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Abstract 

Estimation of disaggregate mode choice models to estimate the ridership share on a proposed new 

(or improved) intercity travel service and to identify the modes from which existing intercity 

travelers will be diverted to the new or upgraded service constitutes a critical part of evaluating 

alternative travel service proposals to alleviate intercity travel congestion. This paper develops a 

new heteroscedastic extreme value model of intercity mode choice that overcomes the 

“independence of irrelevant alternatives” (IIA) property of the commonly used multinomial logit 

model. The proposed model allows a more flexible cross-elasticity structure among alternatives than 

the nested logit model. It is also simple, intuitive and much less of a computational burden than the 

multinomial probit model. The paper discusses the non-IIA property of the heteroscedastic extreme 

value model and presents an efficient and accurate Gaussian quadrature technique to estimate the 

heteroscedastic model using the maximum likelihood method. The multinomial logit, alternative 

nested logit structures, and the heteroscedastic model are estimated to examine the impact of 

improved rail service on business travel in the Toronto-Montreal corridor. The nested logit structures 

are either inconsistent with utility maximization principles or are not significantly better than the 

multinomial logit model. The heteroscedastic extreme value model, however, is found to be superior 

to the multinomial logit model. The heteroscedastic model predicts smaller increases in rail shares 

and smaller decreases in non-rail shares than the multinomial logit in response to rail-service 

improvements. It also suggests a larger percentage decrease in air share and a smaller percentage 

decrease in auto share than the multinomial logit. Thus, the multinomial logit model is likely to 

provide overly optimistic projections of rail ridership and revenue, and of alleviation in inter-city 

travel congestion in general, and highway traffic congestion in particular. These findings point to the 

limitations of the multinomial logit and nested logit models in studying intercity mode choice 

behavior and to the usefulness of the heteroscedastic model proposed in this paper.  
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1.  Introduction 

Increasing congestion on intercity highways and at intercity air terminals has raised serious concerns 

about the adverse impacts of such congestion on regional economic development, national 

productivity and competitiveness, and environmental quality. Recent studies (Transportation 

Research Board special report, 1991; Federal Aviation Administration report, 1987) suggest that 

intercity travel congestion is likely to grow even further through the next two decades. To alleviate 

such current and projected congestion, attention has been focused in recent years on identifying and 

evaluating alternative proposals to improve inter-city transportation services. Some of these 

proposals include construction of new (or expansion of existing) express roadways and airports 

(Moon, 1991), upgrading conventional rail services (KPMG Peat Marwick et al., 1993), and 

construction of new high-speed ground transportation based on magnetic levitation technology (U.S. 

Army Corps of Engineers, 1990).  

The large scale nature of the congestion alleviation proposals makes it imperative to 

undertake a careful a priori cost-benefit evaluation with respect to capital investment costs, 

environmental impacts, job market and economic development impacts, and revenues from the 

potential use of the new service. Among other things, such an evaluation entails the estimation of 

reliable intercity mode choice models to estimate ridership share on the proposed new (or improved) 

intercity service and to identify the modes from which existing intercity travelers will be diverted to 

the new (or upgraded) service. This paper develops a new heteroscedastic extreme value model of 

intercity mode choice that: (a) overcomes the “independence of irrelevant alternatives” (IIA) 

restriction of the commonly used multinomial logit model; (b) permits more flexibility in cross-

elasticity structure than the nested logit model; and (c) is simple, intuitive, and computationally less 

burdensome compared to the multinomial probit model. The paper presents an efficient method to 

estimate the heteroscedastic extreme value model and compares the results obtained from applying 

the proposed model and the multinomial logit and nested logit models to the estimation of intercity 

travel mode choice in the Toronto-Montreal corridor. 

The next section of the paper presents a background of intercity travel mode choice models 

and develops the motivation for the heteroscedastic extreme value model proposed in this paper. 

Section 3 advances the model structure for the heteroscedastic model. Section 4 discusses the non-

IIA property of the model. Section 5 outlines the estimation procedure. Section 6 presents empirical 

results. The final section provides a summary of the research findings. 
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2.  Intercity Travel Mode Choice Models: A Background 

Intercity travel mode choice models are based on the utility maximization hypothesis which assumes 

that an individual's mode choice is a reflection of underlying preferences for each of the available 

alternatives and that the individual selects the alternative with the highest preference or utility. The 

utility that an individual associates with an alternative is specified to be the sum of a deterministic 

component (that depends on observed attributes of the alternative and the individual) and a random 

component (that represents the effects of unobserved attributes of the individual and unobserved 

characteristics of the alternative). 

In most intercity mode choice models, the random components of the utilities of the different 

alternatives are assumed to be independent and identically distributed (IID) with a type I extreme 

value distribution (Johnson & Kotz, 1970, Chapter 21). This results in the multinomial logit model 

of mode choice (McFadden, 1973). The multinomial logit model has a simple and elegant closed-

form mathematical structure, making it easy to estimate and interpret. However, it is saddled with 

the “independence of irrelevant alternatives” (IIA) property at the individual level (Ben-Akiva & 

Lerman, 1985); that is, the multinomial logit model imposes the restriction of equal cross-elasticities 

due to a change in an attribute affecting only the utility of an alternative i for all alternatives ij ≠ . 

This property of equal proportionate change of unchanged modes is unlikely to represent actual 

choice behavior in many situations (Stopher et al., 1981). 

The rigid inter-alternative substitution pattern of the multinomial logit model can be relaxed 

by removing, fully or partially, the IID assumption on the random components of the utilities of the 

different alternatives. The IID assumption can be relaxed in one of three ways: (a) allowing the 

random components to be non-identical and non-independent (non-identical, non-independent 

random components); (b) allowing the random components to be correlated while maintaining the 

assumption that they are identically distributed (identical, but non-independent random 

components); and (c) allowing the random components to be non-identically distributed (different 

variances), but maintaining the independence assumption (non-identical, but independent random 

components). We briefly discuss each of these alternatives below. 

Models with non-identical, non-independent random components commonly use a normal 

distribution for the error terms. The resulting model, referred to as the multinomial probit model, can 
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accommodate a very general error structure. Unfortunately, the increase in flexibility of error 

structure comes at the expense of introducing several additional parameters in the covariance matrix. 

This generates a number of conceptual, statistical and practical problems, including difficulty in 

interpretation, highly non-intuitive model behavior, low precision of covariance parameter estimates, 

and increased difficulty in transferring models from one space-time sampling frame to another (see 

Horowitz, 1991; Currim, 1982). The multinomial probit choice probabilities also involve high 

dimensional integrals and this may pose computational problems when the number of alternatives 

exceeds four. The multinomial probit has rarely been used in travel demand modeling (for an 

application, see Bunch and Kitamura, 1990). 

The distribution of the random components in models which use identical, non-independent 

random components is generally specified to be either normal or type I extreme value. Travel 

demand research has mostly used the type I extreme value distribution since it nests the multinomial 

logit. The resulting model, referred to as the nested logit model, allows partial relaxation of the 

assumption of independence among random components of alternatives (Daly & Zachary, 1979; 

McFadden, 1978). This model has a closed form solution, is relatively simple to estimate, and is 

more parsimonious than the multinomial probit model. However, it requires a priori specification of 

homogenous sets of alternatives for which the IIA property holds. This requirement has at least two 

drawbacks. First, the number of different structures to estimate in a search for the best structure 

increases rapidly as the number of alternatives increases. Second, the actual competition structure 

among alternatives may be a continuum which cannot be accurately represented by partitioning the 

alternatives into mutually exclusive subsets. The nested logit model has seldom been used in 

intercity mode choice modeling (see Forinash & Koppelman, 1993 for a recent application).  

The concept that heteroscedasticity in alternative error terms (i.e., independent, but not 

identically distributed error terms) relaxes the IIA assumption is not new (see Daganzo, 1979), but 

has received little (if any) attention in travel demand modeling and other fields. In fact, the IIA 

property has become virtually synonymous with the assumption of lack of similarity (or 

independence of random components) among the choice alternatives in travel demand literature. In 

his study, Daganzo (1979) used independent negative exponential distributions with different 

variances for the random error components to develop a closed-form discrete choice model which 

does not have the IIA property. However, his model has not seen much application since it requires 
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that the perceived utility of any alternative not exceed an upper bound. Daganzo’s model also does 

not nest the multinomial logit model. 

The model developed in this paper falls under the final category of non-IID models. 

Specifically, we develop a random utility model with independent, but non-identical error terms 

distributed with a type I extreme value distribution.1 This heteroscedastic extreme value model 

allows the utility of alternatives to differ in the amount of stochasticity (i.e., allows different 

variances on the random components across alternatives). Unequal variances of the random 

components are likely to occur when the variance of an unobserved variable that affects choice is 

different for different alternatives. For example, in an intercity mode choice model, if comfort is an 

unobserved variable whose values vary considerably for the train mode (based on, say, the degree of 

crowding on different train routes) but little for the automobile mode, then the random components 

for the automobile and train modes will have different variances (Horowitz, 1981). 

The heteroscedastic extreme value model developed here nests the restrictive multinomial 

logit model and is flexible enough to allow differential cross-elasticities among all pairs of 

alternatives. It does not require a priori identification of mutually exclusive market partitions as 

does the nested logit structure. It is more efficient in model structure specification than the nested 

logit formulation since a single model structure is to be estimated rather than testing different nested 

structures. On the other hand, it is parsimonious compared to the multinomial probit model 

introducing only J-1 additional parameters in the covariance matrix as opposed to [J*(J-1)/2]-1 

additional parameters in the probit model (J is the total number of alternatives in the universal 

choice set). It also poses much less of a computational burden requiring only the evaluation of a 1-

dimensional integral (independent of the number of alternatives) compared to the evaluation of a J-1 

dimensional integral in the multinomial probit model. Finally, unlike the multinomial probit model, 

the heteroscedastic extreme value model is easy to interpret and its behavior is intuitive (as we 

discuss in Section 4 of the paper).  

                     
1 The author recently became aware of a similar model proposed by Allenby and Ginter (1993) in a marketing context. 
However, the discussion of the properties of the model and the procedure to estimate the model are very different in the 
two research efforts. 
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3.  Model Structure 

The random utility of alternative i, Ui, for an individual in random utility models takes the form (we 

develop the model structure at the individual level and so do not use an index for individuals in the 

following presentation): 

 
iii VU ε+=                              (1) 

 
where  is the systematic component of the utility of alternative i which is a function of observed 

attributes of alternative i and observed characteristics of the individual, and 

iV

iε  is the random 

component of the utility function. Let C be the set of alternatives available to the individual. We 

assume that the random components in the utilities of the different alternatives have a type I extreme 

value distribution and are independent, but non-identically distributed. We also assume that the 

random components have a location parameter equal to zero and a scale parameter equal to iθ  for 

the ith alternative.2 Thus, the probability density function and the cumulative distribution function of 

the random error term for the ith alternative are: 
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The random utility formulation of equation (1), combined with the assumed probability 

distribution for the random components in equation (2) and the assumed independence among the 

random components of the different alternatives, enables us to develop the probability that an 

individual will choose alternative  from the set C of available alternatives: )( iPi
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2 The assumption of a location parameter equal to zero for the random components is in no way restrictive as long as 
constants are included in the systematic utility for each alternative. Also note that the variance of the ith alternative's 
error term is π2θi

2/6. 
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where (.)λ  and  are the probability density function and cumulative distribution function of the 

standard type I extreme value distribution, respectively, and are given by (see Johnson & Kotz, 

1970) 

(.)Λ
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Substituting iiw θε /=  in equation (4), the probability of choosing alternative i can be re-written 

as follows  
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It can be proved that the probabilities given by the expression in equation (5) sum to one over all 

alternatives (see Appendix A for a proof). If the scale parameters of the random components of all 

alternatives are equal, then the probability expression in equation (5) collapses to that of the 

multinomial logit (see McFadden, 1973).   

 

4.  Non-IIA Property of the Heteroscedastic Extreme Value Model 

The heteroscedastic extreme value model (or simply the heteroscedastic model) discussed in the 

previous section avoids the pitfalls of the IIA property of the multinomial logit model by allowing 

different scale parameters across alternatives. Intuitively, we can explain this by realizing that the 

error term represents unobserved characteristics of an alternative; that is, it represents uncertainty 

associated with the expected utility (or the systematic part of utility) of an alternative. The scale 

parameter of the error term, therefore, represents the level of uncertainty. It sets the relative weights 

of the systematic and uncertain components in estimating the choice probability. When the 

systematic utility of some alternative l changes, this affects the systematic utility differential 

between another alternative i and the alternative l. However, this change in the systematic utility 

differential is tempered by the unobserved random component of alternative i. The larger the scale 

parameter (or equivalently, the variance) of the random error component for alternative i, the more 

tempered is the effect of the change in the systematic utility differential (see the numerator of the 

cumulative distribution function term in equation 5) and smaller is the elasticity effect on the 
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probability of choosing alternative i. In particular, two alternatives will have the same elasticity 

effect due to a change in the systematic utility of another alternative only if they have the same scale 

parameter on the random components. This property is a logical and intuitive extension of the case 

of the multinomial logit in which all scale parameters are constrained to be equal and, therefore, all 

cross-elasticities are equal. 

Formally, the effect of a small change in the systematic utility of an alternative l on the 

probability of choosing alternative i may be written as: 
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and the effect of a change in the systematic utility of alternative i on the probability of choosing i as: 
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Assuming a linear-in-parameters functional form for the systematic component of utility for all 

alternatives, the cross-elasticity for alternative i with respect to a change in the kth level of service 

variable in the lth alternative’s systematic utility, , can be obtained as: klx
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where kβ  is the estimated coefficient on the level of service variable k (assumed to be generic across 

alternatives here). The corresponding self-elasticity for alternative i with respect to a change in  is klx
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The equivalence of the heteroscedastic model elasticities when all the scale parameters are 

identically equal to one and those of the multinomial logit model is straightforward to establish (the 

proof is available upon request from the author). If, however, the scale parameters are unconstrained 

as in the heteroscedastic  model, then the relative magnitudes of the cross-elasticities of any two 
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alternatives i and j with respect to a change in the level of service of another alternative l are 

characterized by the scale parameter of the random components of alternatives i and j 
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This important property of the heteroscedastic model allows for a simple and intuitive interpretation 

of the model, unlike the multinomial probit where there is no easy correspondence between the 

covariance matrix of the random components and elasticity effects. One has to numerically compute 

the elasticities by evaluating multivariate normal integrals in the multinomial probit model to 

identify the relative magnitudes of cross-elasticity effects. 

 

5.  Model Estimation 

The heteroscedastic extreme value model developed in this paper is estimated using the maximum 

likelihood technique. We assume a linear-in-parameters specification for the systematic utility of 

each alternative given by qiqi XV β′=  for the qth individual and ith alternative (we introduce the 

index for individuals in the following presentation since the purpose of the estimation is to obtain the 

model parameters by maximizing the likelihood function over all individuals in the sample). The 

parameters to be estimated in the heteroscedastic model are the parameter vector β  and the scale 

parameters of the random component of each of the alternatives (one of the scale parameters is 

normalized to one for identifiability). The log likelihood function to be maximized can be written as 
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where  is the choice set of alternatives available to the qth individual and  is defined as 

follows 
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The log likelihood function in equation (11) has no closed-form expression. An improper 

integral needs to be computed for each alternative-individual combination at each iteration of the 

maximization of the log-likelihood function. The use of conventional numerical integration 

techniques (such as Simpson's method or Romberg integration) for the evaluation of such integrals is 

cumbersome, expensive and often leads to unstable estimates because they require the evaluation of 

the integrand at a large number of equally spaced intervals in the real line (Butler & Moffitt, 1982; 

Chintagunta et al., 1991). On the other hand, Gaussian quadrature (Press et al., 1986) is a more 

sophisticated procedure that can obtain highly accurate estimates of the integrals in the likelihood 

function by evaluating the integrand at a relatively small number of support points, thus achieving 

gains in computational efficiency of several orders of magnitude. However, to apply Gaussian 

quadrature methods, equation (11) must be expressed in a form suitable for application of one of 

several standard Gaussian formulas (see Stroud & Secrest, 1966 for a review of Gaussian formulas). 

To do so, define a variable . Then,  and we u −= duedww u−−=)(λ uw ln−= . Also define a function 

 as Gqi
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Then we can re-write equation (11) as 
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The expression within braces in the above equation can be estimated using the Laguerre Gaussian 

quadrature formula, which replaces the integral by a summation of terms over a certain number (say 

K) of support points, each term comprising the evaluation of the function Gqi(.) at the support point k 

multiplied by a probability mass or weight associated with the support point (the support points are 

the roots of the Laguerre polynomial of order K and the weights are computed based on a set of 

theorems provided by Press et al., 1986; page 124). 

The estimation was carried out using the GAUSS programming language on a personal 

computer. We used a high order of integration in the quadrature formulas to evaluate the integrals in 

the log-likelihood function accurately (we document the high level of accuracy of the quadrature 
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method later in the paper). Gradients of the “quadrature-evaluated” log-likelihood function with 

respect to the parameters were coded. 

 

6.  Data and Empirical Results 

The data used in the present study draws from a 1989 Rail Passenger Review conducted by VIA Rail 

(the Canadian national rail carrier) to develop travel demand models to forecast future intercity 

travel and estimate shifts in mode split in response to a variety of potential rail service improvements 

(including high-speed rail) in the Toronto-Montreal corridor (see KPMG Peat Marwick & 

Koppelman, 1990 for a detailed description of this data). Travel surveys were conducted in the 

corridor to collect data on intercity travel by four modes (car, air, train and bus). This data included 

socio-demographic and general trip-making characteristics of the traveler, and detailed information 

on the current trip (purpose, party size, origin and destination cities, etc.). The set of modes available 

to travelers for their intercity travel was determined based on the geographic location of the trip. 

Level of service data were generated for each available mode and each trip based on the 

origin/destination information of the trip. 

In this paper, we focus on intercity mode choice for paid business travel in the corridor. The 

study is confined to a mode choice examination among air, train, and car due to the very few number 

of individuals choosing the bus mode in the sample and also because of the poor quality of the bus 

data (see Forinash, 1992). This is not likely to affect the applicability of the mode choice model in 

any serious way since the bus share for paid business travel in the corridor is less than one percent. 

The sample used in this study comprises 2769 business travelers. The sample has been weighted to 

reflect market travel volumes and mode shares. 

We estimated five different models in the study: a multinomial logit model, three possible 

nested logit models, and the heteroscedastic extreme value model. The three nested logit models 

were: (a) car and train (slow modes) grouped together in a nest which competes against air; (b) train 

and air (common carriers) grouped together in a nest which competes against car; and (c) air and car 

grouped together in a nest which competes against train. Of these three structures, the first two seem 

intuitively plausible, while the third does not. However, we estimate the third structure too because 

previous research suggests that non-intuitive structures may provide better empirical results (Daly, 

1987).  
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A number of different variable specifications were examined to determine the preferred 

utility function specification. We arrived at the final specification based on a systematic process of 

eliminating variables found to be insignificant in previous specifications and based on considerations 

of parsimony in representation. Among the specifications examined and rejected because they did 

not provide significantly better results were: (a) out-of-vehicle travel time segmentation into access 

time (to airport or railway station) and terminal time (at airport or railway station)3; (b) travel cost 

deflated by income to reflect a smaller marginal cost effect on high income travelers than low 

income travelers (see Ben-Akiva and Lerman, 1985); (c) differential sensitivities of high income and 

low income groups to changes in in-vehicle and out-of-vehicle travel times and travel cost (see 

Forinash, 1992); and (d) alternative transformations of the frequency variable (see Peat Marwick 

Main and Company & Koppelman, 1989). 

The final estimation results are shown in Table 1 for the multinomial logit model, the 

“Heteroscedastic” model imposing the constraints that all the scale parameters are equal to one (we 

estimate such a model to assess the accuracy of the quadrature procedure used to evaluate the 

integrals; the results from this model and the multinomial logit model should be the same if the 

integrals can be evaluated exactly), the nested logit model with car and train grouped as ground 

modes, and the heteroscedastic model. The estimation results for the other two nested logit models 

are not shown because the logsum parameter exceeded one in these specifications. This is 

inconsistent with stochastic utility maximization (McFadden, 1979; Daly & Zachary, 1979). 

A comparison of the multinomial logit model and the “Heteroscedastic” model with all scale 

parameters constrained to one shows that the parameter estimates, their standard errors4, and the log 

likelihood function value at convergence are close to each other in the two models. This is an 

indication of the high level of accuracy of the quadrature method. A comparison of the nested logit 

model with the multinomial logit model using the likelihood ratio test indicates that the nested logit 

model fails to reject the multinomial logit model. However, a likelihood ratio test between the 

heteroscedastic extreme value model and the multinomial logit strongly rejects the multinomial logit 

in favor of the heteroscedastic specification (the test statistic is 16.56 which is significant at any 

reasonable level of significance when compared to a chi-squared statistic with two degrees of 
                     
3 Out-of-vehicle travel time is zero for the car mode. 
4 The asymptotic covariance matrix of parameters in all estimations is computed as H-1∆H-1, where H is the hessian and ∆ 
is the cross-product matrix of the gradients (H and ∆ are evaluated at the estimated parameter values). This provides 
consistent standard errors of the parameters when weights are used.  
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freedom). Table 1 also evaluates the models in terms of the adjusted likelihood ratio index ( 2ρ ).5 

These values again indicate that the heteroscedastic model offers the best fit in the current empirical 

analysis [note that the nested logit model and the heteroscedastic models can be directly compared to 

each other using the non-nested adjusted likelihood ratio index test proposed by Ben-Akiva and 

Lerman (1985); in the current case, the heteroscedastic model specification rejected the nested 

specification using this non-nested hypothesis test]. 

In the subsequent discussion on interpretation of model parameters, we will focus only on the 

multinomial logit and heteroscedastic extreme value models. The signs of all the parameters in the 

two models are consistent with a priori expectations (the car mode is used as the base for the 

alternative specific constants and alternative specific variables). There is a preference for the 

common carrier modes (air and train) over the car mode, and for the train mode over the air mode, 

for trips which originate, end, or originate and end at a large city. The income parameters show that 

higher income favors air travel relative to other modes, and low income favors train travel. All level-

of-service measures yield reasonable parameters. The higher negative coefficient on out-of-vehicle 

travel time relative to that on in-vehicle travel time reveals that out-of-vehicle travel time is more 

onerous than in-vehicle travel time.  

The parameter estimates from the multinomial logit and the heteroscedastic model are close 

to each other. However, there are some significant differences (all significance tests are conducted at 

the 0.1 level). The heteroscedastic model suggests a higher positive probability of choice of the train 

mode for trips which originate, end, or originate and end at a large city. It also indicates a lower 

sensitivity of travelers to frequency of service and travel cost; i.e., the heteroscedastic model 

suggests that travelers place substantially more importance on travel time than on travel cost or 

frequency of service. Thus, according to the heteroscedastic model, reductions in travel time (even 

with a concomitant increase in fares) may be a very effective way of increasing the mode share of a 

travel alternative. The implied cost of in-vehicle travel time is $14.70 per hour in the multinomial 

                     
5 The adjusted likelihood ratio index is defined as follows:  

)(
)(12

CL
KMLp −

−=  

where L(M) is the model log-likelihood value, L(C) is the log-likelihood value with only alternative specific constants 
and an IID error covariance matrix, and K is the number of parameters (besides the alternative specific constants) in the 
model.  
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logit and $20.80 per hour in the heteroscedastic model. The corresponding figures for out-of-vehicle 

travel time are $50.20 and $68.30 per hour, respectively. 

The heteroscedastic model indicates that the scale parameter of the random error component 

associated with the train (air) utility is significantly greater (smaller) than that associated with the car 

utility (the scale parameter of the random component of car utility is normalized to one; the t-

statistics for the train and scale parameters are computed with respect to a value of one). Therefore, 

the heteroscedastic model suggests unequal cross-elasticities among the modes.  

Table 2 shows the elasticity matrix with respect to changes in rail level of service 

characteristics (computed for a representative inter-city business traveler in the corridor) for the 

multinomial logit and heteroscedastic extreme value models.6 Two important observations can be 

made from this table. First, the multinomial logit model predicts higher percentage decreases in air 

and car choice probabilities and a higher percentage increase in rail choice probability in response to 

an improvement in train level of service than the heteroscedastic model. Second, the multinomial 

logit elasticity matrix exhibits the IIA property because the elements in the second and third columns 

are identical in each row. The heteroscedastic model does not exhibit the IIA property; a 1% change 

in the level of service of the rail mode results in a larger percentage change in the probability of 

choosing air than auto. This is a reflection of the lower variance of the random component of the 

utility of air relative to the random component of the utility of car. We discuss the policy 

implications of these observations in the next section. 

  

7.  Summary and Conclusions 

This paper has developed a random utility model with independent, but non-identical error terms 

distributed with a type I extreme value distribution. The resulting heteroscedastic extreme value 

model has a number of advantages over other commonly used discrete choice models. The paper 

proposes and applies an efficient gaussian quadrature method to estimate the heteroscedastic 

extreme value model. 

The heteroscedastic model avoids the IIA restriction of the multinomial logit model by 

allowing the random components of utilities of the different alternatives to have unequal scale 

                     
6 Since the objective of the original study for which the data were collected was to examine the effect of alternative 
improvements in rail level of service characteristics, we focus on the elasticity matrix corresponding to changes in rail 
level of service here. 
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parameters. The IIA assumption holds only if the scale parameters of all the alternatives are equal, in 

which case the heteroscedastic model collapses to the multinomial logit model. 

The empirical analysis of the paper applied the heteroscedastic model, the multinomial logit 

model, and the nested logit model to the estimation of inter-city travel mode choice in the Toronto-

Montreal corridor. The results of the heteroscedastic model reject the multinomial logit formulation 

of mode choice; corresponding nested logit formulations, however, are either inconsistent with 

utility maximization principles or are not significantly better than the multinomial logit model. The 

heteroscedastic model predicts a higher probability of choice of the train mode compared to the 

multinomial logit model for trips that originate, end, or originate and end at a large city. It also 

suggests a lower sensitivity of travelers to frequency of service and travel cost relative to the 

multinomial logit. 

Our findings indicate that using a multinomial logit formulation to examine the effects of 

improving rail level of service in the context of the Canadian data leads to overestimation in the 

choice probability of the improved rail mode and overestimation in the decrease in the choice 

probability of non-rail modes. The multinomial logit model also predicts (incorrectly) that the 

increase in rail choice probability is due to equal percentage decreases in the choice probabilities of 

the non-rail modes (at the individual level). The results of the heteroscedastic extreme value model 

show a larger percentage decrease in the air mode than the auto mode.  

The observations made above have important policy implications at the aggregate level 

(these policy implications are specific to the Canadian context; caution must be exercised in 

generalizing the behavioral implications based on this single application). First, the results indicate 

that the increase in rail mode share in response to improvements in the rail mode is likely to be 

substantially lower than what might be expected based on the multinomial logit formulation. Thus, 

the multinomial logit model overestimates the potential ridership on a new (or improved) rail service 

and, therefore, overestimates revenue projections. This finding is very important, particularly in the 

light of a recent study which indicates that many public rail investments have suffered huge financial 

setbacks because they were based on ridership forecasts which later proved to be substantially 

overestimated (Transportation Systems Center, 1989). Second, our results indicate that the potential 

of an improved rail service to alleviate auto-traffic congestion on intercity highways and air-traffic 

congestion at airports is likely to be lesser than that suggested by the multinomial logit model. This 

finding has a direct bearing on the evaluation of alternative strategies to alleviate intercity travel 
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congestion. Third, the differential cross-elasticities of air and auto modes in the heteroscedastic logit 

model suggests that an improvement in the current rail service will alleviate air-traffic congestion at 

airports more so than alleviating auto-congestion on roadways. Thus, the potential benefit from 

improving the rail service will depend on the situational context; that is, whether the thrust of the 

congestion-alleviation effort is to reduce roadway congestion or to reduce air traffic congestion. 

These findings point to the deficiency of the multinomial logit model as a tool to making informed 

policy decisions to alleviate intercity travel congestion. 

It is important to emphasize that the results obtained in this paper are specific to the current 

analysis. In general, the heteroscedastic model proposed here is likely to be superior to the 

multinomial logit and nested logit models in cases with nonidentical-independent random 

components. However, the nested logit model may be superior to the heteroscedastic and 

multinomial logit models in cases with identical-nonindependent random components. Finally, note 

that both the nonidentical-independent and identical-nonindependent cases may be approximations 

to the nonidentical-nonindependent case and it would be useful to examine the conditions under 

which the nonidentical-independent case is a better approximation than the identical-nonindependent 

case and vice versa. This is an area for future research. 
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Appendix A: Sum of Choice Probabilities in Heteroscedastic Model 
 
In this appendix, we prove that the choice probabilities of alternatives sum to one in the 

heteroscedastic extreme value model. For ease in presentation, we will establish this result for the 

case of three alternatives. Generalization to a different number of alternatives is straight-forward. 

For the three alternative cases, we can write the choice probabilities based on equation (5) of 

the text as 
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Let us define a function H(z) as follows 
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Since H(z) is a product of proper cumulative distribution functions, it is also a proper cumulative 

distribution function. Thus, we can write 
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Carrying out the differentiation of H(z) with respect to z using (A.2), we can also write: 
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Making the change of variables; 3131 /)( θθ z VVz +−=′′  in the second integral term and in the 

2121 /)( θθ z VVz +−=′  in the third integral term; it is easy to see that the first term in equation (A.4) 

is , the second is , and the third is . Thus, by (A.3), 1P 2P 3P 1321 =++ PPP .  
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Table 1. Intercity Mode Choice Estimation Results 
 

Multinomial Logit Constrained "Hetero-
scedastic" Model 

Nested Logit with Car 
and Train Grouped 

Heteroscedastic Extreme 
Value Model 

 
Variable 

Parameter     t-statistic Parameter t-statistic Parameter t-statistic Parameter t-statistic
Mode Constants (car is base)         

Train -0.5396         -1.55 -0.5572  -1.66 -0.6703  -2.14 -0.1763  -0.42
Air         -0.6495  -1.23 -0.6055  -1.09 -0.5135  -1.31 -0.4883  -0.88

Large City Indicator (car is base)         
Train  1.4825   7.98  1.3971   8.28  1.3250   6.13  1.9066   6.45 
Air  0.9349   5.33  0.9370   5.49  0.8874   5.00  0.7877   4.96 

Household Income (car is base)         
Train -0.0108         -3.33 -0.0106  -3.34 -0.0101  -3.30 -0.0167  -3.57
Air  0.0261   7.02  0.0258   7.02  0.0262   7.42  0.0223   6.02 

Frequency of service  0.0846  17.18  0.0835  17.46  0.0846  17.67  0.0741 10.56 
Travel Cost -0.0429        -10.51 -0.0420 -10.63 -0.0414 -11.03 -0.0318  -5.93
Travel Time         

In-Vehicle         -0.0105 -13.57 -0.0102 -13.64 -0.0102 -12.64 -0.0110  -9.78
Out-of-Vehicle         -0.0359 -12.18 -0.0349 -12.43 -0.0353 -13.86 -0.0362  -8.64

Logsum Parameter1  1.0000 -  1.0000 -  0.9032   1.14  1.0000 - 
Scale Parameters (car parm.= 1)2         

Train  1.0000 -  1.0000 -  1.0000 -  1.3689   2.60 
Air  1.0000 -  1.0000 -  1.0000 -  0.6958   2.41 

Log Likelihood At Convergence3 -1828.89    -1830.10 -1828.35 -1820.60
Adjusted Likelihood Ratio Index  0.3525 0.3521 0.3524 0.3548 
 

                     
     1 The logsum parameter is implicitly constrained to one in the multinomial logit and heteroscedastic model specifications. The t-statistic for the logsum 

parameter in the nested logit is with respect to a value of one. 

     2 The scale parameters are implicitly constrained to one in the multinomial logit and nested logit models and explicitly constrained to one in the 
constrained "heteroscedastic" model. The t-statistics for the scale parameters in the heteroscedastic model are with respect to a value of one. 

     3 The log likelihood value at zero is -3042.06 and the log likelihood value with only alternative specific constants and an IID error covariance matrix is -
2837.12. 
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Table 2. Elasticity Matrix in Response to Change in Rail Service for 
Multinomial Logit and Heteroscedastic Models  

 
 
 

Multinomial Logit Model Heteroscedastic Extreme Value Model 
Rail Level of Service Attribute 

Train      Air Car Train Air Car

Frequency       0.303 -0.068 -0.068 0.205 -0.053 -0.040

Cost       -1.951 0.436 0.436 -1.121 0.290 0.220

In-Vehicle Travel Time       -1.915 0.428 0.428 -1.562 0.404 0.307

Out-of-Vehicle Travel Time       -2.501 0.559 0.559 -1.952 0.504 0.384
 
 

Note: The elasticities are computed for a representative intercity business traveler in the corridor. 
 


