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ABSTRACT 

In the context of panel ordered-response structures, the current paper compares the performance 

of the maximum-simulated likelihood (MSL) inference approach and the composite marginal 

likelihood (CML) inference approach. The panel structures considered include the pure random 

coefficients (RC) model with no autoregressive error component, as well as the more general 

case of random coefficients combined with an autoregressive error component. The ability of the 

MSL and CML approaches to recover the true parameters is examined using simulated datasets. 

The results indicate that the performances of the MSL approach (with 150 scrambled and 

randomized Halton draws) and the simulation-free CML approach are of about the same order in 

all panel structures in terms of the absolute percentage bias (APB) of the parameters and 

econometric efficiency. However, the simulation-free CML approach exhibits no convergence 

problems of the type that affect the MSL approach. At the same time, the CML approach is about 

5-12 times faster than the MSL approach for the simple random coefficients panel structure, and 

about 100 times faster than the MSL approach when an autoregressive error component is added. 

As the number of random coefficients increases, or if higher order autoregressive error structures 

are considered, one can expect even higher computational efficiency factors for the CML over 

the MSL approach. These results are promising for the use of the CML method for the quick, 

accurate, and practical estimation of panel ordered-response models with flexible and rich 

stochastic specifications. 

 

Keywords: Ordered-response model, simulated likelihood, composite marginal likelihood, cross-

sectional model, panel model  
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1. INTRODUCTION 

Ordinal discrete data arise in several empirical contexts, including ratings data (of consumer 

products, bonds, credit evaluation, movies, etc.), or likert-scale type attitudinal/opinion data (of 

air pollution levels, traffic congestion levels, school academic curriculum satisfaction levels, 

teacher evaluations, etc.), or grouped data (such as bracketed income data in surveys or 

discretized rainfall data).  

Several of these applications have modeled the case of either repeated ordinal choice data 

(such as would be obtained from a stated preference exercise in which each respondent is asked 

to provide, at the same cross-sectional point in time, her/his opinion of a product multiple times 

based on varying the attributes of the product) or panel-based ordinal data (similar to repeated 

choice data, except that these are actual revealed choices made by individuals over a period of 

time). In this paper, the focus is on the latter case because restricted versions of the models for 

panel data may be applied to repeated choice data. Within this panel context, the norm in the 

literature is to introduce random effects and/or random parameter heterogeneity to accommodate 

panel effects. Such terms lead to integration in the likelihood function during estimation, 

resulting, in general, in the need to use numerical simulation techniques based on a maximum 

simulated likelihood (MSL) approach (for example, see Bhat and Zhao, 2002, Greene, 2005, 

Greene and Hensher, 2010) or a Bayesian inference approach (for example, see Müller and 

Czado, 2005, Girard and Parent, 2001). However, such simulation-based approaches can become 

infeasible for some panel model specifications and for long panel data.  Even if feasible, the 

numerical simulation methods can be time-consuming and can lead to convergence problems 

during estimation. For instance, Bhat et al. (2010a) find that standard classical MSL approaches 

can be imprecise and have poor convergence properties, and Müller and Czado (2005) find that 

standard Bayesian MCMC approaches can be problematic for panel ordered response model 

estimations due to bad convergence properties. As a consequence, another inference approach 

that has seen some use recently is the simulation-free composite marginal likelihood (CML) 

approach. This is an estimation technique that is gaining substantial attention in the statistics 

field, though there has relatively little coverage of this method in econometrics and other fields. 

The CML method, which belongs to the more general class of composite likelihood function 

approaches, is based on forming a surrogate likelihood function that compounds much easier-to-

compute, lower-dimensional, marginal likelihoods. Under usual regularity assumptions, and 
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based on the theory of estimating equations (see Lindsay, 1988, Cox and Reid, 2004), the CML 

estimator is consistent and asymptotically normal distributed (this is because of the unbiasedness 

of the CML score function, which is a linear combination of proper score functions associated 

with the marginal event probabilities forming the composite likelihood). The maximum CML 

estimator should lose some efficiency from a theoretical perspective relative to a full likelihood 

estimator (if this is feasible), but this efficiency loss appears to be empirically small (see Zhao 

and Joe, 2005, Lele, 2006, and Joe and Lee, 2009).1 Besides, the MSL approach also loses 

efficiency since it involves simulation of the true analytically intractable likelihood function (see 

McFadden and Train, 2000). Moreover, there is always some simulation bias in the MSL method 

for finite number of simulation draws, and the consistency of the MSL method is guaranteed 

only when the number of simulation draws rises faster than the square root of the sample size 

(Lee, 1995 and McFadden and Train, 2000). Overall, the CML approach has some appealing 

properties relative to simulation techniques: It is consistent, represents a conceptually, 

pedagogically, and implementationally simpler procedure, and has the advantage of 

reproducibility of results. 

The focus of this paper is on comparing the performance of the maximum-simulated 

likelihood (MSL) approach with the composite marginal likelihood (CML) approach in panel 

ordered-response situations when the MSL approach is feasible.2 We use simulated data sets with 

known underlying model parameters to evaluate the two estimation approaches. The ability of 

the two approaches to recover model parameters is examined, as is the sampling variance and the 

simulation variance of parameters in the MSL approach relative to the sampling variance in the 

CML approach. The computational costs of the two approaches are also presented.3  

                                                 
1 A handful of studies (see Hjort and Varin, 2008; Mardia et al., 2009; Cox and Reid, 2004) have also theoretically 
examined the limiting normality properties of the CML approach, and compared the asymptotic variance matrices 
from this approach with the maximum likelihood approach. However, such a precise theoretical analysis is possible 
only for very simple models, and becomes much harder for models such as a panel ordered-response system.  
2 Note that our discussions in the paper for the panel ordered-response situation are immediately applicable to the 
panel binary response situation, because the latter is but a special case of the former. 
3 In this paper, we do not consider the method of simulated moments (MSM) for panel ordered-response models. 
But, just like the MSL method, MSM also becomes cumbersome and can be fraught with convergence issues when 
the number of dimensions of integration involved in the likelihood function increases. Besides, in general, the MSM 
estimator is not as efficient as the MSL estimator. However, for some specifications such as the random effects 
autoregressive structure in Section 2.3, the MSM estimator has been found to have small sample properties better 
than the MSL estimator for a panel binary probit model and a panel multinomial probit model (especially when the 
autoregressive parameter takes a high value; see Keane, 1994 and Geweke et al., 1997). We leave an examination of 
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The rest of this paper is structured as follows. In the next section, we present alternative 

model structures for panel ordered-response models, and discuss the maximum simulated 

likelihood (MSL) estimation method and the maximum CML estimation methods in the context 

of each of the alternative panel structures. Section 3 presents the experimental design for the 

simulation experiments. Section 4 presents the performance measures used for the comparison of 

the MSL and CML approaches, while Section 5 discusses the results. Section 6 concludes the 

paper by highlighting the important findings. 

 

2. MODEL STRUCTURE 

Let q be an index for individuals (q = 1, 2, …, Q), and let j be an index for the jth observation 

(say at time qit ) on individual q (j = 1, 2, …, J, where J denotes the total number of observations 

on individual q).4 Let the observed discrete (ordinal) level for individual q at the jth observation 

be mqj (mqj may take one of K values; i.e., mqi ∈{1, 2, …, K}). In the usual random-effects 

ordered response framework notation, we write the latent variable ( *
qjy ) as a function of relevant 

covariates as: 

qjqjqjqj myy =+= ,* εqj
'
q xβ  if  qjqj m

qj
m y ψψ <<− *1 ,                                                            (1)  

where qjx  is a (H×1)-vector of exogenous variables (including a constant), qβ  is an individual-

specific (H×1)-vector of coefficients to be estimated that is a function of unobserved individual 

attributes, qjε  is a standard normal (or logistic) error term uncorrelated across individuals q (but 

it may be correlated across observations j (j = 1, 2, …, J) of the same individual, depending upon 

the analyst’s specification) , and qjmψ  is the upper bound threshold for discrete level mqj 

                                                                                                                                                             
the performance of the MSM and the CML estimators, in situations where the MSM estimator is feasible to 
implement for panel ordered-response models, to a future research effort.  
4 We assume here that the number of panel observations is the same across individuals. Extension to the case of 
different numbers of panel observations across individuals does not pose any substantial challenges, and will be 
discussed later.  



4 

( +∞==−∞=<<<< − KKK ψψψψψψψψ  0, ,  ;... 101210 ). 5   Assume that the qβ  vector in 

Equation (1) is a realization from a multivariate normal distribution )(βφ  with a mean vector b 

and covariance matrix ,LL ′=Ω where L is the lower-triangular Cholesky factor of Ω.  Also, 

assume that the qjε  term, which captures the idiosyncratic effect of all omitted variables for 

individual q at the jth choice occasion, is independent of the elements of the qβ  and qjx  vectors. 

We now discuss four different model structures, based on different assumptions about the qβ  

vector. 

 

2.1 Random-Effects Model 

The simplest panel model is one that includes an individual-specific constant term, but does not 

consider heterogeneity in other parameters in qβ across individuals q. Thus, we write 

,qqjq zγxβ ′+=′ qα where the vector qz  now includes all the variables but no constant, and γ  is a 

fixed coefficient vector to be estimated. Substituting this expression in Equation (1), and writing 

qα  in random effects form as ,qq ηαα += we get the following equation: 

qjqjqjqqj myy =++′+= ,* εηα qjzγ  if  qjqj m
qj

m y ψψ <<− *1         (2) 

qη  in the above equation is an individual-specific random term that generates a correlation in the 

propensity across all of individuals q’s J observed choice occasions. It is typical to consider the 

heterogeneity term qη  to be normally distributed. However, other distributions may also be 

empirically tested, such as the logistic distribution with fatter tails. But the consideration of a 

normally distributed qη  with a standard normally distributed qjε  is natural and convenient here, 

which is what we will assume. The result is the standard textbook random-effects ordered-

                                                 
5 The model can be generalized in many ways, though the model as written is the most familiar and common panel 
version of the ordered-response model. For instance, the mean vector b of βq can be a function of observed 
individual attributes. However, this can be accommodated without any complications by redefining xqj to include 
interaction terms. Also, one can label the coefficient vector on the  xqj variable vector as βqj (rather than βq) to allow 
for fixed or random elements of response specific to period j, and to capture random heterogeneity in response 
across individuals and choice occasions (see Bhat and Sardesai, 2006). This relabeling also then allows observed 
individual and choice occasion specific variable effects to be introduced in the covariance matrix of βqj. Finally, one 
can also include heterogeneity in the variance of εqj and accommodate heterogeneity in the thresholds ψ2,ψ3,…< ψK-1 

through careful parameterizations to ensure the ordinality conditions on the thresholds (see Eluru et al., 2008). 
However, all these generalizations cause an explosion in parameters, and need very rich data sets to estimate 
parameters.  
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response model, which takes the same form as the random-effects binary choice model proposed 

by Butler and Moffitt (1982).  

 

2.1.1 Maximum Simulated Likelihood (MSL) Estimation of Random-Effects Model 

The MSL estimation of the random-effects model is relatively straightforward. The probability 

of the observed vector qm of the sequence of ordinal choices ),...,,,( 321 qJqqq mmmm  for 

individual q, conditional on the heterogeneity term qη , can be written as: 

{ }∏
=

− −−−Φ−−−−Φ=
J

j
q

m
q

m
qq

qjqjm
1

1 )()()(Prob ηαψηαψη qj
'

qj
' zγzγ         (3) 

The unconditional likelihood of the observed choice sequence is obtained by integrating out the 

term qη : 

{ }∫ ∏
∞

−∞= =

−
⎥
⎦

⎤
⎢
⎣

⎡
−−−Φ−−−−Φ=

v

J

j

mm
q νdvvvL qjqj )()()(),,,(

1

1 φσαψσαψσα qj
'

qj
' zγzγγψ  (4) 

where 
σ
ηqν = , ),0(~ 2ση Nq , ψ  is the vector of all threshold bounds, )(⋅Φ is the univariate 

standard normal cumulative distribution, and )(⋅φ is the corresponding univariate standard 

normal density function. Finally, the log-likelihood function may be written as: 

∑=
q

qLL ),,,(log),,,(log σασα γψγψ  (5) 

The log-likelihood function above can be maximized using Gauss-Hermite Quadrature or 

using a simulation method. Since, the function entails only a one dimensional integral, estimation 

is generally very fast and there is no convergence-related problems.  

 

2.1.2 Composite Marginal Likelihood (CML) Estimation of Random-Effects Model 

The composite marginal likelihood (CML) estimation approach (see Varin, 2008, Varin et al., 

2011, and Bhat et al., 2010a for good reviews) is a relatively simple approach that can be used 

when the full likelihood function is cumbersome or plain infeasible to evaluate due to the 

underlying complex dependencies, as is the case with certain specifications of panel models that 

entail high dimensional integration in the likelihood function. While there have been recent 
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advances in simulation techniques within a classical or Bayesian framework that assist with such 

model estimation situations (see Bhat, 2003, Beron and Vijverberg, 2004, and LeSage, 2000), 

these techniques are impractical and/or infeasible in situations in some panel ordered-response 

situations (see, for example, Varin and Czado, 2010). Further, even when the integration is of 

low dimension, the CML method may have a substantial edge in terms of computation speed. 

The CML method, which belongs to the more general class of composite likelihood function 

approaches (see Lindsay, 1988), is based on forming a surrogate likelihood function that 

compounds easier-to-compute, lower-dimensional, likelihoods of marginal events. In panel data, 

the simplest CML, formed by assuming independence across observed choice instances from the 

same individual, entails the product of univariate densities (for continuous data) or probability 

mass functions (for discrete data). However, this approach does not provide estimates of 

dependence among the individual observations. Another approach is the pairwise likelihood 

function formed by the product of power-weighted likelihood contributions of all or a selected 

subset of couplets (i.e., pairs of observed events). This pairwise method corresponds to a 

composite marginal approach based on bivariate marginals. For individual q, the pairwise 

likelihood function is: 

( )[ ] ,,Pr),,,(
1

1 1
,

qw
J

j

J

jg
qgqgqjqjqCML mymyL ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=== ∏∏

−

= +=

σα γψ                     (6)  

where qw  is a power weight to be chosen based on efficiency considerations (see Kuk and Nott, 

2000, Zhao and Joe, 2005, Joe and Lee, 2009). When the number of choice occasions are the 

same across individuals, as we assume in the current paper, this power weight term may be 

ignored and arbitrarily set to one for each individual. When the number of choice occasions are 

different across individuals, setting qw  to be one for all individuals will give more weight to 

individuals who have more choice occasions than to individuals who have fewer choice 

occasions. In this situation, the weights to be used are discussed in Section 2.5. 6  

                                                 
6 A note about the CML method is in order here. The CML method is helpful when there are multiple observed 
events, with the events being dependent because of covariance in the underlying latent variables generating the 
events. This is the case when one is dealing with panel choice data, or with the case of cross-sectional choice data 
with spatial and/or social dependence across the choice instances of decision agents, or with combinations of the 
two. In these situations, the multivariate probability of the dependent events in the likelihood function is replaced in 
the CML approach by a compounding of the probabilities of lower dimensional events (such as the likelihood of 
each pair of observed choice instances from the same decision agent in panel data, or the likelihood of each pair of 
observed choice instances of different decision agents in dependent cross-sectional data). Of course, the CML 
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To write the pairwise likelihood function in terms of the parameters to be estimated in the 

simple random-effects model, note that the joint distribution of the latent variables 

) ..., , ,( **
2

*
1 qJqq yyy  for the qth individual is multivariate normal with standardized mean vector 

μ
α

μ
α

μ
α qJ

'
q2

'
q1

' zγzγzγ +++
,....., and a correlation matrix with constant non-diagonal entries 2

2

μ
σ , 

where 21 σμ += . Then, we can write  

( )
),,,(

),,(),,(),,(,Pr
11

2

1
2

1
22

jg
mm

jg
mm

jg
mm

jg
mm

qgqgqjqj

qgqj

qgqjqgqjqgqjmymy

ρδδ

ρδδρδδρδδ
−−

−−

Φ+

Φ−Φ−Φ===
   (7) 

where 
2

2
2 ,1,

μ
σρσμ

μ
αψ

δ =+=
−−

= jg

m
m

qj

qj qj
' zγ

 

The logarithm of the pairwise likelihood function is: 

( )( )∑∑ ∑
−

= +=

===
q

J

j

J

jg
qgqgqjqjCML mymyL

1

1 1
,Prlog),,,(log σα γψ       (8)  

The CML estimator ),,,(ˆ ′′= σα γψθ obtained by maximizing the above function is 

consistent and asymptotically normally distributed with the asymptotic variance matrix vector 

given by the inverse of the Godambe’s (1960) sandwich information matrix.7 

 

2.2 Random Coefficients Model 

In this model, the coefficients on the exogenous variables are also considered to be randomly 

distributed. Going back to Equation (1), assume that qβ  is multivariate normal distributed with 

                                                                                                                                                             
cannot break down a multivariate probability expression in cases where individual events themselves are of high 
dimension. For instance, consider a cross-sectional multinomial probit model with independent probabilities across 
decision agents. When the number of alternatives involved is high, the probability of choice for each individual 
takes the form of a high multivariate normal cumulative distribution (MVNCD) function.  In this case, the MVNCD 
function evaluation for each agent has to be evaluated using simulation or other analytic approximation techniques 
(see Bhat, 2011 for a detailed discussion).  
7 The random effects specification is considered here just by way of introducing the CML method for a simple 
specification. Given the single dimensional integral in the full likelihood function for the random effects ordered-
response model, there is really no reason to use the CML estimator in this random effects case. Indeed, the CML 
estimator involves developing all pairwise probabilities, which, in general, will be more time consuming than using 
fast quadrature or other techniques on the full likelihood function. However, the situation becomes different for the 
other cases discussed next.  
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mean vector b and covariance 'LL=Ω . 8  For later use, define qq βbβ ~
+= , where qβ

~ is 

multivariate normal distributed with a mean vector of zeros and a covariance matrix given by Ω .  

Note that it is not necessary that all elements of the qβ  be random. That is, the analyst may 

specify fixed coefficients on some exogenous variables in the model, though it will be 

convenient in presentation to assume that all elements of qβ  are random. 

 

2.2.1 Maximum Simulated Likelihood Estimation 

The likelihood function contribution of individual q for the random coefficients model is: 

{ }∫ ∏
∞

−∞= =

−
⎥
⎦

⎤
⎢
⎣

⎡
−Φ−−Φ=

β
qj

'
qj

' βb,βxβxβbψ d)|()()(),,(
1

1 ΩΩ fL
J

j

mm
q

qjqj ψψ   (9) 

where ( ).f is multivariate normal density function with mean vector b and covariance Ω  

The log-likelihood function is: 

∑=
q

qLL ),,(log),,(log ΩΩ bψbψ    (10) 

                                                 
8 One may also consider non-normal distributions for the random coefficients. In general, doing so does not allow 
the analytic development of the joint distribution of the latent variables ),...,,( **

2
*
1 qJqq yyy , which is needed for the 

use of the composite marginal likelihood (CML) method (normality, on the other hand, leads to a multivariate 
normal distribution for the latent variables because of the conjugate addition property of the normal distribution). On 
the other hand, the MSL approach is generic and applicable for both normal as well as non-normal distributions. 
While there have been several applications of a non-normal distribution for random coefficients (such as on the cost 
coefficient), as indicated by Bhat (2011), it has been well known that using non-normal distributions can lead to 
convergence/computational problems in the MSL approach, and it is not uncommon to see researchers consider non-
normal distributions only to eventually revert to the use of a normal distribution (see, for example, Bartels et al., 
2006 and Small et al., 2005). Recently, Bhat and Sidharthan (2012) have come up with a new approach to introduce 
non-normality in unordered-response that still allows the use of the CML estimation approach, thus doing away with 
the computational problems of the MSL. Specifically, they propose the use of a multivariate skew normal (MVSN) 
distribution for the random coefficients. The MVSN distribution is tractable, parsimonious in parameters that 
regulate the distribution and its skewness, and includes the normal distribution as a special interior point case. It also 
is a very flexible unimodal density structure that allows a “seamless” and “continuous” variation from normality to 
non-normality, and can replicate a variety of smooth unimodal density shapes with tails to the left or right as well as 
with a high modal value (sharp peaking) or low modal value (flat plateau). At the same time, the joint distribution of 
the latent variables takes a MVSN form, which lends itself nicely to the use of the CML inference approach. In this 
paper, we use a multivariate normal distribution for the random coefficients, and leave the extension to the non-
normal case (a la Bhat and Sidharthan, 2012) for a future effort.  
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The expression ∑
q

qL ),,(log Ωbψ
 
entails integration of dimension equal to the number of 

elements of qβ . Alternatively, one could combine the error terms qjqjx ε+′qβ
~  for each individual 

q and choice occasion j. By the conjugate addition property of the normal distribution, this 

composite error term is also normally distributed. Defining 

),matrix()',...,,(and)matrix1() ..., , ,( 21
**

2
*
1 KJxxxJyyy qJqqqJqq ×=×′= q

*
q xy we may write 

)](,[~ Jqqq
*
q Ixxbxy +′ΩJMVN  with JI  being the identity matrix of size J and JMVN being the 

multivariate normal density function of dimension J.  One can then integrate this J-dimensional 

multivariate normal vector between the appropriate multivariate threshold bounds to obtain the 

likelihood function as an alternative to Equation (9). Both these likelihood functions are 

identical; if K<J, then Equation (9) involves a lesser dimension of integration, while if K>J, the 

alternative form involves a lesser dimension of integration. When K=J (as in our simulation 

exercise discussed later), both forms have the same dimensionality of integration. But the 

likelihood form in Equation (9) is easier since it entails integration over the entire real domain 

(from –∞ to +∞) rather than a rectangular bounded domain in the alternative form. So, we use 

Equation (9) as the likelihood function for the random coefficients model.  

The estimation of the log-likelihood function in Equation (10) cannot, in general, be 

pursued using quadrature techniques due to the curse of dimensionality. Instead, it is typical to 

use quasi-Monte Carlo (QMC) techniques for simulation estimation (Bhat, 2001, 2003). To 

ensure the positive definiteness of the covariance matrixΩ , the likelihood function contribution 

of individual q of Equation (9) is rewritten in terms of the Cholesky-decomposed matrix L of Ω . 

The maximum simulated likelihood approach then proceeds by optimizing with respect to the 

elements of L rather than Ω . Once convergence is achieved, the implied covariance matrix Ω  

may be reconstructed from the estimated matrix L. 

While there have been important advances in terms of the QMC based simulation of the 

mixed panel models for random coefficients, these QMC methods continue to be quite expensive 

for the usual sample sizes encountered in practice. Besides, even for low to moderate dimensions 

of integration (of the order of four to seven), the numerical simulators can lead to numerical 

instability, non-convergence, and imprecision problems as the number of dimensions increases. 

Bhat et al. (2010a) find another bothersome issue with these MSL simulation methods even for 

low to moderate dimensions in that even if the log-likelihood function is computed with good 
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precision, so that the simulation error in the estimated parameters is small, the computation of 

the numerical Hessian is not very reliable. But a good estimate of the Hessian is needed for the 

sandwich estimator of the covariance matrix in the MSL method (the alternative of using the 

inverse of the cross product of the first derivatives is not appropriate in the MSL because of 

simulation noise introduced when using a finite number of draws per individual, see McFadden 

and Train, 2000). The only way out of the problem is to compute the log likelihood function with 

a very high level of precision, which can lead to high computational times even at low 

dimensions. 

 

2.2.2 CML Estimation 

The pairwise marginal likelihood function for the random coefficients panel ordered-response 

model is much simpler than the full likelihood function in Equation (9), as also suggested by 

Renard et al. (2004) in the context of a panel binary choice model. In particular, based on the 

joint distribution of the latent variable vector ) ..., , ,( **
2

*
1 ′= qJqq yyy*

qy for the qth individual, one 

can write the contribution of the qth individual to the pairwise-likelihood function as: 

( )[ ]

,
),,(),,(

),,(),,(

,Pr),,(

1

1 1
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1
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J
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qgqgqjqjqCML mymyL

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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Φ−Φ
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⎞
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            (11) 

where 
( )

( )
( ) ( )**

**

* VarVar

,Cov
and

Var qgqj

qgqj
qjg

qj

m
m

yy

yy

y

qj

qj =
−

= ρ
ψ

δ qj
' xb

   

In the above expression, the ( )*Var qjy , ( )*Var qgy  and qjgρ  terms are obtained by picking 

off the appropriate 22× sub-matrix of the covariance matrix of ) ..., , ,( **
2

*
1 qJqq yyy  given by 

)( JIxx qq +′Ω . The logarithm of the pairwise likelihood function is: 

,),,(log),,( ,∑=
q

qCMLCML LL ΩΩ βψβψ   (12) 

The asymptotic variance expression is given by the sandwich estimator, as discussed earlier in 

Section 2.1.2. 
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The random coefficients model is commonly referred to as the mixed model in the 

literature, and the CML approach above is an alternative to the commonly used MSL approach. 

As in the MSL case, one can ensure the positive-definiteness of Ω  in the CML method by 

writing the logarithm of the pairwise-likelihood in terms of the Cholesky-decomposed elements 

of Ω  and maximizing with respect to these elements of the Cholesky factor. Essentially, this 

entails passing the Cholesky elements as parameters to the optimization routine, constructing the 

Ω  matrix internal to the optimization routine, and then picking off the appropriate sub-matrix for 

the pairwise likelihood components.9  

 

2.3 Random Effects Autoregressive Structure 

The standard random-effects ordered-response model of Equation (1) allows easy estimation, 

since there is only a one-dimensional integral for each individual. However, the assumption of 

equal correlation across the multiple observations on the same individual is questionable, 

especially for medium-to-long panels. An alternative would be to allow a time-stationary error 

component, but also allow serial correlation within each subject-specific series of observations 

(see Varin and Czado, 2010 and Bhat et al., 2010a consider a similar model but for the unordered 

multinomial probit (MNP) model rather than the multivariate ordered-response system 

considered here). For instance, one may adopt an autoregressive structure of order one for the 
                                                 
9 In the random coefficient case when K < J, and K ≤ 3, the MSL estimation is likely to be preferable to the CML. 
This is because integrating over up to three dimensions is quite fast and accurate using quasi-Monte Carlo 
simulation techniques. This is particularly so when J is also large, because the number of pairings in the CML is 
high. For the case when K < J and K > 3, or K ≥ J > 3, the CML is likely to become attractive, because of the MSL-
related problems mentioned earlier for moderate dimensions of integration. For example, when K = J = 5, as in our 
simulation exercise discussed later, the CML is fast since it entails the evaluation of only 10 probability pairings for 
each individual (each pairing involving bivariate normal cumulative distribution function evaluations) rather than a 
five-dimensional integration for each individual in the MSL estimation. Note that one may be tempted to think that 
the CML loses this edge when J becomes large. For instance, when J = 10, there would be 45 probability pairings 
for each individual in the way things have been presented so far. But the surrogate likelihood function in the CML 
estimation can be formulated in many different ways rather than the full pairings approach presented here. Thus, one 
could consider only the pairing combinations of the first five (or five randomly selected) choice occasions for each 
individual, and assume independence between the remaining five choice occasions and between each of these 
remaining choice occasions and the choice occasions chosen for the pairings. Basically, the CML approach is 
flexible, and allows customization based on the problem at hand. The issue then becomes one of balancing between 
speed gain/convergence improvement and efficiency loss. Besides, the CML can also use triplets or quadruplets 
rather than the couplets considered here. Overall, how exactly to form a CML function remains a wide open area of 
empirical research (especially because a precise theoretical analysis of the properties of the CML estimator is not 
possible except for the simplest of models), though it is generally accepted that the full pairwise approach tends to 
be a good balance between estimation speed and estimator efficiency for many empirical contexts (see Bhat et al., 
2010a). In this paper, we do not delve into the issue of how to form the CML function, but use a full pairwise 
formulation. Future studies should extend the analysis to consider the CML performance under different 
formulations and different values of K and J. 
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error terms of the same individual, so that qgqj tt
qgqjcorr −= ρεε ),(  ( )10 << ρ , where qjt  is the 

measurement time of observation qjy . This is in addition to the equal correlation across 

observations of the same individual, due to the individual specific random term qη  in the 

Equation (2). The autoregressive error structure specification results in a joint multivariate 

distribution of the latent variables ) ..., , ,( **
2

*
1 qJqq yyy  for the qth individual with standardized mean 

vector 
μ

α
μ

α
μ

α qJ
'

q2
'

q1
' zγzγzγ +++

,.....,  and a correlation matrix Σ  with entries such that 

,/)(),( 22** μρσ qgqj tt
qgqj yycorr −+=  where 21 σμ += . 

 

2.3.1 Maximum Simulated Likelihood Estimation 

The random effects autoregressive model structure, while much more realistic than the simple 

random effects, also costs dearly in terms of computational time. In particular, rather than a 

single dimension of integration, we now have an integral of dimension J for individual q. The 

likelihood function for individual q is: 

) ..., , ,Pr(),,,,( 2211 JJ qqqqqqq mymymyL ====ρσα γψ  
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−−−
===

= Lγψ             (13) 

where ,1,
)( 2σμ

μ
αψ

δ +=
−−

= qj
' zγqj

qj

m
m  and Jφ is the J-variate standard multivariate normal 

density function. The integral above may be evaluated using the Geweke-Hajivassililiou-Keane 

(GHK) simulator (see Geweke, 1991, Hajivassiliou and McFadden, 1998, and Keane, 1994) or 

the Genz-Bretz (GB) simulator (Genz and Bretz, 1999; 2002, and Mi et al., 2009), which are 

among the most effective simulators for evaluating rectangular multivariate normal probabilities 

(i.e., bounded as opposed to unbounded limits of integration). Positive definiteness of the 

correlation matrix is guaranteed as long as 0>σ , and 10 << ρ , which can be easily imposed 

through appropriate parameterizations. 

The problems with the MSL approach for the random-effects autoregressive model are 

similar to the ones discussed earlier in the context of the random coefficients model. However, 



13 

while the dimension of random coefficients and therefore the dimensionality of the integration 

may be relatively low for the random coefficients model, the number of observations per 

individual, and therefore the dimensionality of integration, can be very high for the random-

effects autoregressive model. For instance, in Varin and Czado (2010), the authors examine the 

headache pain intensity of patients at different points of time during the day and across several 

consecutive days. In this study, the full information likelihood estimation has of the order of 800 

dimensions of integration for some of the individual-specific likelihood contributions, an 

infeasible proposition for model parameter estimation using any computer intensive simulation 

procedure. 

 

2.3.2 Composite Marginal Likelihood Estimator 

The pairwise marginal likelihood function for individual q in the random-effects autoregressive 

structure is: 
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where ,/)( μαψδ qj
' zγ−−= qjqj mm  21 σμ += , and ./)( 22 μρσρ qgqj tt

jg
−+=    

The logarithm of the likelihood function is: 

 ∑=
q

qCMLCML LLL ),,,,(log),,,,( , ρσαρσα γψγψ . (15) 

Compared to the MSL technique, the pairwise approach only entails bivariate normal 

distributions, which can be evaluated rapidly. The asymptotic covariance matrix may be obtained 

as the inverse of the Godambe sandwich information estimator, as in Section 2.1.2.  

 

2.4 Random Coefficients Autoregressive Structure 

This general structure combines the random coefficient structure with the autoregressive 

structure. The form of the model is as follows (using the same notations as earlier): 

qjqjqjqj myy =+= ,* εqj
'
q xβ  if  qjqj m

qj
m y ψψ <<− *1   (16) 

with ( ) ( ),1,0~,,~ NN qjεΩbβq and 10,),( || <<= − ρρεε qgqj tt
qgqjcorr     
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2.4.1 Maximum Simulated Likelihood Estimation 
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δ  and qΣ is a correlation matrix with entries such that 
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),(Cov
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qgqj

qgqj
qjg

yy

yy
=Σ . The covariance matrix of the latent ) ..., , ,( **

2
*
1 qJqq yyy  dependent 

variables is given by )( qqq Rxx +′Ω  where qR  is a JJ ×  matrix with the entry ( || qgqj tt −ρ ) for the 

jgth element of the matrix (j = 1, 2,…, J; g = 1, 2,…, J). This covariance matrix is positive 

definite as long as Ω  can be written as LL ′  (where L is the lower triangular Cholesky factor of 

Ω ) and  10 << ρ . The log-likelihood function is finally computed as:  

 ∑
q

qMSLL ),,,(log , ρΩbψ   (18) 

The MSL estimation of the random coefficients autoregressive model is particularly 

cumbersome, and we are not aware of an earlier study considering such an ordered-response 

model even though it naturally arises as a combination of random coefficients and a first-order 

autocorrelation process (however, Keane (1997) considered a similar model for the unordered 

multinomial probit (MNP) model rather than the multivariate ordered–response system 

considered here). 

 

2.4.2 Composite Marginal Likelihood Estimation 

The pairwise function for individual q in the random coefficients autoregressive structure takes 

the same form as for the random coefficients structure (see Equation 11), but with the important 

difference that the ( )*Var qjy , ( )*Var qgy and qjgρ are obtained by picking off the appropriate 

)22( × sub-matrix of the covariance matrix of ) ..., , ,( **
2

*
1 qJqq yyy  given by )( qqq Rxx +′Ω  (rather 

than )( Jqq Ixx +′Ω in the random coefficients models). The logarithm of the pairwise likelihood 

function and the asymptotic variance expression of the estimator are obtained in the usual way. 
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2.5 Weights in CML Estimation 

As discussed in Section 2.1.2, the pairwise likelihood function involves a weight term which 

must be chosen based on efficiency considerations. When the number of choice occasions is the 

same across individuals, the power weight qw  for each individual may be set to 1. However in 

the more general case when the number of observations from individual q is qJ , Le Cessie and 

Van Houwelingen (1994) suggest, based on their correlated binary model analysis, that each 

individual should contribute about equally to the CML function. This may be achieved by 

power-weighting each individual’s CML contribution by a factor that is the inverse of the 

number of choice occasions minus one (in our context, this is .]1[ 1−−qJ ). The net result is that 

the composite likelihood contribution of individual q collapses to the likelihood contribution of 

the individual under the case of independence across choice occasions. In a recent paper, Joe and 

Lee (2009) theoretically studied the issue of efficiency in the context of a simple random-effects 

binary choice model. They indicate that the weights suggested by Le Cessie and Van 

Houwelingen (1994) can provide poor efficiency when the correlation between pairs of the 

underlying latent variables for the repeated binary choices over time is moderate to high. 

Intuitively, Joe and Lee’s discussion is based on the concept that, when there is perfect 

dependence between each pair of inter-temporal binary choices, each pairing should contribute 

the same amount of information to the CML function. While Joe and Lee’s theoretical analysis is 

confined to a simple random-effects binary model, it may be extended to the random-effects 

ordered panel case (and also to other ordered-response panel models discussed later). Joe and 

Lee (2009) proposed the optimal power weight for individual q in the unbalanced panel case as 

.)]1(5.01[)1( 11 −− −+−= qqq JJw  In the current paper, we ignore the weight term, since we are 

focusing our simulation experiments on the case of the same number of choice occasions from 

each individual.10 

 

3. SIMULATION STUDY 

In the current paper, we assess the performance of the CML technique for panel ordered response 

models in the context of the random coefficients structure and the random coefficients 
                                                 
10 The focus in the current paper is on comparing the performance of the maximum simulated likelihood approach 
with the CML approach, so we steer clear of issues related to optimal weights for the CML approach by considering 
the “equal observations across individuals” case.  
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autoregressive structure. This is because of three reasons. First, the random coefficients structure 

subsumes the random effects structure as a special case. Second, the random coefficients 

structure (without autoregressive error terms) has been extensively used in binary and ordered 

response modeling (for example, see Bhat and Zhao, 2002, Greene, 2000). The use of the CML 

technique can lead to a reduction in computational time for these mixed models, and may be the 

only practical approach if there are numerous random coefficients. Third, the random 

coefficients autoregressive structure is a general panel specification that subsumes all other 

structures as special cases. 

 

3.1 Experimental Set-up 

In the simulation set-up, we consider five choice occasions )5( =J  per individual and 500 

individuals, with five independent variables per choice occasion. While the number of choice 

occasions per individual and the number of independent variables per choice occasion can be 

much larger, we use five choice occasions and five independent variables so that the MSL 

estimation (which entails a five dimensional integral) is manageable in the context of the many 

MSL runs we undertake in the paper, while also being reasonably realistic of the kinds of panel 

setting encountered in practice. The intent is to compare the MSL estimation results and the 

CML results in terms of the ability to recover parameters as well as computational time. For all 

the datasets generated in the experimental design, the values of each of the five independent 

variables are drawn from a standard univariate normal distribution. In the subsequent two 

sections, we discuss the set-up for each of the random coefficients (RC) and the random 

coefficients autoregressive (RCA) structures in detail. 

 

3.1.1 The RC Structure 

In the RC structure, a coefficient vector qβ  (specific to each individual) is assumed and is drawn 

from a multivariate normal distribution with a mean vector of b (= 1.5, 1, 2, 1, 2). We then 

consider both independent realizations as well as correlated realizations for the coefficient vector 

qβ  (across exogenous variables for each individual q): 
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For each of the above two positive-definite covariance matrices, the random vector 

realization of qβ  is applied to the qth individual’s choice occasions, and is linearly combined 

with the corresponding vector of independent variables ( qj
'
q xβ ). The result is added to an 

independent standard normal error term draw ( qjε ) as in Equation (1) to obtain a value of *
qjy . 

This is then translated to “observed” values of qjy  based on the following pre-specified threshold 

values: 0.2 ,0.1  ,0 321 === ψψψ  (thus we assume four outcome levels for the ordinal variable). 

The above data generation process is undertaken 50 times with different realizations of the qβ  

vector and the error term qjε  to generate 50 different data sets (for each of the 1Ω  and 2Ω   

specifications).   

The MSL and CML estimation procedures are applied to each data set to estimate data 

specific values of b, )(or  )( 22221111 ΩΩ LLLLLL ′=′= (as appropriate), and the threshold vector 

( )'321 ,, ψψψ=ψ . 11  Note that 1L  and 2L  are the lower Cholesky decompositions of the 

covariance matrices 1Ω  and 2Ω , respectively. We estimate the Cholesky parameters to ensure 

the positive definiteness of the variance-covariance matrices 1Ω  and 2Ω . For the MSL 

estimation, we use draws from the randomized Halton sequence for the random coefficients 

vector qβ , because it is the most commonly used QMC sequence in the literature (Halton, 1960; 

see Bhat, 2003 for a discussion). Within the context of the Halton draws, we experimented with 

different kinds of scramblings and randomizations of the Halton sequence. This included the 

following: (a) scrambling the Halton draws for different dimensions using the Bratten-Weller 

approach to break correlations across dimensions arising from the periodic cycling of the Halton 

draws, (b) scrambling the Halton draws using a randomization approach to break correlations 

across dimensions, (c) randomizing the Halton draws along each dimension by adding a uniform 
                                                 
11 Since the vector qjx

 
does not include a constant in the simulation set-up, the first threshold 1ψ  is estimable.  
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random number that still preserves the uniformly distributed and equi-distribution properties of 

the underlying Halton sequence (referred to as the Tuffin-randomization in the literature; see 

Tuffin, 1996), and (d) randomizing the assignment of Halton dimensions to the random 

coefficients (so that, for example, the Halton dimension that is based off the prime number two is 

assigned to say the first random coefficient in one of the simulation runs, while the same Halton 

dimension is assigned to a different random coefficient in another simulation run). Our 

experiments suggested that the best performance was obtained using a procedure that combined 

Bratten-Weller scrambling with the Tuffin randomization as well as the random assignment of 

Halton dimensions to coefficients. Finally, while a higher number of draws per individual (based 

on the combination scrambling/randomization discussed above) generally provided improved 

results, we used 150 draws per individual, which is about what is typically used in most 

applications of the MSL procedure for ordered-response models. As we will indicate later, we 

also undertook the MSL estimation with 250 draws per individual, and the results were not 

substantially different. To assess and quantify simulation variance, the randomized and 

scrambled Halton-based simulation procedure is applied to each dataset 10 times with different 

(independent) randomized Halton draw sequences. 

 

3.1.2 The RCA Structure 

For the RCA structure, we generate qβ  vectors for each individual q based on the mean vector b 

(= 1.5, 1, 2, 1, 1) and a covariance matrix given by 2Ω  (we use the more general non-diagonal 

covariance matrix used in the RC structure for the RCA structure). The rest of the procedure is 

the same as the RC structure, except for the generation of the standard normal error terms )( qjε . 

Specifically, these error terms are now serially correlated for each individual q. We assume that 

this serial correlation gets manifested in the last four of the five observations for each individual, 

with the first observation error term 1qε  for each individual randomly drawn from a standard 

normal distribution. That is, qjε  (j = 1, 2 …J) is generated for each individual q as follows: 
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The resulting correlation matrix of qjε  is qR  which is a JJ ×  dimension matrix with its jgth 

element being gj−ρ , g, . ..., ,2 ,1 Jj = 12  In the current paper, we undertake the simulation 

exercise for low autocorrelation )3.0( =ρ and high autocorrelation . )7.0( =ρ  For each of these 

correlation values, error term realizations of '
21 ) ..., , ,( qJqq εεε=qε are drawn and used to generate 

data for the RCA structure. To examine the impact of different magnitudes of the autoregressive 

correlation parameter, the process is undertaken 20 times with different realizations of the qβ  

and qε  vectors to generate 20 different data sets (for each value of ρ  of 0.3 and 0.7). We used 

fewer data sets for the RCA case compared to the RC case because of the substantially increased 

computational cost for the RCA case with the MSL method. Further, for the MSL approach, it 

was too expensive to run estimations multiple times with the same data using 150 Halton draws 

per individual. So, for the two non-diagonal RCA structures (with low and high autocorrelation), 

we applied the average magnitude of simulation standard error, (as a percentage of the non-

simulation adjusted finite sample standard error) as obtained from the non-diagonal RC structure 

to the non-simulation adjusted finite sample standard errors of the RCA non-diagonal structures 

to estimate the finite samplestandard error for each parameter.13 The simulation errors estimated 

in this way for the RCA non-diagonal cases may be regarded as lower bounds of the true 

simulation errors, since the simulation errors are expected to be higher for the case with 

autocorrelation than without autocorrelation  

The MSL and CML estimation procedures are applied to each data set to estimate data-

specific values of b, ,2L ,ψ and ρ . To ensure that  10 << ρ  , we re-parameterized ρ  as follows: 

                                                 
12 This is the autoregressive structure of order 1. One can also use more complicated autoregressive structures of 
order p for the error terms, or use more general structures for the error correlation. For instance, while we focus on a 
time series context, in spatial contexts related to ordered-response modeling, Bhat et al. (2010b) developed a 
specification where the correlation in physical activity between two individuals may be a function of several 
measures of spatial proximity and adjacency. 
13 To be precise, for each data set s for the RC model, we computed the simulation standard deviation for each 
parameter as the standard deviation in the estimated values across the independent draws. Next, for each parameter, 
we took the mean of the simulation standard deviations across the different data sets, and computed this simulation 
standard deviation as a percentage of the non-simulation adjusted standard deviation of the mean parameter value 
(within each data set s) across the different datasets. This percentage value of the simulation standard error to the 
non-simulation adjusted finite sample standard error from the RC model for each parameter was then applied to the 
standard deviation (across the 20 datasets) of the corresponding parameter from each RCA model to obtain the 
overall finite sample standard error for that RCA model.  
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)]exp(1/[1 Δ−+=ρ . The MSL estimation procedure uses the GHK simulation procedure using 

150 draws per individual of the randomized and scrambled Halton sequence (see Bhat et al., 

2010a for a discussion of the GHK simulator in the context of ordered response models). 14  In 

terms of parameter search, the MAXLIK module in the GAUSS matrix programming software is 

used after coding both the MSL function and the corresponding analytic gradient function. The 

BFGS secant algorithm is employed for determining the direction of search and the STEPBT line 

search method is adopted for determining step length. We also experimented with other 

algorithms and line search methods, but none provided any computational or convergence 

benefits. Indeed, almost all of the other combinations of algorithm and line search methods took 

longer than the BFGS-STEPBT combination used in the paper.  

 

4.  PERFORMANCE COMPARISON BETWEEN THE MSL AND CML APPROACHES 

In this section, we first identify a number of performance measures and discuss how these are 

computed for the MSL approach and the CML approach. The subsequent sections present the 

simulation and computational results. 

 

4.1 Performance Measures 

The steps discussed below for computing performance measures are for a specific covariance 

matrix pattern. For the RC model, we consider zero covariance across the random coefficients 

(diagonal covariance specification) and non-zero covariance across the random coefficients (non-

diagonal covariance specification). For the RCA structure, we retain the non-diagonal covariance 

matrix specification of the RC structure and then consider two correlation patterns, 

corresponding to the autoregressive correlation parameter values of 0.3 and 0.7.    

 

                                                 
14 We use a Halton-based GHK procedure rather than a standard pseudo-random-based GHK procedure, because 
Halton-based procedures are faster (see Bhat et al., 2010a and Heiss, 2010). Other possibilities to improve upon the 
standard GHK simulator, all of which are based on more efficiently computing the rectangular multivariate normal 
cumulative distribution function evaluations within the GHK simulator, include the use of (1) efficient importance 
sampling techniques as proposed by Liesenfeld and Richard (2010), (2) decomposition techniques as proposed by 
Huguenin et al. (2009), (3) the multivariate sparse grid (SG) Gaussian quadrature approach of Heiss and Winschel 
(2008), (4) The SG approach combined with an efficient importance sampling (EIS) approach as employed by Heiss 
(2010), and (5) the Laplace Approximation approach combined with a Gauss-Hermite quadrature technique of Joe 
(2008). In the current paper, we do not undertake a comprehensive examination of the performance of these 
alternative GHK simulators (this is beyond the scope of this paper). Rather, we use the Halton-based GHK 
procedure for the MSL estimation.  
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MSL Approach 

(1) Estimate the MSL parameters for each data set s (s = 1, 2, …, 50) and for each of 10 

independent draws (the 10 independent draws are different across data sets), and obtain the 

time to get the convergent values and the standard errors. Note combinations for which 

convergence is not achieved. Everything below refers to cases when convergence is 

achieved. Obtain the mean time for convergence (TMSL) and standard deviation of 

convergence time across the converged runs and across all data sets (the time to 

convergence includes the time to compute the covariance matrix of parameters and the 

corresponding parameter standard errors). All estimations are started with the true 

parameter values as the starting values. While multiple computers had to be used for the 

many different runs undertaken in this paper, all the run times were carefully scaled to the 

equivalent time on a desktop computer with 3.60GHz Quadcore processor and 8.00 GB of 

RAM. The scaling was based on extensive experimentation on different computers. 

(2) For each data set s, compute the mean estimate for each model parameter across the draws. 

Label this as MED, and then take the mean of the MED values across the data sets to obtain 

a mean estimate. Compute the finite sample absolute percentage bias (APB) as: 

100
 valuetrue

 valuetrue-estimatemean APB ×=  15 

(3) Next, compute the standard deviation (about the mean estimate obtained in the earlier step) 

of the estimates of the parameter values across the data sets and across draws within each 

data set. Call this FSSE and label this as the finite sample standard error. 

(4) For each data set s and draw combination, estimate the asymptotic standard errors (s.e.) of 

parameters (using the sandwich estimator).  

(5) For each data set s, compute the median asymptotic standard error for each model 

parameter across the draws. Call this MSED, and then take the mean of the MSED values 

across the data sets and label this as the asymptotic standard error (essentially this is the 

standard error of the distribution of the estimator as the sample size gets large).  

(6) Compute the absolute percentage bias of the asymptotic standard error for each parameter 

relative to the corresponding finite sample standard error.  

                                                 
15 If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1in 
the denominator, and multiplying by 100. 
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CML Approach 

(1) Estimate the CML parameters for each data set s and obtain the time to get the convergent 

values (including the time to obtain the Godambe matrix-computed asymptotic covariance 

matrix and corresponding standard errors). Determine the mean time for convergence 

(TCML) across the S data sets.16 

(2) Compute the mean estimate for each model parameter across the R data sets. Compute the 

absolute percentage bias (APB) as in the MSL case. 

(3)  Next, compute the standard deviation of parameters across the data sets about the mean 

estimate obtained in Step 3. Call this FSSE and label this as the finite sample standard error. 

(4) For each data set s, estimate the asymptotic standard errors (s.e.) (using the Godambe 

estimator).  

(5) Compute the mean of the asymptotic standard errors for each model parameter across the R 

data sets and label this as the asymptotic standard error 

(6) Compute the absolute percentage bias of the asymptotic standard error for each parameter 

relative to the corresponding finite sample standard error.  

 

5.  RESULTS 

5.1 RC Structure 

Tables 1a and 1b provide the results of the RC structure for the diagonal and non-diagonal cases, 

respectively. The tables provide the true value of the parameters (second column), followed by 

the maximum simulated likelihood (MSL) estimation results and the composite marginal 

likelihood (CML) estimation results.  

 

The Diagonal Covariance Matrix Case 

The columns under “parameter estimates” in Table 1a provides the mean parameter estimates 

across data sets and runs, as well as the absolute percentage bias (APB) values. These results 

indicate that both the MSL and CML methods perform reasonably well in recovering parameters. 

Specifically, the APB values for the parameters range from 1.06% to 16.84 % for the MSL 

method and 0.71% to 10.38 % for the CML method. The mean APB using 150 Halton draws per 

individual in the MSL case is 7.75% (see the row of the table labeled “Overall mean value across 

                                                 
16 The CML estimator always converged in our simulations, unlike the MSL estimator. 
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parameters” and the column titled “absolute percentage bias”), while the mean APB from the 

CML approach is lower at 5.51%. There are two interesting observations from the mean estimate 

and APB values. First, the MSL estimation underestimates parameter values (the mean estimate 

values from the MSL are consistently lower than the true values), while the CML estimation 

overestimates parameter values (except, for the first parameter). This is the case for both the non-

scale parameter estimates (the b and ψ  estimates) as well as the scale parameters (as captured in 

the l values). Thus, when normalized for scale, the results indicate that the net effects of 

explanatory variables are about the same from the MSL and CML estimations.  Second, the APB 

values for the Cholesky parameters (i.e., the l values in the table, which in this diagonal case are 

the standard deviations of the distributions of each of the five random coefficients) are generally 

somewhat higher relative to the threshold parameters (i.e., the ψ  values in the table) and the 

mean values of the distributions of the β  parameter vector (i.e., the b values in the table), 

especially so in the MSL estimation. Also, there is more variation in the APB values among the 

Cholesky parameters than among the b and ψ  values in both the MSL and CML estimations. 

This is perhaps because the Cholesky parameters enter the likelihood function in a more complex 

non-linear fashion than other parameters, leading to a relatively flat log-likelihood function for 

different values of standard deviations of the random coefficients and more difficulty in 

accurately recovering these standard deviation parameters.  

  The finite sample standard error values of the parameters indicate good efficiency of both 

the MSL and CML estimators, with the finite sample standard error ranging from 6-27% of the 

mean values of the MSL estimator and from 11-23% of the mean values of the CML estimator.17 

The magnitudes of the finite sample standard error values are certainly lower in the MSL (mean 

finite sample standard error of 0.11) compared to the CML (mean finite sample standard error of 

0.17). However, note also that this direct comparison of the finite sample standard error values is 

somewhat deceptive, because of the underestimation (overestimation) in recovering the true 

values of the parameters in the MSL (CML). This translates to consistently lower values of the 

finite sample standard error estimates from the MSL approach relative to the CML approach. 

Another observation from the finite sample standard error estimates is that these estimates (as a 

                                                 
17 We do not include the first parameter 1ψ  in computing these ranges, because the true value of this parameter is 
zero, and the mean estimate is also very close to zero. Thus, percentages taken with respect to the mean estimate will 
be very high.  
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percentage of the mean estimates) are generally higher for the Cholesky parameters relative to 

the other parameters, reinforcing the finding earlier that the Cholesky parameters are more 

difficult to recover than other parameters.  

The finite sample standard errors and the asymptotic standard errors obtained using the 

sandwich estimator in the MSL method are quite close, with a mean APB value of 8.00%. 

Similarly, the finite sample standard errors and the asymptotic standard errors obtained using the 

Godambe matrix in the CML method are also close, with a mean APB of 6.09%. These results 

indicate that the asymptotic formulae are performing accurately in the simple random 

coefficients case with a diagonal covariance matrix and no autoregressive error. The final 

column of Table 1a provide the relative finite sample efficiency factors between the MSL and 

CML estimators. As indicated earlier, the CML approach should lose some efficiency relative to 

the full maximum likelihood (ML) approach, because the CML approach compounds pairs of 

observations from the same individual, and does not consider all the panel observations from the 

same individual simultaneously. However, when we move from the ML approach to the 

maximum simulated likelihood (MSL) approach, there is again a drop in efficiency because of 

simulation noise. Thus, one does not know a priori whether the MSL estimator will be more 

efficient than the CML estimator, and, if so, by how much. No theoretical results are derivable, 

and one has to consider this as an empirical issue.  The ratio of the finite sample standard errors 

provide an empirical estimate of the relative finite sample efficiency of the CML compared to 

the MSL. Relative efficiency values lower than one indicate a lower CML efficiency relative to 

the MSL, while values higher than one indicate that the CML is more efficient than the MSL. 

The results in the final column do indicate that the efficiency of the CML approach is about 51-

99% (mean of 65%) of the MSL approach for this simple random coefficients case with a 

diagonal covariance matrix and no autoregressive error. The time to convergence for the MSL 

estimation has a mean value of 4.37 minutes with a standard deviation of about 1.36 minutes. On 

the other hand, the time to convergence for the CML estimation has a mean value of 0.55 

minutes with a standard deviation of about 0.1 minutes. This indicates that the CML method is 

about eight times faster than the MSL estimation. Further, note that the CML method is actually 

more effective than suggested by this factor of six, because it produces more accurate estimates 

than the MSL estimates. In fact, it took about 250 Halton draws per individual to reach about the 

same level of mean APB value as for the CML approach, and the mean time for convergence 
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with 250 Halton draws is about 6.85 minutes, suggesting a time efficiency factor of over 12 for 

the CML method relative to the MSL method. Also, while the APB improved as we moved from 

150 Halton draws to 250 Halton draws in the MSL approach, there was surprisingly little change 

in the simulation error. Further, with 250 draws, the asymptotic standard errors increased 

because there was less underestimation in recovering parameters, with the net result that the 

relative efficiency of the CML actually marginally improved relative to the MSL method. One 

other problem we found even in this simple random coefficients MSL estimation was that 36 of 

the 500 runs did not converge (that is, 7.2% of total runs did not converge). This confirms that, 

even for the low to moderate dimensions of integration, numerical simulators can lead to 

numerical instability and convergence problems.  On the other hand, no convergence issues 

whatsoever were encountered with the CML estimation.  

Overall, for the specific case of the panel random-coefficients ordered-response model 

(with no autoregressive error structure), the results here indicate that the MSL estimator is more 

efficient than the CML estimator, but also that the CML estimator has a computational cost 

efficiency gain by a factor of about 8. Of course, the CML has the advantage of reproducibility 

of results, since it is simulation-free (and, as indicated earlier, the simulation errors are not 

insignificant). It may be expected that, as the number of random coefficients increase, the 

econometric efficiency gains of the MSL will slip and the computational efficiency gains of the 

CML will increase. Besides, with large data sets and several specifications to potentially test, 

even a computational efficiency gain of 8 can be quite substantial. Of course, as we will see in 

the rest of this paper, as soon as one introduces more realistic and flexible specifications (such as 

non-diagonal random coefficients and autoregressive error structures,), the MSL estimation 

approach shows little to no econometric efficiency gains over the CML approach and/or literally 

become infeasible in practice from a computation cost standpoint.  

 

The Non-Diagonal Covariance Matrix Case 

The results in Table 1b provide information on the true values, the  mean estimates, and the 

standard errors for the threshold parameters (the ψ  parameters), the mean values of the 

distribution of the β  parameter vector (i.e., the b values in the table) and the Cholesky-

decomposed parameters characterizing the covariance matrix of the β  parameter vector (i.e., the 

l values in the table).  
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As in the diagonal case, both the MSL and CML approaches do very well in recovering 

the parameters, with the APB values ranging from 0.01% to 28.8% (mean of 6.53%) for the MSL 

and from 0.04% to 29% (mean of 5.83%) for the CML approach. Though these are very good 

recovery statistics, the MSL method, in general, continues to under-estimate the magnitudes of 

parameters, while the CML method over-estimates the magnitudes of parameters. Also, similar 

to the diagonal case, there is more stability in the APB values across the ψ  and b parameters 

than for the Cholesky parameters (the l values), with the APB values for some of the Cholesky 

elements being rather high. However, these high APB values are also somewhat deceptive, 

because the estimated values of the Cholesky parameters are not too far away from the true 

values. But the small magnitudes of the true Cholesky parameter values tend to inflate the APB 

values. For instance, the highest APB of 29% for the CML method is for the 42l  parameter, even 

though the estimated value of -0.1862 is not far from the true value of -0.1443. Also, with a 

limited sample size and several Cholesky parameters to estimate, one would only expect a little 

more difficulty in accurately and precisely recovering the Cholesky parameters with finite 

samples. This is also noticeable in the finite sample standard errors that are in the order of about 

10% of the mean estimates for the ψ  and b parameters (in both the MSL and CML cases), but 

much higher for the l parameters. Between the MSL and the CML estimators, the finite sample 

standard errors are more similar in this non-diagonal case than in the diagonal case of the 

previous section, with the mean finite sample standard error being 0.17 in the MSL case and 0.19 

in the CML case. This is because the MSL provides estimates that are closer to the true values, 

and to the values from the CML estimation.  

For both the MSL and CML estimators, the asymptotic standard errors are somewhat 

smaller compared to the finite sample standard errors, suggesting that the sample size used in the 

simulation is somewhat smaller than what is needed in this non-diagonal case for the asymptotic 

approximations to hold accurately. However, it is clear that the CML estimator has less bias than 

the MSL estimator. 

The final column of the table indicates that the relative efficiency values are close to 1, 

with some values being higher than 1. The mean relative efficiency value is 0.88, indicating that 

the CML estimator is not losing much efficiency compared to the MSL estimator.18 However, it 

                                                 
18 We also examined the results with 250 Halton draws per individual. However, there was little reduction in the 
simulation errors. To be specific, the mean simulation error as a percentage of the non-simulation adjusted standard 
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is also interesting to notice that the CML has a consistently lower efficiency for the non-

Cholesky parameters, while the MSL appears to have a lower efficiency for the Cholesky 

parameters. This may also explain the generally higher APB values for the CML (relative to the 

MSL) for the non-Cholesky parameters and the generally (but not always) higher APB values for 

the MSL (relative to the CML) for the Cholesky parameters.19  

The mean computational time for the MSL method is about 10.52 minutes (with a 

standard deviation of 3.72 minutes) compared to 2.28 minutes (with a standard deviation of 0.48 

minutes) for the CML method. So, the CML method is again about 5 times faster compared to 

the MSL method, for about the same level of accuracy in recovering parameters. At the same 

time, the econometric efficiency of the CML estimator is as good as the MSL estimator. Besides, 

54 of the 500 runs did not converge in the MSL approach, with no such problems with the CML 

approach.  

 

5.2 RCA Structure 

As discussed earlier, the simulations for the case of random coefficients with an autoregressive 

error structure (i.e., the RCA structure) is undertaken with only 20 datasets. Further, we did not 

undertake multiple runs for each of the 20 datasets because of the extremely high computational 

costs of doing so. The simulation errors were estimated based on those obtained from the RC 

structure.  Tables 2a and 2b provide the results for the RCA non-diagonal case with low and high 

auto-correlations respectively. 

 

Low Autoregressive Correlation Case 

The mean APB values are of about the same order in the MSL and the CML methods with the 

APB ranging from 0.10% to 15.56% (mean of 4.48%) for the MSL and ranging from 0.17% to 

23.3% (mean of 6.85%) for the CML. Overall, the parameters are recovered well in both the 

MSL and CML cases, with a slight edge for the MSL over the CML. The autoregressive 

                                                                                                                                                             
deviation of the mean parameter value (within each data set s) across the different datasets was still about 58% with 
250 draws compared to 69% with 150 draws. The mean relative efficiency turned out to be 0.88 with 250 draws, 
indicating that the relative efficiency between CML and MSL does not change even if the number of draws is 
increased. Further, the APB values did not improve very substantially -- the mean APB value turned out to be 5.45% 
with 250 draws compared to 6.53% with 150 draws.  
19 The lower efficiency of parameters leads to a higher scatter of parameters across a finite number of data sets, 
which can then lead to a higher APB.  
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correlation parameter ρ  is estimated reasonably well both in MSL and CML methods with APB 

values of 2.33% and 7.21%, respectively.    

The estimated finite sample standard error for the MSL approach (mean value of 0.16) 

and the finite sample standard errors from the CML approach (mean value of 0.19) are quite 

close to one another. With regard to the accuracy of the asymptotic formulae, the differences 

between the finite sample standard errors and the asymptotic standard errors in the MSL method 

are similar to those observed in the non-diagonal RC case. However, in the CML approach, the 

APB values are quite high for some of the Cholesky parameters, especially relative to the non-

diagonal case.  

The relative efficiency values (last column of table) range from 57% to 127%, with a 

mean value of 87%. This indicates relatively little overall econometric efficiency loss in using 

the CML approach relative to the MSL. Note also that because we had to estimate the simulation 

errors based on the results from the random coefficients (RC) case, the relative efficiency values 

in Table 2 may be considered as lower bounds, implying that the mean relative efficiency value 

is likely to be 87% or higher. At the same time, the mean time to convergence is 228.6 minutes 

or about 4 hours (standard deviation of 42.0 minutes) for the MSL compared to only about 2.19 

minutes for the CML method (with a standard deviation of 0.54 minutes). This is a phenomenal 

computation efficiency leap, with the CML method being about 104 times faster than the MSL 

method. We observed 100% convergence rates for both the MSL and CML methods. 

 

High Autoregressive Correlation Case 

The APB for the MSL approach ranges from 0.44% to 26.2% (mean of 4.85%), while the CML 

APB ranges from 0.59% to 17.95% (mean of 6.75%). While both of these APBs are of about the 

same order, the MSL approach does provide a marginally better APB in the high correlation case 

as well. However, in general, the ability to recover parameters does not seem to be affected at all 

by whether there is low correlation or high correlation. With specific regard to the autoregressive 

correlation parameter )(ρ , the result indicates that the approaches the CML approach, in 

particular, recover this parameter very well in the high correlation case relative to the low 

correlation case (an associated APB of 0.93% in the high correlation case, compared to a 

corresponding APB of 7.21% in the low correlation case). This is perhaps because the correlation 

parameter needs to be particularly strong before it starts having any substantial effects on the 
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log-likelihood function value. Essentially, the log-likelihood function can be relatively flat at low 

correlation, leading to more difficulty in accurately recovering the low correlation parameter. But, 

at a high correlation level, the log-likelihood function shifts considerably in value with small 

shifts in the correlation value, allowing it to be recovered accurately. Why this does not play out 

in the MSL case is an open question. It is possible that, at high correlations, there is considerable 

instability in the search direction and the convergence process in the MSL approach. This is 

reinforced by the fact that, while all the 20 runs converged (100% convergence rate) in the MSL 

approach in the low correlation case, only 14 of the 20 runs converged (70% convergence rate) 

in the MSL approach in the high correlation case.20 

The APB values for the asymptotic standard error once again are in the reasonable range, 

though it is now the ML estimator that seems to have some large APB values for some of the 

Cholesky parameters. The CML asymptotic standard error APB values are much smaller than the 

low autoregressive correlation case. The relative efficiency values in the last column reveal that 

there is an even lower efficiency loss with the CML approach relative to the MSL approach in 

this high correlation case compared to the low correlation case. The MSL runs that converged 

have a mean time to convergence of 200.05 minutes (more than 3.5 hours) relative to only 2.04 

minutes for the CML method; that is, the CML method is about 98 times faster than the MSL 

method. Note also that there is a huge standard deviation in the time to convergence of the MSL 

method, which is consistent with the convergence-related instability problems discussed earlier. 

In cases with more than five random coefficients and more general auto-regressive structures 

than the simple first order structure considered in this study, the convergence problems and the 

high computational times of the MSL make it less appealing. The CML method, on the other 

hand, should be able to accommodate such panel structures with relative ease.   

 

6.  SUMMARY AND CONCLUSIONS 

This paper focuses on panel ordered-response model structures, and compares the performance 

of the maximum simulated likelihood (MSL) estimation approach with that of the composite 

marginal likelihood (CML) estimation approach. The panel structures considered in the paper 
                                                 
20 We undertook an independent simulation exercise to see if the same convergence problems held up with a 
diagonal instead of a non-diagonal covariance structure for the random coefficients in this RCA case. The results 
showed the same trend as in the non-diagonal case discussed here, with the convergence rates being 100% for the 
low correlation case compared to only 70% for the high correlation case. Thus, the convergence problem seems 
quite definitely associated with the correlation level.  
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include the pure random coefficients (RC) model with no autoregressive error component, as 

well as the more general case of random coefficients combined with an autoregressive error 

component. The ability of the MSL and CML approaches to recover the true parameters is 

examined using simulated datasets. 

 Overall, the results suggest that the CML method is able to recover the true parameters in 

all the cases considered in the paper, irrespective of the type of covariance matrix (diagonal 

versus non-diagonal) of the random coefficients and the level of the autoregressive correlation 

(low versus high). In fact, the performance of the MSL approach with 150 randomized and 

scrambled Halton draws and the simulation-free CML approach are about the same order in all 

cases in terms of the absolute percentage bias (APB) of the parameters estimated. The MSL 

approach has an edge in terms of econometric efficiency in the context of the pure RC model 

with a diagonal covariance matrix for the random coefficients, but also suffers from convergence 

problems even in this simple panel case. The CML approach does not exhibit any convergence 

problems, and is about eight times faster. Any econometric efficiency gains of the MSL approach 

vanishes as soon as a non-diagonal covariance matrix of the random coefficients is introduced, 

due to the presence of large simulation noise in the MSL runs. This continues to hold when an 

autoregressive error structure is added to the non-diagonal random coefficients structure. 

Increasing the number of randomized/scrambled Halton draws from 150 per individual to 250 

per individual has little impact on these results. Further, when an autoregressive error structure is 

added, the convergence times of the MSL runs start getting very high, while there is little to no 

effect on the convergence times for the CML runs. In fact, the CML method is about 100 times 

faster than the MSL method when there is an autoregressive error component. The MSL 

approach breaks down in particular when the autoregressive error correlation magnitude is high, 

with a substantial number of runs failing to converge. At the same time, there is literally no loss 

in econometric efficiency of the CML estimator compared to the MSL estimator. 

 While the asymptotic formulae seem to be performing quite accurately for the sample 

sizes considered in this study in the RC model with diagonal covariance matrix case, there are 

somewhat larger differences between the asymptotic standard errors and the finite sample 

standard errors in all the non-diagonal cases (both RC and RCA). This is to be expected because 

of the larger number of parameters and more complicated structures of the non-diagonal models. 
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Overall, the asymptotic standard errors appear to be more accurate when the CML estimator is 

used relative to the MSL estimator.  

Future research efforts should consider varying numbers of random coefficients, 

autoregressive error structures of order higher than one, varying numbers of observations per 

individual, and non-normal mixing distributions. However, the results in this paper paint a very 

encouraging picture for the use of the CML pairwise likelihood method for the quick, accurate, 

and practical estimation of panel ordered-response models with flexible and rich stochastic 

specifications.  
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Table 1a Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches  
–Diagonal Case without Auto-Correlation Random Coefficients (RC) Structure 

Parameter True 
Value 

MSL CML Approach 

Relative 
efficiency 

CMLFSSE

MSLFSSE
 

Parameter Estimates Standard error estimates Parameter Estimates Standard error estimates 

Mean 
Estimate 

Absolute 
percentage 
bias (APB) 

Finite 
sample 

standard 
error 

( MSLFSSE ) 

Asymptotic 
standard 

error 
( MSLMASE ) 

APB for 
Asymptotic 

standard 
error 

Mean 
Estimate 

Absolute 
percentage 
bias (APB) 

Finite 
sample 

standard 
error 

( CMLFSSE ) 

Asymptotic 
standard 

error 
( CMLMASE ) 

APB for 
Asymptotic 

standard 
error 

ψ1 0.0000 -0.0106 1.06 0.0519 0.0563 8.41 -0.0071 0.71 0.0605 0.0651 7.56 0.86 
ψ2 1.0000 0.9289 7.11 0.0835 0.0810 3.07 1.0522 5.22 0.1412 0.1217 13.82 0.59 
ψ3 2.0000 1.8686 6.57 0.1164 0.1270 9.11 2.1123 5.62 0.2297 0.2153 6.25 0.51 
b1 1.5000 1.3971 6.86 0.1253 0.1140 9.06 1.5949 6.33 0.1889 0.1811 4.14 0.66 
b2 1.0000 0.9327 6.73 0.0891 0.0912 2.39 1.0683 6.83 0.1413 0.1345 4.83 0.63 
b3 2.0000 1.8455 7.72 0.1248 0.1363 9.16 2.1096 5.48 0.2337 0.2287 2.13 0.53 
b4 1.0000 0.9345 6.55 0.0806 0.0855 6.12 1.0671 6.71 0.1423 0.1294 9.08 0.57 
b5 2.0000 1.8388 8.06 0.1240 0.1386 11.77 2.0889 4.45 0.2306 0.2291 0.65 0.54 
l11 1.0000 0.9209 7.91 0.1197 0.1131 5.44 1.0705 7.05 0.1831 0.1641 10.38 0.65 
l22 1.0000 0.9154 8.46 0.1081 0.1127 4.23 1.0587 5.87 0.1594 0.1649 3.45 0.68 
l33 0.7071 0.5880 16.84 0.1618 0.1268 21.66 0.7151 1.13 0.1637 0.1616 1.28 0.99 
l44 0.7071 0.6418 9.24 0.0998 0.1070 7.23 0.7799 10.30 0.1594 0.1469 7.84 0.63 
l55 1.0000 0.9240 7.60 0.1130 0.1201 6.32 1.0596 5.96 0.1838 0.1694 7.82 0.61 

Overall mean value 
across parameters  7.75 0.11 0.11 8.00  5.51 0.17 0.16 6.09 0.65 

Mean Time 4.37 0.55 

 
Std. Dev. Of Time 1.36 0.10 

% of Runs 
Converged 92.80% 100% 
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Table 1b Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches  
–Non-Diagonal Case without Auto-Correlation Random Coefficients (RC) Structure 

Parameter True 
Value 

MSL CML Approach 

Relative 
efficiency 

CMLFSSE

MSLFSSE
 

Parameter Estimates Standard error estimates Parameter Estimates Standard error estimates 

Mean 
Estimate 

Absolute 
percentage 

bias 
(APB) 

Finite 
sample 

standard 
error 

( MSLFSSE ) 

Asymptotic 
standard 

error 
( MSLMASE ) 

APB for 
Asymptotic 

standard 
error 

Mean 
Estimate 

Absolute 
percentage 
bias (APB) 

Finite 
sample 

standard 
error 

( CMLFSSE ) 

Asymptotic 
standard 

error 
( CMLMASE ) 

APB for 
Asymptotic 

standard 
error 

ψ1 0.0000 -0.0001 0.01 0.0615 0.0575 6.55 -0.0044 0.44 0.0593 0.0649 9.40 1.04 
ψ2 1.0000 0.9510 4.90 0.0829 0.0878 5.90 1.0582 5.82 0.1368 0.1220 10.84 0.61 
ψ3 2.0000 1.9170 4.15 0.1441 0.1457 1.12 2.1142 5.71 0.2495 0.2157 13.58 0.58 
b1 1.5000 1.4308 4.61 0.1346 0.1342 0.31 1.5948 6.32 0.2027 0.1859 8.27 0.66 
b2 1.0000 0.9568 4.32 0.1081 0.1074 0.64 1.0817 8.17 0.1561 0.1405 10.00 0.69 
b3 2.0000 1.8797 6.02 0.1491 0.1672 12.12 2.1153 5.77 0.2624 0.2371 9.62 0.57 
b4 1.0000 0.9437 5.63 0.1026 0.1072 4.49 1.0563 5.63 0.1497 0.1395 6.81 0.68 
b5 2.0000 1.9017 4.92 0.1667 0.1699 1.92 2.0897 4.49 0.2559 0.2346 8.36 0.65 
l11 1.0000 0.9493 5.07 0.1337 0.1309 2.10 1.0867 8.67 0.1946 0.1697 12.77 0.69 
l21 -0.5000 -0.4696 6.07 0.1352 0.1287 4.80 -0.4987 0.27 0.1360 0.1489 9.47 0.99 
l22 0.8660 0.8148 5.91 0.1510 0.1478 2.11 0.9265 6.98 0.1939 0.1814 6.46 0.78 
l31 0.2500 0.2474 1.06 0.1531 0.1362 11.05 0.2219 11.24 0.1609 0.1506 6.39 0.95 
l32 0.4330 0.4494 3.79 0.1823 0.1517 16.77 0.4497 3.85 0.1512 0.1791 18.43 1.21 
l33 0.8660 0.7511 13.27 0.1874 0.1562 16.68 0.8812 1.75 0.1877 0.1851 1.40 1.00 
l41 0.7500 0.7121 5.05 0.1328 0.1206 9.19 0.7503 0.04 0.1489 0.1441 3.23 0.89 
l42 -0.1443 -0.1128 21.85 0.1890 0.1307 30.87 -0.1862 28.98 0.1729 0.1723 0.32 1.09 
l43 0.2367 0.2298 2.93 0.1803 0.1413 21.62 0.2692 13.73 0.1970 0.1737 11.82 0.92 
l44 0.6005 0.4277 28.78 0.2621 0.1550 40.86 0.5851 2.56 0.1951 0.2062 5.73 1.34 
l51 0.0000 0.0111 1.11 0.1708 0.1302 23.76 -0.0013 0.19 0.1271 0.1496 17.72 1.34 
l52 0.0000 -0.0148 1.48 0.1936 0.1519 21.53 -0.0129 1.29 0.2121 0.1879 11.40 0.91 
l53 0.0000 -0.0013 0.13 0.2000 0.1590 20.53 -0.0159 1.59 0.2214 0.2034 8.15 0.90 
l54 0.0000 0.0151 1.51 0.3550 0.1774 50.02 0.0153 1.53 0.3564 0.3042 14.66 1.00 
l55 1.0000 0.8234 17.66 0.2441 0.1626 33.41 0.9088 9.12 0.2983 0.2574 13.70 0.82 

Overall mean value 
across parameters  6.53 0.17 0.14 14.71  5.83 0.19 0.18 9.50 0.88 

Mean Time 10.52 2.28 

 
Std. Dev. Of Time 3.72 0.48 

% of Runs 
Converged 89.00% 100% 
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Table 2a Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches  
–Non-Diagonal Case with Low Auto-Correlation Random Coefficients (RCA) Structure 

Parameter True 
Value 

MSL CML Approach 

Relative 
efficiency 

CMLFSSE

MSLFSSE
 

Parameter Estimates Standard error estimates Parameter Estimates Standard error estimates 

Mean 
Estimate 

Absolute 
percentage 
bias (APB) 

Finite 
sample 

standard 
error 

( MSLFSSE ) 

Asymptotic 
standard 

error 
( MSLMASE ) 

APB for 
Asymptotic 

standard 
error 

Mean 
Estimate 

Absolute 
percentage 
bias (APB) 

Finite 
sample 

standard 
error 

( CMLFSSE ) 

Asymptotic 
standard 

error 
( CMLMASE ) 

APB for 
Asymptotic 

standard 
error 

ψ1 0.0000 -0.0010 0.10 0.0590 0.0631 6.91 -0.0017 0.17 0.0618 0.0669 8.30 0.96 
ψ2 1.0000 1.0380 3.80 0.0765 0.0973 27.22 1.0639 6.39 0.1347 0.1290 4.23 0.57 
ψ3 2.0000 2.0614 3.07 0.1638 0.1587 3.10 2.1092 5.46 0.2224 0.2282 2.61 0.74 
b1 1.5000 1.5298 1.99 0.1242 0.1406 13.20 1.5649 4.33 0.1915 0.1908 0.37 0.65 
b2 1.0000 1.0602 6.02 0.1034 0.1129 9.23 1.0813 8.13 0.1437 0.1487 3.51 0.72 
b3 2.0000 2.0514 2.57 0.1598 0.1781 11.48 2.1047 5.23 0.2478 0.2466 0.47 0.64 
b4 1.0000 1.0373 3.73 0.1158 0.1113 3.88 1.0555 5.55 0.1391 0.1470 5.70 0.83 
b5 2.0000 2.0499 2.50 0.2013 0.1789 11.12 2.0794 3.97 0.2344 0.2482 5.88 0.86 
l11 1.0000 1.0495 4.95 0.1335 0.1294 3.05 1.0945 9.45 0.1613 0.1734 7.50 0.83 
l21 -0.5000 -0.5171 3.42 0.1330 0.1294 2.73 -0.5555 11.10 0.1358 0.1550 14.10 0.98 
l22 0.8660 0.9199 6.23 0.1747 0.1414 19.04 0.9205 6.29 0.1788 0.2097 17.30 0.98 
l31 0.2500 0.2250 10.01 0.1602 0.1273 20.55 0.2186 12.54 0.1559 0.1508 3.30 1.03 
l32 0.4330 0.4990 15.23 0.1375 0.1467 6.68 0.5340 23.33 0.1919 0.2263 17.91 0.72 
l33 0.8660 0.8804 1.66 0.1500 0.1444 3.68 0.8912 2.91 0.1784 0.2517 41.07 0.84 
l41 0.7500 0.7474 0.35 0.1478 0.1169 20.96 0.7421 1.05 0.1584 0.1444 8.85 0.93 
l42 -0.1443 -0.1218 15.56 0.2020 0.1403 30.53 -0.1336 7.45 0.1586 0.1713 8.03 1.27 
l43 0.2367 0.2411 1.85 0.1742 0.1374 21.10 0.2536 7.13 0.2009 0.1797 10.57 0.87 
l44 0.6005 0.5480 8.75 0.1979 0.1519 23.21 0.5371 10.56 0.1971 0.1950 1.06 1.00 
l51 0.0000 0.0163 1.63 0.1203 0.1305 8.48 0.0139 1.39 0.1171 0.1505 28.53 1.03 
l52 0.0000 0.0295 2.95 0.1896 0.1520 19.79 0.0230 2.30 0.2209 0.2321 5.08 0.86 
l53 0.0000 -0.0208 2.08 0.2337 0.1644 29.64 0.0022 0.22 0.2297 0.3648 58.83 1.02 
l54 0.0000 0.0578 5.78 0.4168 0.2501 40.01 0.0408 4.08 0.3646 0.3520 3.45 1.14 
l55 1.0000 0.9901 0.99 0.2202 0.1708 22.45 0.8187 18.13 0.3455 0.5906 70.96 0.64 
ρ  0.3000 0.2930 2.33 0.1269 0.1097 13.59 0.2784 7.21 0.1574 0.1308 16.88 0.81 

Overall mean value 
across parameters  4.48 0.16 0.14 15.49  6.85 0.19 0.21 14.35 0.87 

Mean Time 228.59 2.19 

 
Std. Dev. Of Time 42.00 0.54 

% of Runs 
Converged 100.0% 100% 
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Table 2b Evaluation of Ability to Recover “True” Parameters by the MSL and CML Approaches  
–Non-Diagonal Case with High Auto-Correlation Random Coefficients (RCA) Structure 

 

Parameter True 
Value 

MSL CML Approach 

Relative 
efficiency 

CMLFSSE

MSLFSSE
 

Parameter Estimates Standard error estimates Parameter Estimates Standard error estimates 

Mean 
Estimate 

Absolute 
percentage 

bias 
(APB) 

Finite 
sample 

standard 
error 

( MSLFSSE ) 

Asymptotic 
standard 

error 
( MSLMASE ) 

APB for 
Asymptotic 

standard 
error 

Mean 
Estimate 

Absolute 
percentage 
bias (APB) 

Finite 
sample 

standard 
error 

( CMLFSSE ) 

Asymptotic 
standard 

error 
( CMLMASE ) 

APB for 
Asymptotic 

standard 
error 

ψ1 0.0000 0.0217 2.17 0.0791 0.0674 14.83 0.0130 1.30 0.0776 0.0722 6.98 1.02 
ψ2 1.0000 1.0429 4.29 0.1056 0.0944 10.59 1.0704 7.04 0.1417 0.1212 14.46 0.75 
ψ3 2.0000 2.0359 1.79 0.1508 0.1478 2.03 2.1011 5.06 0.2255 0.2054 8.91 0.67 
b1 1.5000 1.5560 3.73 0.1151 0.1353 17.49 1.5819 5.46 0.1774 0.1764 0.56 0.65 
b2 1.0000 1.0298 2.98 0.1088 0.1056 2.96 1.0724 7.24 0.1415 0.1334 5.70 0.77 
b3 2.0000 2.0267 1.34 0.1690 0.1650 2.34 2.0963 4.82 0.2416 0.2243 7.17 0.70 
b4 1.0000 1.0487 4.87 0.0905 0.1070 18.21 1.0644 6.44 0.1092 0.1356 24.22 0.83 
b5 2.0000 2.0477 2.38 0.1456 0.1683 15.62 2.0914 4.57 0.2220 0.2263 1.96 0.66 
l11 1.0000 1.0681 6.81 0.1181 0.1221 3.41 1.1077 10.77 0.1636 0.1611 1.55 0.72 
l21 -0.5000 -0.4956 0.87 0.1262 0.1224 3.05 -0.5528 10.55 0.1361 0.1484 9.05 0.93 
l22 0.8660 0.8905 2.83 0.1412 0.1266 10.39 0.9058 4.60 0.1842 0.1713 7.03 0.77 
l31 0.2500 0.2489 0.44 0.1581 0.1206 23.68 0.2239 10.44 0.1509 0.1479 2.00 1.05 
l32 0.4330 0.4906 13.30 0.2046 0.1367 33.19 0.5076 17.24 0.1827 0.1809 1.00 1.12 
l33 0.8660 0.8153 5.85 0.2405 0.1382 42.55 0.8812 1.76 0.1772 0.1810 2.17 1.36 
l41 0.7500 0.7606 1.41 0.1021 0.1121 9.85 0.7588 1.18 0.1238 0.1375 11.03 0.82 
l42 -0.1443 -0.1065 26.20 0.1796 0.1312 26.93 -0.1203 16.64 0.1916 0.1699 11.34 0.94 
l43 0.2367 0.2387 0.86 0.1777 0.1511 14.96 0.2792 17.95 0.2051 0.1696 17.33 0.87 
l44 0.6005 0.5586 6.97 0.1648 0.1366 17.11 0.5504 8.35 0.1875 0.1900 1.32 0.88 
l51 0.0000 0.0787 7.87 0.1576 0.1261 19.99 0.0546 5.46 0.1255 0.1478 17.76 1.26 
l52 0.0000 0.0304 3.04 0.2347 0.1451 38.17 0.0059 0.59 0.2289 0.1859 18.78 1.03 
l53 0.0000 -0.0837 8.37 0.2427 0.1917 21.01 -0.0467 4.67 0.2072 0.2092 0.95 1.17 
l54 0.0000 0.0291 2.91 0.4836 0.2389 50.60 0.0209 2.09 0.3413 0.3239 5.10 1.42 
l55 1.0000 0.9710 2.90 0.1899 0.1676 11.72 0.9299 7.01 0.2772 0.2812 1.44 0.68 
ρ  0.7000 0.6842 2.25 0.0808 0.0735 8.95 0.7065 0.93 0.0853 0.0959 12.37 0.95 

Overall mean value 
across parameters  4.85 0.17 0.13 17.49  6.76 0.18 0.17 7.92 0.92 

Mean Time 200.05 2.04 

 Std. Dev. Of Time 46.08 0.70 
% of Runs Converged 70% 100% 


