 2 are applied in this step) 

Drop-off tour of the nonworker escorting children to school 
(Models NWS6, and NWS8 - NWS11 of Table 2 are applied in this step) 

Pick-up tour of the nonworker escorting children from school 
(Models NWS6, and NWS8- NWS11 of Table 2 are applied in this step) 

School-to-home and home-to-school commutes for each school-going child 
(Models CS1 and CS2 of Table 2 are applied in this step) 

Joint tour of the adult pursuing discretionary activity jointly with children 
(Models JS1 - JS4 of Table 2 are applied in this step) 

Independent home-based tours and work-based tours for each worker 
(Models WS4 - WS13 of Table 2 are applied in this step) 

Independent home-based tours for each non-worker 
(Models NWS1 -NWS11 except NWS6 of Table 2 are applied in this step) 

Independent discretionary activity tour for each child 
(Models CS3 to CS7 of Table 2 are applied in this step) 
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FIGURE 2  CEMDAP software architecture. 
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FIGURE 3  A comparison of generated and observed marginal distributions of selected socioeconomic inputs. 
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FIGURE 4  Validation against the estimation data: work start and end time profiles. 

Work Start Time Profile 

Work End Time Profile 
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TABLE 1  The Generation-Allocation Model System 

 
General Notes: 

(1) A child is an individual whose age is less than 16 years, and an adult is an individual whose age is 16 years or more. 
(2) CEMSELTS = Comprehensive Econometric Microsimulator for SocioEconomics, Land-use, and Transportation Systems. 
(3) In the CEMDAP architecture, all individuals in the population have to be classified into one of the following three categories: (1) student (2) worker, and (3) non-student, non-

worker. CEMDAP, in its current form, does not accept the category of “student and worker”. 
(4)   GA1- GA9 model the work/school participation decisions, GA10-GA15 model the children’s travel needs and allocation of escort responsibility, and GA16-GA22 model the 

individual-level activity participation choices. 

Model 
ID Model Name Econometric 

Structure Choice Alternatives Comments 

GA1 Children’s decision to go to school Binary logit Yes, No Applicable only to children who are 
students. The determination of whether 
or not a child is a student is made in the 
CEMSELTS module (see Eluru et al. [7]) 

GA2 Children’s school start time (time from 3 AM) Hazard-duration Continuous time 

GA3 Children’s school end time (time from school start time) Hazard-duration Continuous time 

GA4 Decision to go to work Binary logit Yes, No Applicable only to individuals above the 
age of 16 and who are workers. The 
determination of whether or not an 
individual is a worker is made in the 
CEMSELTS module 

GA5 Work start and end times Multinomial logit 528 discrete time period 
combinations

GA6 Decision to undertake work related activities Binary logit Yes, No 

GA7 Adult’s decision to go to school Binary logit Yes, No Applicable only to adults who are 
students, as determined in CEMSELTS GA8 Adult’s school start time (time from 3 AM) Regression Continuous time 

GA9 Adult’s school end time (time from school start time) Regression Continuous time 

GA10 Mode to school for children Multinomial logit Driven by parent, Driven by 
other, School bus, Walk/bike

Applicable only to children who go to 
school 

GA11 Mode from school for children Multinomial logit Driven by parent, Driven by 
other, School bus, Walk/bike

GA12 Allocation of drop off episode to parent Binary logit Father, Mother Applicable only to non-single parent 
household with children who go to school GA13 Allocation of pick up episode to parent Binary logit Father, Mother 

GA14 Decision of child to undertake discretionary activity jointly with parent Binary logit Yes, No Second model in this row is applicable 
only to non-single parent households 
with children who go to school GA15 Allocation of the joint discretionary episodes to one of the parents Binary logit Father, Mother 

GA16 Decision of child to undertake independent discretionary activity Binary logit Yes, No 

GA17 Decision of household to undertake grocery shopping Binary logit Yes, No Second model in this row is applicable 
only if the household is determined 
(using the first model in this row) to 
undertake shopping  

GA18 Decision of an adult to undertake grocery shopping  Binary logit Yes, No 

GA19 Decision of an adult to undertake household/personal business activities Binary logit Yes, No 

GA20 Decision of an adult to undertake social/recreational activities Binary logit Yes, No 

GA21 Decision of an adult to undertake eat out activities Binary logit Yes, No 

GA22 Decision of an adult to undertake other serve passenger activities Binary logit Yes, No 
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TABLE 2  The Scheduling Model System 
  

Model ID Model Name Econometric 
Structure Choice Alternatives 

WS1 Commute mode Multinomial logit Solo driver, Driver with passenger, Passenger, Transit, 
Walk/Bike 

WS2 Number of stops in work-home commute Ordered probit 0,1,2 

WS3 Number of stops in home- work commute Ordered probit 0,1,2 

WS4 Number of after-work tours Ordered probit 0,1,2 

WS5 Number of work-based tours Ordered probit 0,1,2 

WS6 Number of before-work tours Ordered probit 0,1 

WS7 Tour mode Multinomial logit Solo driver, Driver with passenger, Passenger, Transit, 
Walk/Bike 

WS8 Number of stops in a tour Ordered probit 1,2,3,4,5 

WS9 Home/work stay duration before a tour Regression Continuous time 

WS10 Activity type at stop Multinomial logit Work-related, Shopping, Household/personal 
business, Eat out, Other serve passenger 

WS11 Activity duration at stop Linear Regression Continuous time 

WS12 Travel time to stop Linear Regression Continuous time 

WS13 Stop location Spatial location choice Choice alternatives based on estimated travel time 

NWS1 Number of independent tours Ordered probit 1,2,3,4 

NWS2 Decision to undertake an independent tour 
before pickup-up/joint  discretionary tour 

Binary logit Yes, No 

NWS3 Decision to undertake an independent tour 
after pickup-up/ joint  discretionary tour 

Binary logit Yes, No 

NWS4 Tour Mode Multinomial logit Solo driver, Driver with passenger, Passenger, Transit, 
Walk/Bike

NWS5 Number of stops in a tour Ordered probit 1,2,3,4,5 

NWS6 Number of stops following a pick-up/drop-off 
stop in a tour 

Ordered probit 0,1 

NWS7 Home stay duration before a tour Regression Continuous time 

NWS8 Activity type at stop Multinomial logit Work-related, Shopping, Household/personal 
business, Eat out, Other serve passenger 

NWS9 Activity duration at stop Linear Regression Continuous time 

NWS10 Travel time to stop Linear Regression Continuous time 

NWS11 Stop location Spatial location choice Choice alternatives based on estimated travel time 

JS1 Departure time from home Regression Continuous time 

JS2 Activity duration at stop Regression Continuous time 

JS3 Travel time to stop Regression Continuous time 

JS4 Location of stop Spatial location choice Continuous time 

CS1 School-home commute time Regression Continuous time 

CS2 Home-school commute time Regression Continuous time 

CS3 Mode for independent discretionary tour Multinomial logit Drive by other, Walk/Bike 

CS4 Departure time from home for independent 
discretionary tour 

Regression Continuous time 

CS5 Activity duration at independent 
discretionary stop 

Regression Continuous time 

CS6 Travel time to independent discretionary 
stop 

Regression Continuous time 

CS7 Location of independent discretionary stop Spatial location choice Pre-determined subset of zones 
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TABLE 3  Validation Against the Estimation Data: Pattern, Tour, and Trip Characteristics 
 

Pattern Characteristics DFW Survey CEMDAP 

Avg. number of before-work tours (made by workers)   0.04   0.02 

Avg. number  of work-based tours (made by  workers)   0.30   0.34 

Avg. number of after-work tours (made by  workers)   0.32   0.39 

Avg. number of tours (made by  non-workers)   1.14   1.19 

Avg. number  of non-school tours (made by  children)   0.28   0.18 

Tour Characteristics DFW Survey CEMDAP 

Avg. number of stops in before-work tours   1.33   1.36 

Avg. number of stops in work-based tours   1.31   1.27 

Avg. number of stops in after-work tours   1.43   1.41 

Avg. number of stops in home-work commute   0.22   0.15 

Avg. number of stops in work-home commute   0.45   0.39 

Avg. number of stops in non-worker tours   1.71   1.78 

Trip Characteristics DFW Survey CEMDAP 

  Home-based work   

    Avg. number of daily trips per person   1.79   1.70 

    Avg. person minutes of travel per person 27.67 26.92 

    Avg. person miles of travel (PMT) per trip 11.68 11.96 

    Avg. vehicle miles of travel (VMT) per trip 12.17 12.67 

  Home-based other   

    Avg. number of daily trips per person   2.59   2.65 

    Avg. person minutes of travel per person 18.06 17.49 

    Avg. person miles of travel (PMT) per trip   9.38 10.72 

    Avg. vehicle miles of travel (VMT) per trip   9.27 11.05 

  Non home-based   

    Avg. number of daily trips per person   2.43   2.57 

    Avg. person minutes of travel per person 17.78 15.15 

    Avg. person miles of travel (PMT) per trip   9.78   8.29 

    Avg. vehicle miles of travel (VMT) per trip   9.94   8.86 

                
Note: The trip level characteristics are averaged over all individuals who made at least one out-of-home stop. 
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TABLE 4  Comparison with the Trip-Based Model and Observed Link Counts 
 

Overall travel indicators in the DFW area  

Travel Indicator DFW Trip-based Model 
(Year: 1999) 

CEMDAP 
(Year: 2000) 

Total person trips (Millions)   16.91   17.12 

   Home-based work trips (Millions)     3.91    2.74 

   Home-based other trips (Millions)     8.60    9.44 

   Non home-based trips (Millions)     4.40    4.94 

Total vehicle trips (Millions)   13.42   13.35 

Total vehicle miles traveled (Million miles) 121.37 140.32 

Average trip length (miles/vehicle trip)     9.04   10.51 

Average trip speed (vehicle miles/hour)   39.10   38.08 

Predicted Traffic Volumes vs. Observed Traffic Counts (% RMSE) 

Roadway functional class DFW Trip-based Model 
(Year: 1999) 

CEMDAP 
(Year: 2000) 

Freeways           21.48   25.84 

Major Arterials          36.69   42.07 

Minor Arterials          43.02   44.61 

Collectors          70.11   70.10 

Ramps          54.32   66.88 

Frontage Roads          75.76   79.88 

Overall          42.60   47.23 

  
21% ( ) 100f

linksf

RMSE Actual Link Count Predicted Link Count x
N ∀

= −∑ , 

where fN represents the number of links of functional class f. 

 
 


