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ABSTRACT 

A simulation evaluation is presented to compare alternative estimation techniques for a five-

alternative multinomial probit (MNP) model with random parameters, including cross-

sectional and panel datasets and for scenarios with and without correlation among random 

parameters. The different estimation techniques assessed are: (1) The maximum approximate 

composite marginal likelihood (MACML) approach; (2) The Geweke-Hajivassiliou-Keane 

(GHK) simulator with Halton sequences, implemented in conjunction with the composite 

marginal  likelihood (CML) estimation approach; (3) The GHK approach with sparse grid 

nodes and weights, implemented in conjunction with the composite marginal  likelihood 

(CML) estimation approach; and (4) a Bayesian Markov Chain Monte Carlo (MCMC) 

approach. In addition, for comparison purposes, the GHK simulator with Halton sequences was 

implemented in conjunction with the traditional, full information maximum likelihood 

approach as well. The results indicate that the MACML approach provided the best 

performance in terms of the accuracy and precision of parameter recovery and estimation time 

for all data generation settings considered in this study. For panel data settings, the GHK 

approach with Halton sequences, when combined with the CML approach, provided better 

performance than when implemented with the full information maximum likelihood approach, 

albeit not better than the MACML approach. The sparse grid approach did not perform well in 

recovering the parameters as the dimension of integration increased, particularly so with the 

panel datasets. The Bayesian MCMC approach performed well in datasets without correlations 

among random parameters, but exhibited limitations in datasets with correlated parameters.  

 

Keywords: Discrete choice, GHK simulator, Sparse grid integration, composite marginal 

likelihood (CML) method, MACML estimation, Bayesian Markov Chain Monte Carlo 

(MCMC). 
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1. INTRODUCTION 

Two general econometric model structures have been commonly used in the literature for 

random utility maximization (RUM)-based discrete choice analysis. These are: (1) the mixed 

multinomial logit (MMNL) model (McFadden and Train, 2000) and (2) the multinomial probit 

(MNP) model (Daganzo, 1979). 

The MMNL model is typically estimated using the MSL approach, whose desirable 

asymptotic properties are obtained at the expense of computational cost (because the number 

of simulation draws has to rise faster than the square root of the number of observations used 

for estimation). Unfortunately, in situations where the dimensionality of integration is high, 

such as when spatial/social dependencies are of interest or when considering multi-level (e.g., 

intra- and inter-individual) unobserved variations in parameters, the computational cost to 

ensure good asymptotic estimator properties can be prohibitive or, sometimes, simply 

impractical. Moreover, the MSL estimation and inference can be affected by simulation noise, 

which might cause problems ranging from non-convergence to inaccuracy and/or non-

inversion of the Hessian of the log-likelihood function. Yet, the MSL continues to be the 

inference approach of choice for MMNL model estimation. 

In contrast to the MMNL model, the MNP model has seen relatively little use in the 

past couple of decades, mainly because its likelihood function involves a truncated multivariate 

integral (i.e., the cumulative multivariate normal (MVN) function) that is generally more 

difficult to evaluate using simulation methods compared to the untruncated multivariate 

integration in the MMNL model. Many studies in the 1990s and earlier on estimating MNP 

focused on simulation-based estimation, leading up to important advances, including the well 

known Geweke-Hajivassiliou-Keane (GHK) approach. These studies (for example, 

Hajivassiliou et al., 1996) demonstrated that the GHK outperformed many other simulation 

based approaches at that time. As a result, the GHK approach is by far the most commonly 

used to estimate MNP models. It is worth noting, however, that the GHK is an MSL inference 

procedure and faces the same problems discussed above in the context of the MSL estimation 

of the MMNL model. The dimensionality of integration in the MNP model choice probability 

expressions depends on the number of choice alternatives (and the number of choice occasions 

per individual in the case of panel data with a general error structure specification). Therefore, 

the computational cost increases significantly as the number of choice alternatives (or the 

number of choice occasions per individual) increases. Besides, the GHK simulator is perceived 

to be relatively more difficult to understand and implement than the MSL simulator for the 

MMNL (see Train, 2009). 
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Despite the considerations discussed above, there has been continued interest in MNP 

for a variety of reasons. The MNP model can indeed be more parsimonious (computationally) 

than the MMNL in many situations, such as when the number of random coefficients is much 

more than the number of alternatives (and when the random coefficients are normally 

distributed). This is because the MNP likelihood function can be expressed as an integral whose 

dimensionality does not depend on the number of random coefficients in the specification. 

Besides, in some contexts, the MVN distributional assumption of the MNP may carry better 

appeal than the extreme value (or multivariate extreme value) distribution used in logit-based 

models. For example, in social or spatial interaction models, it is much easier to specify 

parsimonious correlation structures using the MNP kernel than the logit kernel, primarily 

because of the conjugate nature of the multivariate normal distribution under affine 

transformations. This is reflected in the almost exclusive use of the MNP kernel for discrete 

choice models with spatial/social dependence (see a review in Bhat, 2015). Moreover, more 

recently, there has been a renewed excitement in revisiting the estimation of MNP models using 

a variety of different methods to approximate or simulate the MVN integrals. Most of these 

methods can be classified into one of the following three broad categories, each of which is 

discussed in the following section: (1) Improvements to numerical quadrature methods such as 

the sparse grid integration (SGI)-based quadrature methods advanced by Heiss and Winschel 

(2008) and Heiss (2010), (2) Bhat’s (2011) maximum approximate composite marginal 

likelihood (MACML) method, which combines the use of analytic approximations to the MVN 

integral, as opposed to simulation or numerical evaluation, with a composite marginal 

likelihood (CML) framework and (3) Advances in Bayesian Markov Chain Monte Carlo 

(MCMC) methods, particularly those using data augmentation techniques (McCulloch et al., 

2000; Imai and van Dyk, 2005). 

 

1.1 The Current Research 

Given the increasing interest in MNP models and the emergence of new methods to estimate 

these models, it is timely to evaluate and compare the performance of different estimation 

methods available in the literature. Most techniques mentioned above have been compared with 

traditional frequentist simulation-based approaches, particularly the simulation-based GHK 

approach (Heiss, 2010; Abay, 2015) or the mixed probit MSL approach (Bhat and Sidharthan, 

2011). Some efforts have solely focused on the accuracy of evaluating MVN integrals without 

examining parameter estimation (Sándor and András, 2004; Connors et al., 2014). To our 

knowledge, little exists on a comprehensive comparison of the recently emerging methods for 
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MNP estimation in terms of different metrics of importance – the accuracy of parameter 

recovery, precision of parameter recovery, and the estimation time. The objective of this paper 

is to fill this gap. Specifically, we compare the following approaches to estimate MNP models: 

(a) The MACML approach (as in Bhat, 2011);   

(b) The SGI-based quadrature method embedded into the GHK approach, labeled the GHK-

SGI method, and used in conjunction with the CML estimation approach;   

(c) The GHK-simulator using quasi Monte Carlo draws from Halton sequences (Bhat, 2001; 

Bhat, 2003), labeled the GHK-Halton method in the rest of the paper. We used this method 

in conjunction with the traditional, full information maximum likelihood (FIML) approach 

as well as the CML approach; and  

(d) The Bayesian MCMC approach with data augmentation (as in McCulloch et al., 2000).  

To undertake the comparison among these approaches, we conduct simulation experiments 

with synthetic datasets for a five-alternative MNP model with five random coefficients (in the 

rest of this paper, the number of choice alternatives is denoted by I and the number of random 

coefficients is denoted by K; so I=5 and K=5), for scenarios with and without correlation among 

random parameters, and for both cross-sectional and panel data settings in an aspatial context. 

For panel (or repeated choice) data, we simulate five choice occasions per individual. 

Subsequently, we evaluate the relative merits of the different estimation techniques for MNP 

model estimation. 

In addition to the above discussed methods, we explored Heiss’s (2010) modified 

version of the GHK-SGI method, where he implements the SGI in conjunction with an efficient 

importance sampling (EIS) technique in the GHK approach. However, our experiments with 

this approach were not successful, with most estimation attempts encountering convergence 

problems. After a brief description of this method in Section 2.1.3, we discuss the reasons why 

the method may not have worked in our context. 

A few important caveats here in terms of our study. In our simulation design, we will 

assume independence in the utility kernel error terms across alternatives at each choice 

occasion. Technically, in the cross-sectional case, one can then view the model as a mixed 

multinomial probit (MMNP) model for estimation in which we write the likelihood function as 

the product of univariate cumulative normal functions integrated over an untruncated )1( K

-dimensional (i.e, 6-dimensional) integral space (see Equation (2) in Bhat and Sidharthan, 

2011). However, the estimation is easier done using the traditional MNP model basis that 

involves only a truncated (I-1)-dimensional (i.e, 4-dimensional) integral space (see next 
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section). So, we use the MNP model basis. In the panel case, with a general error structure with 

individual-specific heterogeneity, choice occasion heterogeneity (or intra-individual variations 

in taste sensitivity across choice occasions), as well as a general covariance structure across 

the utilities of alternatives at each choice occasion, the result is an (I-1)*5-dimensional (i.e., 

20-dimensional) integral for evaluating MNP probabilities in the likelihood function. In spirit, 

we will assume this general structure as the model basis for evaluating different estimation 

procedures, even though we only use simpler versions of this structure (that is, only assume 

individual-specific heterogeneity in the random coefficients) in the simulation design itself. 

Technically, in the panel case, assuming only individual-specific heterogeneity simplifies the 

likelihood function when viewed as an MMNP model for estimation.1  

For all the frequentist approaches tested on panel data in this paper (except one 

exception as discussed at the end of this paragraph), we consider the CML estimation approach 

within the generic MNP model basis, which reduces the dimensionality of integration by 

compounding (within each individual) all pairs (or couplets) of choice occasion probabilities. 

Doing so reduces the dimensionality of the MVNCD function to be evaluated in the CML 

function to )]1(2[  K  dimensions (that is, to an 8-dimensional MVNCD function in the 

simulation case).  That is, all the frequentist approaches (the GHK-Halton, the GHK-SGI, and 

the MACML) are applied in the panel case using the CML estimation approach rather than the 

full maximum likelihood estimation approach (for the cross-sectional case, the CML and the 

full maximum likelihood estimation approaches collapse to being exactly the same).2 However, 

to examine the benefit of the CML-based approach for the GHK-Halton simulator (i.e., the 

GHK-Halton-CML approach), we also evaluated the performance of the traditional GHK-

Halton simulator embedded within the full information maximum likelihood (i.e., the GHK-

Halton-FIML approach).  

 

                                                            
1 This is because the individual likelihood function can be written as the product of univariate cumulative normals 
integrated over an inside untruncated one-dimensional integral (to obtain the choice occasion-specific probability 
of the individual), followed by the product of all the choice occasion-specific probabilities across the choice 
occasions of the individual integrated over an outside untruncated K-dimensional integral space (see Equation (4) 
in Bhat and Sidharthan, 2011). Obviously, this way of integral evaluation in our simulation setting using the 
MMNP model basis is much easier to estimate than the 20-dimensional integral in the generic MNP model basis. 
However, we will use the generic MNP model basis here too as this is the conceptual (and general) basis for this 
paper. 
2 In the CML approach for the panel case, we consider all pairings of the couplet probabilities within an individual 
(that is, we consider all 10 pairings across the five choice occasions of each individual; see Section 2 for details). 
However, the CML approach does not need all pairings. A subset of the authors is testing the consequence of 
using fewer pairings within each individual within the CML context (see Bhat, 2014 for additional details). Doing 
so can lead to substantial reductions in computation time beyond what is presented here for the MACML and 
other frequentist approaches. 
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2. THE MULTINOMIAL PROBIT MODEL 

The structure of the panel version of the MNP model is presented here. The cross-sectional 

model corresponds to a panel with one choice instance per individual. Also, for ease in 

presentation, a balanced panel is assumed with all alternatives available at each choice instance 

for each individual.   

Let t  be the index for choice instance ),,...,2,1( Tt  q  be the index for individual 

),,...,2,1( Qq  and i  be the index for choice alternatives ).,...,2,1( Ii   Next, write the utility 

that an individual q  derives from choosing alternative i  at choice instance t  as: 

 ,qtiqtiqqti ξU  xβ                                                                                                   (1) 

where qtix  is a )1( K  vector of exogenous attributes and qβ  is an individual specific )1( K  

column vector of coefficients. Assume that qβ  is distributed multivariate normal with mean 

vector b and covariance matrix ,LLΩ   where L is a lower-triangular Cholesky factor of Ω. 

That is, ,
~

qq βbβ   where ),(MVN~
~

Ω0KKqβ  where K0  is a )1( K  vector of zeros. In 

this paper, we assume no correlation across random coefficients of different individuals 

) , ),(Cov( qq  0qq ββ , and no variation in qβ  across different choice occasions of the 

same individual. In addition, we assume that the qtiξ  terms are IID normally distributed across 

individuals, alternatives, and choice occasions, with mean zero and variance 0.5.3  

With the notations as above, we may write the utility expression in Equation (1) as: 

)
~

(     where,        

)
~

(        

)
~

(

qtiqtiqqtiqtiqti

qtiqtiqqti

qtiqtiqqti

ξεε

ξ

ξU







xβxb

xβxb

xβb

                                                                      (2) 

Next, define the following vectors and matrices (where TIDEN  stands for the identity matrix 

of dimension T): 

,  vector])1[( ) ,..., ,(  ,  vector])1[( ) ,..., ,( 2121  TIIUUU qTqqqqtIqtqtqt UUUUU                 

  ),*5.0 ,(MVN~   vector],)1[(  ) ,..., ,( 11 IIIqtqtIqtqtqt Iξξξ IDEN0ξξ 

 vector],)1[(  ) ,..., ,( 21  TIqTqqq ξξξξ

,  where)*5.0,(MVN~ ITTITITITIq IDENIDENIDENIDEN0 ξ

                                                            
3 Some of these assumptions may be relaxed to generate a variety of spatial/local dependence or time-varying 
coefficients (see Bhat, 2014).  
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,matrix] )[(  ),...,,( ,matrix] )[(  ),...,,( 2121 KTIKI qTqqqqtIqtqtqt  xxxxxxxx and 

 vector].)1[(  ),...,,(

 and ),*5.0,(MVN~ , vector])1[(  ),...,,(

21

11





TI

Iεεε

qTqqq

IqtqtIIqtqtIqtqtqt

εεεε

xxεε IDENΩ0
 

Equation (2) may now be written in a compact form for all individuals and choice occasions 

as:  

 qqq εU  V , .
~

   and   where qqqqqq ξβxεbx V                                 (3)                         

The distribution of  qε  may be expressed as:  ),(MVN~ qTITIq Ξ0ε  with 

 TIqqq IDENΩΞ *5.0 xx  and  that of  qU may be expressed as: ),(MVN~ qqTIq ΞVU . 

Let individual q  be assumed to choose alternative qtm  at choice occasion t. Let 

 vector])1[( ),...,,( 21  Tmmm qTqqqm . To estimate the model, we need to construct the 

likelihood that the utility differences (with respect to the chosen alternative) for all choice 

occasions are less than zero. To do so, define qM  as a   TIIT  )1(  block diagonal matrix, 

with each block diagonal being of size II  )1(  and containing the matrix qtM . qtM  itself is 

constructed as an identity matrix of size )1( I with an extra column of  “-1” values added at 

the th
qtm  column. Then the construction of the likelihood expression for individual q (i.e. the 

joint probability of the sequence of choices ( qm ) made by the individual q) is given below: 

qqqqqqqq

ITqqq

ITqq

qqL

VMBMB

0VM

0M













 and     where)(Pr       

))((Pr      

)(Pr     

)(Pr

)1(

)1(

εηη

ε

U

m

                                          (4) 

That is, 



q

q

qqq dfL
B

ηη
η

)(  where )( qf η  is the multivariate normal density function for a  

])1([ TIG   dimensional normal variate with mean  )1( IT0  and covariance matrix   

.qqqq MΞMΛ   To rewrite qL  in terms of the standard multivariate normal distribution, define 

qΛω as the diagonal matrix of standard deviations of qΛ . The vector qq
η1

Λω  is standard 

multivariate normally distributed with correlation matrix  11* 
qq qq ΛΛ ωΛωΛ . Equation (4) may 

now be written as: 
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];[Φ     

);(

*

*

qqG

qqGGq dL
q

q

ΛB

αΛ0

*

B*



 



α                                                                     (5) 

where ];[ ..G  and  ];[Φ ..G  are the standard MVN probability density and the MVNCD function 

of dimension G, respectively, and qq q
BωB Λ

* 1 . 

The dimensionality of the integration in Equation (5) is TI  )1( . Therefore, as the 

number of choice alternatives or the number of choice occasions per individual increases, the 

likelihood function becomes computationally expensive or in some cases infeasible to evaluate 

at a level of accuracy and smoothness needed for parameter estimation using traditional 

techniques.  

A potential solution to reduce the dimensionality of integration is to use the composite 

marginal likelihood (CML) approach, where the overall likelihood function is calculated as the 

product of low dimensional marginal densities (see Bhat, 2014). In the current context, the 

CML function for an individual q may be written as a product of the pairwise joint probabilities 

of the individual’s choices over all pairs of choice occasions (Bhat, 2011): 

 


 


1

1 1
, ,Pr

T

t

T

tg
qgqtCMLq mmL                                       (6) 

To further develop the CML function above, define ,, 'ΔΛΔΛBΔB qtgqqtgqtgqqtgqtg 


 

qtgqtg qtg
BωB

Λ



1* , and ,11 

qtgqtg
qtgqtg ΛΛ

* ωΛωΛ 


 where qtgΔ  is a )1()1(2  ITI -selection 

matrix with an identity matrix of size ( 1I ) occupying the first ( 1I ) rows and the 

 thIt 1)1()1(  through  thIt )1(  columns, and another identity matrix of size ( 1I ) 

occupying the last ( 1I ) rows and the  thIg 1)1()1(  through  thIg )1(  columns. All 

other elements of qtgΔ take a value of zero. Then CMLqL , in Equation (6) may be written as: 

 


 


1

1 1
1)-(I2, ,Φ

T

t

T

tg
qtgqtgCMLqL *ΛB


*                                                                           (7)    

Working with the above CML function helps reduce the dimensionality of integration from

TI  )1(  (in the likelihood function of Equation (5)) to 21)-( I , thereby reducing the model 

estimation time substantially, and alleviating convergence and parameter recovery problems 

arising due to large dimensional integrals in the original likelihood function. Of course, if there 
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is only one choice occasion, then the CML expression in Equation (7) collapses to the usual 

full-information likelihood based estimation approach.   

                                                        

2.1 MNP Estimation Techniques 

In this section, we discuss the different approaches evaluated in this study for estimating MNP 

models. 

  

2.1.1 The Maximum Approximate Composite Marginal Likelihood (MACML) Approach 

Bhat (2011) proposed the MACML approach that utilizes a CML estimation procedure (Varin, 

2008; Bhat, 2014) combined with an analytic approximation to evaluate the MVN cumulative 

distribution (MVNCD) function in MNP models. The analytic approximation he used is based 

on the decomposition of the multivariate integral into a product of conditional probabilities that 

are approximated analytically (see Solow, 1990; and Joe, 1995, though these earlier studies 

focused on the evaluation of a single MVNCD function, while Bhat proposed an approach to 

incorporate the analytic approximation in an estimation setting with multiple MVNCD function 

evaluations). There are at least two advantages of the MACML approach. First, using an 

analytic expression for the MVNCD function obviates the need for simulation. This also 

renders the approximated likelihood surface smooth and well behaved for optimization 

purposes. Second, the CML estimation technique helps in reducing large dimensional integrals 

(due to panel or repeated-choice data, or spatial/social interactions) into products of lower 

dimensional integrals.  To conserve space, we do not provide additional details on this approach 

but refer the reader to Bhat (2011).  

 

2.1.2 The GHK-Halton Simulator 

The GHK approach starts with transforming the correlated error differences in an MNP model 

into linear functions of uncorrelated standard normal deviates using the Cholesky 

decomposition of the error difference covariance matrix. Doing so helps in recasting the 

MVNCD as a recursive product of univariate (conditional) cumulative normal distributions. 

We do not discuss this simulator in any more detail, but refer the reader to Train (2009) for a 

good exposition of this method. The one difference from the discussion in Train (2009) is that 

we embed the Halton approach to recursively simulate draws from the truncated regions (as 

discussed in detail in Bhat et al., 2010) instead of drawing from pseudo-Monte Carlo sequences 

in the traditional GHK-simulation approach; therefore, the label GHK-Halton simulator. In 

addition, as indicated earlier, for panel data settings, we consider both the CML estimation 
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approach (using Equation (7)) as well as the full information MSL (FIML) approach (using 

Equation (5)) in conjunction with the GHK-Halton simulator.  

 

2.1.3 The GHK Approach with Sparse Grid Integration (GHK-SGI) 

Heiss and Winschel (2008) proposed a multivariate quadrature method using the concept of 

sparse grid integration (SGI) that has been gaining popularity for the evaluation of 

multidimensional integrals. SGI-based multivariate quadrature is similar to traditional 

quadrature, except that the multivariate node points at which the integrand is evaluated are 

chosen cleverly and sparsely (based on a tensor product rule from Smolyak, 1963) to avoid the 

curse of dimensionality from operating on a full grid of all combinations of nodes in all 

dimensions. Heiss and Winschel (2008) describe this approach in detail and demonstrate the 

effectiveness of the approach in evaluating multidimensional integrals of up to 20 dimensions 

for MMNL (not MNP) parameter estimation. In the current paper on MNP parameter 

estimation, we employ the GHK-SGI approach, where the SGI nodes and weights are used 

within the GHK framework, instead of drawing from Psuedo-Monte Carlo or Quasi-Monte 

Carlo sequences as in traditional GHK-simulation (see Abay, 2015 for a similar setup for 

multivariate binary probit models). Further, as indicated earlier, we used the CML estimation 

in conjunction with the GHK-SGI approach.  

 

2.1.4 The GHK Simulator with Efficient Importance Sampling and Sparse Grids  

The performance of quasi-random (e.g., Halton) sequence-based GHK simulation may be 

enhanced through the use of Efficient Importance sampling (EIS), a variance-reduction 

technique based on the idea that a certain set of draws from a given sequence contribute more 

toward the approximation of the integral than other draws from the same sequence. If one can 

sample such ‘important’ values more frequently, the approximation will be quicker and more 

accurate. Hence, the key to importance sampling is to choose an auxiliary distribution (also 

called the importance sampler) which facilities easy sampling of important draws along with 

reducing the sampling variance (i.e., distance between the importance sampler and the initial 

sampler). In this context, Heiss (2010) proposes the use of a normally distributed importance 

sampler inside the GHK simulator along with a weighted least squares technique proposed by 

Richard and Zhang (2007) to minimize the sampling variance. Heiss (2010) provides Monte 

Carlo evidence that the resulting GHK-EIS-SGI approach offers better (and less 

computationally intensive) parameter recovery than the simulation-based GHK procedure in 

the context of panel binary probit models.   
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A potential problem with the use of sparse grids in conjunction with importance 

sampling is that a significant percentage of sparse grid nodes might be associated with negative 

weights. And using negative weights within weighted least squares technique to minimize the 

variance (i.e., minimizing an objective function using negative weights) might lead to undue 

importance to the negative weights causing convergence issues during parameter estimation. 

This is a reason why our experiments to estimate MNP models with Heiss’s (2010) GHK-EIS-

SGI approach were not successful, with most estimation attempts encountering convergence 

issues. We attempted two adhoc solutions to address this problem: (1) neglect all the SGI nodes 

with negative weight during the minimization of sampling variance, and (2) replace negative 

SGI weights by their absolute values. Neither of these approaches appears to guarantee a 

smooth estimation, as we found in the current study.  Thus, we dropped the GHK-EIS-SGI 

approach in further investigations in this paper. 

        

2.1.5 The Bayesian MCMC Approach 

Advances in the Bayesian domain have led to efficient MCMC methods for estimating MNP 

models, particularly using the data augmentation technique. Application of the Bayesian 

method of estimation to MNP consists of a Markov chain Monte Carlo (MCMC) approximation 

of the posterior distribution of the model parameters. The basic idea is to augment the parameter 

space so that simulated realizations of the random utility are generated. Therefore, data 

augmentation in this case implies that the dependent variable (the utility function) becomes 

observable, making it possible to use standard Bayesian regression techniques for estimating 

both the population parameters and the random taste variations. Both McCulloch et al. (2000) 

and Imai and van Dyk (2005) follow this approach. However, the McCulloch et al. (2000) 

method incorporates the normalization for utility scale after the estimation is done. Imai and 

van Dyk’s (2005) method improved on this by considering the normalization for utility scale 

explicitly at the beginning of estimation (similar to the frequentist approach). In the current 

study, we evaluate the performance of the McCulloch et al. (2000) method and leave the Imai 

and van Dyk (2005) approach for future research.  

 

3. DESIGN OF THE SIMULATION EXPERIMENT 

We consider MNP models with five alternatives and five independent variables (and five 

random coefficients, one on each of the independent variables) for the following four data 

generation processes: (a) Cross-sectional data without correlation among random parameters, 

(b) Cross-sectional data with correlation among random parameters, (c) Panel data without 
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correlation among random parameters, and (d) Panel data with correlation among random 

parameters. 

Consider a “true” or underlying probit model according to the utility function: 

qtiqtiqqtiU  xβ  as in Equation (1). For all the datasets generated in this study, the values of 

each of the five independent variables qtix  for the alternatives are drawn from a standard 

normal distribution. We allow random coefficients on all the five independent variables in . qtix  

That is, qβ  is a vector of normally distributed coefficients with mean 

.0}2.0,1.0,-2{1.5,-1.0, b  and covariance matrix Ω . For the case of uncorrelated random 

parameters, we assume a diagonal covariance matrix with all the diagonal elements set to a 

value of 1, entailing the estimation of five diagonal elements (albeit all are of value 1). For the 

case of correlated random parameters, the matrix Ω  has the following positive definite non-

diagonal specification with five diagonal elements and five non-zero off-diagonal elements, 

entailing the estimation of fifteen covariance matrix parameters:  






























00.100.0   00.000.0   00.0  

00.000.1   33.050.075.0  

00.033.0   00.125.0   25.0  

00.050.025.000.1   50.0

00.075.0   25.050.0 00.1   

Ω  

Finally, each kernel error term qti  (q = 1, 2, …, Q; t = 1, 2, 3, ..., T; i = 1, 2, …, I) is generated 

from a univariate normal distribution with a variance of 0.5.  

For the cross-sectional datasets, we generate a sample of 2500 realizations of the five 

independent variables corresponding to 2500 individuals. For the panel datasets, we generate 

a sample of 2500 realizations of the five independent variables corresponding to a situation 

where 500 individuals each have five choice occasions for a total of 2500 choice occasions. 

These are combined with different realizations of qβ  and qti  terms to compute the utility 

functions as in Equation (1) for all individuals and choice occasions. Next, for each individual 

and choice occasion, the alternative with the highest utility for each observation is identified 

as the chosen alternative. This data generation process is undertaken 200 times with different 

realizations of the vector of coefficients qβ  and error term qti  to generate 200 different 

datasets for each of the four variants of MNP.  

For each of the above 200 datasets, we estimate the MNP using each of the estimation 

approaches. For the MACML approach, we used a single random permutation as discussed in 
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Section 2.1.1. For estimating models with the GHK-Halton approach, we used 500 Halton 

draws. For the GHK-SGI approach, to keep the estimation times similar to the GHK-Halton 

approach, we computed the MVN integral over 351 and 589 supports points for cross-sectional 

and panel cases, respectively. For the Bayesian approach, we used 50,000 MCMC draws for 

all four cases with a burn-in of the first 500 elements of the chain.4 Finally, for all the three 

freqentist methods, standard errors of parameter estimates (for each dataset) were computed 

using the Godambe (1960) sandwich estimator ( 11  JHH , where H is the Hessian matrix and 

J is the sandwich matrix). The Hessian and sandwich matrices were computed at the convergent 

parameters using analytic expressions that a. For the MCMC method, the standard errors  of 

the parameter estimates (for each dataset) were calculated as the standard deviation of the 

parameter’s posterior distribution at convergence. 

To measure the performance of each estimation method, we computed performance 

metrics as described below. 

(a) For each parameter, compute the mean of its estimates across the 200 datasets to obtain 

a mean estimate. Compute the absolute percentage (finite sample) bias (APB) of the 

estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
APB .  

If a true parameter value is zero, the APB is computed by taking the difference of the 

mean estimate from the true value (= 0), dividing this difference by the value of 1 in 

the denominator, and multiplying by 100.                                                                        

(b) For each parameter, compute the standard deviation of the parameter estimate across 

the 200 datasets, and label this as the finite sample standard error or FSSE 

(essentially, this is the empirical standard error or an estimate of the standard deviation 

in finite samples). For the Bayesian MCMC method, the FSSEs are calculated as the 

standard deviation of the mean of the posterior estimates across different datasets.  

                                                            
4 The issue of the number of iterations in the simulation chain prior to convergence to the joint posterior 
distribution of parameters (that is, the “burn-in”) has received quite a bit of attention in the Bayesian estimation 
literature, with no clear consensus regarding the number of iterations that should be considered as “burn-in”. 
While some studies (see, for example, Johndrow et al., 2013, Burgette and Reiter, 2013, Wang et al., 2014) use a 
specific number (such as 1,000 or 3,000 or 10,000) for burn-in iterations, others (see, for example, Zhang et al., 
2008) use a specific percentage to arrive at this number (such as 1% or 10% of the total number of iterations of 
the sampler used in the estimation). Some studies (see, for example, Gelman and Shirley, 2011) even question the 
use of burn-in iterations. While we do not intend to address this “burn-in” issue in the current paper, we will say 
that we varied the burn-in from 500 to 1000 to 10,000 for a select sample of estimation runs across different data 
generation cases, and found little impact on the metrics used to assess accuracy and precision of parameter 
recovery. 
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(c) For each parameter, compute the standard error of the estimate using the Godambe 

sandwich estimator. Then compute the mean of the standard error across the 200 

datasets, and label this as the asymptotic standard error or ASE (this is the standard 

error of the distribution of the estimator as the sample size gets large). For the Bayesian 

MCMC method, the ASEs are computed as the standard deviation of parameter’s chain 

at the end of the convergence and then averaged across the 200 datasets.   

(d) For each parameter, compute the square root of mean squared error (RMSE) as  

 22)( FSSEValueTrueEstimateMeanRMSE   

(e) For each parameter, compute the coverage probability (CP) as below:  

 



N

r

r

X

r

XX

r

X

r

X ttI
N 1

)ˆ(se*ˆ)ˆ(se*ˆ1
CP   , 

where, CP is the coverage probability, r
X̂  is the estimated value of the parameter in 

dataset r, X  is the true value of the parameter, )ˆ(se r
X  is the asymptotic standard error 

(ASE) of the parameter in the dataset r, [.]I  is an indicator function which takes a value 

of 1 if the argument in the bracket is true (otherwise 0), N is the number of datasets 

(200), and t  is the t-statistic value for a given confidence level .100)1(   We 

compute CP values for 80% nominal coverage probability (i.e., 20.0 ). CP is the 

empirical probability that a confidence interval contains the true parameter (i.e., the 

proportion of confidence intervals across the 200 datasets that contain the true 

parameter). CP values smaller than the nominal confidence level (80% in our study) 

suggest that the confidence intervals do not provide sufficient empirical coverage of the 

true parameter. 

(f) Store the run time for estimation, separately for convergence of the parameter 

estimates and for calculation of the ASE values necessary for inference.  

 

4. PERFORMANCE EVALUATION RESULTS 

Table 1 presents an overall summary of the performance of all the estimation approaches 

considered in this study – MACML, GHK-Halton, GHK-SGI, and MCMC – for all four cases 

of the MNP data generation process – cross-sectional uncorrelated, cross-sectional correlated, 

panel uncorrelated, and panel correlated.5 Note that two different columns are reported for the 

                                                            
5 The detailed results for all the cases are available in an online appendix at: 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/SimEval/Appendix.pdf.  
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GHK-Halton method for panel data settings. One of them corresponds to the traditional GHK-

Halton-FIML approach and the other corresponds to the GHK-Halton-CML approach. 

For each of the estimation methods and data settings, the first block of rows in Table 1 

presents the average APB value (across all parameters), as well as the average APB value 

computed separately for the mean (the b vector) parameters and the covariance matrix (the Ω  

matrix) elements. The second and third blocks provide the corresponding information for the 

FSSE and ASE measures. The fourth block provides the RMSE and CP measures for all model 

parameters, and the final block provides the average model estimation run times across all 200 

datasets, split by the time for convergence to the final set of parameters and the time needed 

for ASE computation in the frequentist methods. Several key observations from this table are 

discussed in the next few sections. 

 

4.1 Accuracy of Parameter Recovery 

The APB measures in the first block of Table 1 provide several important insights. The 

MACML approach outperforms other inference approaches for all the four cases of data 

generation. This underscores the superiority of the MACML approach in accurately recovering 

model parameters. In all inference approaches, the overall APB increases as we move from the 

cross-sectional to panel case, and from the uncorrelated to the correlated case. But, even here, 

the MACML shows the least APB dispersion among the many data generation cases, while the 

MCMC and GHK-SGI approaches show the highest dispersions among the data generation 

cases. The most striking observation is the rapid degradation of the MCMC approach between 

the uncorrelated and correlated random coefficients cases, for both cross-sectional and panel 

data sets. The MCMC has the worst APB of all inference approaches (and by a substantial 

margin) in the correlated random coefficients setting in the cross-sectional case, and the second 

worst APB in the correlated random coefficients in the panel case. In terms of the performance 

of the GHK-SGI approach, the most striking observation is the substantially poor performance 

of the GHK-SGI approach (in combination with the CML approach) in the panel cases relative 

to the performance of the GHK-SGI approach in the cross-sectional cases.6  

                                                            
6 This significant drop in the GHK-SGI performance from the cross-sectional to panel case may be attributed to 
one or more of three different factors: (1) due to an increase in the dimension of integration (recall that the panel 
models using the CML approach in this paper involve 8-dimensional integrals, while the cross-sectional models 
involve 4-dimensional integrals), (2) due to the change in the nature of the dataset (cross-sectional to panel), and 
(3) due to any potential difficulty of using SGI approach in conjunction with the CML method. To disentangle 
these effects, we conducted additional simulation experiments with the GHK-SGI method. Specifically, we 
estimated models on simulated data for cross-sectional MNP with uncorrelated random parameters for seven 
choice alternatives (dimension of integration equals 6) and 9 choice alternatives (dimension of integration equals 
8), respectively, with the same simulation configuration as discussed earlier. The overall APB values for the 6 and 
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The APB values from the GHK-Halton approach for the cross-sectional cases are higher 

than (but in the same order of APB) as the other two frequentist (MACML and GHK-SGI) 

approaches for the cross-sectional cases. For the panel cases, as already discussed, we 

implement both an FIML version (labeled as GHK Halton-FIML in Table 1) as well as a CML 

version (labeled as GHK Halton-CML) of the GHK-Halton approach. Both these GHK Halton 

versions provide an APB that is higher than the MACML approach, but are superior to the 

GHK-SGI and MCMC approaches in terms of recovering parameters accurately. Between the 

FIML and CML versions of this GHK-Halton approach, the latter  approach recovers the 

parameters more accurately; the APB for the GHK-Halton-FIML simulator is 30-50% higher 

than the GHK-Halton CML simulator. This is a manifestation of the degradation of simulation 

techniques to evaluate the MVNCD function as the number of dimensions of integration 

increases. The results clearly show the advantage of combining the traditional GHK simulator 

with the CML inference technique for panel data, although the MACML approach still 

dominates over the GHK-Halton CML approach.  

The split of the APB by the mean and covariance parameters follow the overall APB 

trends rather closely. Not surprisingly, except for the MCMC approach with uncorrelated cross-

sectional data, it is more difficult to recover the covariance parameters accurately relative to 

the mean parameters. For the frequentist methods, this is a reflection of the appearance of the 

covariance parameters in a much more complex non-linear fashion than the mean parameters 

in the likelihood function, leading to a relatively flat log-likelihood function for different 

covariance parameter values and more difficulty in accurately recovering these parameters. But 

the most noticeable observation from the mean and covariance APB values is the difference 

between these for the MCMC method with correlated random coefficients. In fact, it becomes 

clear now that the substantially higher overall APB for the MCMC approach (relative to the 

MACML and GHK-Halton approaches) for the correlated random coefficients case is primarily 

                                                            
8 dimensional integration cases (with the new cross-sectional data) were 6.59 and 12.30, respectively (and the 
overall APB for the 4 dimensional uncorrelated cross-sectional case is 3.05; see Table 1). These results indicate 
that the ability of the GHK-SGI method to recover true parameters degrades quickly after 4 or 5 dimensions 
(another recent study by Abay, 2015 confirms this trend). It is worth noting, however, that the panel data model 
integrals of 8-dimensions (as in Table 1) show a much poorer performance (APB values are around 30%) 
compared to cross-sectional data models of the same dimension. This could be due to evaluation of a greater 
number of 8 dimensional integrals in the panel datasets estimated using CML approach. That is, for a cross-
sectional dataset with 2500 observations and 9 alternatives, we evaluate a total of twenty-five hundred 8-
dimensional integrals, while for a panel dataset with 500 observations with 5 choice occasions, we evaluate a total 
of five thousand 8-dimensional integrals. Therefore, it appears that the performance of the SGI method degrades 
quickly with the dimensionality of integration as well as with the number of integrals evaluated (in this case the 
number of 8-dimensional integrals doubled due to the CML approach). However, further research is required to 
fully disentangle the impact of the nature of the dataset and dimension of integration on the performance of the 
SGI method.  
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driven by the poor MCMC ability to recover the covariance parameters, suggesting increasing 

difficulty in drawing efficiently from the joint posterior distribution of parameters (through a 

sequence of conditioning mechanisms) when there is covariance in the parameters.   

In summary, from the perspective of recovering parameters accurately, the MACML 

outperforms other approaches for all the four data generation cases. The GHK-Halton also does 

reasonably well across the board, with the GHK-Halton-CML doing better than the GHK-

Halton-FIML for the panel cases. The GHK-SGI is marginally better than the GHK-Halton for 

the cross-sectional cases, but, when combined with the CML approach, is the worst in the panel 

cases. The MCMC approach’s ability to recover parameters is in the same range as the 

approaches involving the GHK-Halton for the uncorrelated random coefficients cases, but 

deteriorates substantially in the presence of correlated random coefficients (note also that 

50,000 iterations are used in the MCMC approach in the current paper, more than the 5,000-

15,000 iterations typically used in earlier MCMC estimations of the MNP; see, for example, 

Chib et al., 1998; Johndrow et al., 2013; Jiao and van Dyk, 2015). 

  

4.2 Precision in Estimation Across Approaches 

We now turn to standard errors. The FSSE values are useful for assessing the empirical (finite-

sample) efficiency (or precision) of the different estimators, while the ASE values provide 

efficiency results as the sample size gets very large. The ASE values essentially provide an 

approximation to the FSSE values for finite samples. Table 1 indicates that the MCMC 

estimator has the advantage of good efficiency (lowest FSSE and ASE) for the cross-sectional, 

uncorrelated random coefficients case, but the GHK-SGI wins the finite-sample efficiency 

battle (lowest FSSE) for all the remaining three cases.7 In terms of ASE, the MACML has the 

lowest value for the cross-sectional correlated case, while the GHK-SGI has the lowest value 

for the panel cases. Such a high precision in the estimates in the GHK-SGI, however, is not of 

much use because of the rather high finite sample bias (APB) in the parameter estimates of the 

GHK-SGI approach. In all cases, the MACML does very well too in terms of closeness to the 

approach with the lowest FSSE and ASE. Of particular note is that the MACML estimator’s 

efficiency in terms of both FSSE and ASE is better than the traditional frequentist GHK-Halton 

simulator for all cases, except in the panel data-uncorrelated random coefficients case. 

                                                            
7 While the sampling distribution (whose standard deviation is represented by FSSEs) is not a Bayesian concept, 
one may invoke the Bernstein–von Mises Theorem (see Train, 2009, pp. 288) that the posterior distribution of 
each parameter converges to a normal distribution with the same variance as that of the maximum likelihood 
estimator (frequentist estimator, to be more inclusive) to use the FSSE values for assessing the empirical efficiency 
of the MCMC estimator. 
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Additionally, the MACML estimator’s efficiency, while not as good as that of the MCMC in 

the two uncorrelated coefficients cases, is better than the MCMC for the two correlated 

coefficients cases.  

For all the frequentist methods, the FSSE and ASE values across all parameters are 

smaller in the presence of correlation among random parameters than without correlation. As 

can be observed from the third rows of the tables under FSSE and ASE in Table 1, this pattern 

is driven by the smaller FSSE and ASE values for the covariance parameters in the correlated 

case relative to the non-correlated case. As discussed in Bhat et al. (2010), it may be easier to 

retrieve covariance parameters with greater precision at higher values of covariance because, 

at lower correlation values, the likelihood surface tends to be flat, increasing the variability in 

parameter estimation. This trend, however, reverses for the MCMC method, with the FSSE and 

ASE values being higher in data settings with correlated random parameters than those with 

non-correlated random parameters, presumably for the same reason that the APB values in the 

MCMC method are very high in the correlated coefficients case relative to the uncorrelated 

coefficients case. Across all inference approaches, a consistent result is that the FSSE and ASE 

are smaller for the mean parameters than the covariance parameters. Also, the closeness of the 

FSSE and ASE values for the frequentist approaches suggest that the inverse of the Godambe 

sandwich estimator serves as a good approximation to the finite sample efficiency for the 

sample size considered in this paper. The FSSE and ASE are also close for the MCMC 

approach.  

Overall, in terms of estimator efficiency, it appears that all inference approaches do 

reasonably well. There are also some more general takeaways from the examination of the 

FSSE and ASE values. First, while the full-information maximum likelihood approach is 

theoretically supposed to be more asymptotically efficient than the limited-information 

composite marginal likelihood approach (see a proof for this in Bhat, 2015), this result does 

not necessarily extend to the case when there is no clear analytically tractable expression for 

the probabilities of choice in a discrete choice model. This is illustrated in the FSSE/ASE 

estimates from the GHK Halton-FIML and GHK Halton-CML approaches for panel data in 

Table 1, with the latter proving to be a more efficient estimator than the former. At a 

fundamental level, when any kind of an approximation is needed (either through simulation 

methods or analytically) for the choice probabilities, the efficiency results will also depend on 

how accurately the objective function (the log-likelihood function in FIML and the composite 

log-likelihood in CML) can be evaluated. The CML approach has lower dimensional integrals, 

which can be evaluated more accurately than the higher dimensional integrals in the FIML 
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approach, and this can lead to a more efficient CML estimator (as is the case in Table 1). 

Second, the MACML estimator’s efficiency is consistently better than that of the GHK-Halton 

based simulator for the range of data settings considered in this paper. In combination with the 

superior performance of the MACML in terms of parameter recovery, this lends reinforcement 

to our claim that accuracy of evaluating the objective function (as a function of the parameters 

to be estimated) does play a role in determining estimator efficiency. Third, while Bayesian 

estimators are typically invoked on the grounds of good small sample inference properties in 

terms of higher efficiency relative to frequentist estimators in finite samples, our results 

indicate that, at least for the sample size considered in this paper, this all depends on the context 

and is certainly not a foregone conclusion empirically. For instance, while the MCMC approach 

leads to lower FSSE/ASE values than the MACML approach for the uncorrelated coefficients 

cases, the MACML leads to lower FSSE/ASE values than the MCMC approach for the 

correlated coefficients cases. 

  

4.3 Root Mean Squared Error (RMSE) and Coverage Probability (CP) 

The RMSE measure combines the bias and efficiency considerations into a single metric, as 

discussed in Section 3. The results indicate that the MACML approach has the lowest RMSE 

values for all the four data generation cases. The GHK-SGI approach is the next best for the 

cross-sectional cases, but is the worst (and by a substantial margin) for the panel cases. The 

MCMC approach and the GHK-Halton approach are comparable to each other in the cross-

sectional uncorrelated coefficients (first) case in Table 1, and both of these are also comparable 

to the performance of the GHK-SGI approach in this first case. For the panel uncorrelated 

coefficients (third) case, the MCMC has an RMSE value comparable to the FIML version of 

the GHK-Halton, but fares clearly worse than the CML version of the GHK-Halton. Of course, 

for both the correlated coefficients cases (second and fourth cases), the MCMC is not a 

contender at all based on our analysis.  

The coverage probability (CP) values help assess how the parameter estimates spread 

about the true parameter value. As one may observe from Table 1, all approaches provide good 

empirical coverage of the 80% nominal confidence interval in the cross-sectional uncorrelated 

case (all the values are above 80%). The MCMC falls short in the cross-sectional correlated 

random coefficients case. For the panel cases, the MACML and the GHK-Halton CML 

approaches are the only two that cover or come very close to covering the 80% confidence 

interval, with the MACML clearly providing better coverage than the GHK-Halton CML. 

These results are generally in line with the RMSE value trends.  
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Overall, based on the RMSE and CP values, the MACML approach is the clear winner 

across all data generation cases. In terms of stability in performance across all cases, the GHK-

Halton turns out to be the second best inference approach in our results (when used in 

combination with the CML approach in the two cases of panel data). 

 

4.4 Computation Time 

The last block of Table 1 provides model estimation times (or run times) for different 

estimation methods explored in this study. The total run time for the frequentist methods 

include both the time taken for parameter convergence as well as for the computation of 

asymptotic standard errors (ASEs) using the Godambe sandwich estimator. The run times 

reported for the MCMC approach does not include ASE computation; instead, it involves a 

simple standard deviation of the posterior distribution. The computer configuration used to 

conduct these tests is: Intel Xeon® CPU E5-1620 @3.70GHz, Windows 7 Enterprise (64 bit), 

16.0 GB RAM. Also, all the estimations were performed using codes written in the Gauss 

matrix programming suite to ensure comparability.  

The results in Table 1 shows that the convergence times for the MACML approach is 

the lowest for the cross-sectional datasets, with the time for ASE computation being about half 

of the convergence time for the uncorrelated random coefficients case and a fifth of the 

convergence time for the correlated random coefficients case. The other two frequentist 

approaches take about the same time as the MACML. However, the time for the Bayesian 

MCMC approach is substantially higher in the cross-sectional cases (about five times the 

MACML estimation time for the uncorrelated coefficients case and 2.5 times the MACML 

estimation time for the correlated coefficients case). As also observed by Train (2009), we 

found little change in the MCMC estimation time between the uncorrelated and correlated 

coefficients cases.  

For the panel cases, the MACML is the fastest approach in terms of convergence time, 

though the GHK-Halton implemented with the CML approach has a comparable convergence 

time. The other two frequentist approaches (GHK-Halton with FIML and the GHK-SGI CML) 

have a much higher convergence time relative to the MACML and GHK-Halton CML 

approaches. The MCMC convergence times are in the same range as the MACML and GHK-

Halton-CML. However, the MCMC has the advantage that the ASE estimates of parameters 

are obtained directly from the posterior distribution of parameters at convergence. For the 

frequentist methods, however, the ASE computation involves the computation of the inverse 

of the Godambe information matrix, which itself involves the computation of the Hessian 
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matrix that is time consuming (the ASE computation time for the MACML approach, for 

example, is about twice the time needed for parameter convergence in the two panel cases). 

When the ASE computation time is added in for the frequentist methods, the MCMC has a 

speed advantage by a factor of about 2.5 relative to the MACML. The problem, though, is that 

the MCMC fares much more poorly compared to the MACML (and GHK-Halton CML) 

approaches for panel data in terms of parameter recovery accuracy and precision, as evident in 

the RMSE and CP measures.   

 

5.  SUMMARY AND CONCLUSIONS 

Multinomial Probit (MNP) models are gaining increasing interest for choice model estimation 

in transportation and other fields. This paper has presented an extensive simulation experiment 

to evaluate different estimation techniques for MNP models. While one cannot make 

conclusive statements applicable for all possible data generation settings in terms of number of 

choice alternatives, correlation structures, and sample sizes, the simulations we have 

undertaken do provide some key insights that could be used to guide MNP estimation. 

Overall, taking all the three metrics (accuracy and precision of parameter recovery and 

estimation time) into consideration, the MACML approach provided the best performance for 

the data generation settings examined in this study. These results indicate the promise of this 

approach for estimating MNP models in different settings. The GHK-Halton simulation, when 

used in conjunction with the CML approach (for panel models), yielded the second best 

performance in recovering the parameters. On the other hand, the bias in parameter estimation 

was more than double that of the MACML approach when the GHK-Halton simulator was used 

in its original FIML form for panel data models. In fact, the GHK-Halton when combined with 

the FIML estimator for panel data sets was also less efficient than the GHK-Halton in 

conjunction with the CML estimator, highlighting the fact that the FIML estimator’s theoretical 

efficiency superiority over the CML estimator may not get manifested in empirical samples 

when the objective function to be maximized is analytically intractable. In such cases, the 

accuracy of evaluating the objective function is also important. In the current paper, the CML 

involves lower-dimensional integrals than the FIML, and the ability to evaluate the lower 

dimensional integrals more accurately leads to more precision in the CML estimator relative to 

the FIML estimator. These results highlight the potential for gainful applicability of the CML 

approach with the traditional GHK simulator.  

The GHK-based sparse grid integration approach performed well in the cross-sectional 

cases, but very poorly for panel datasets when combined with the CML approach. These results 
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suggest that the approach may not be applicable for settings with higher than 5 dimensional 

integrals or panel data settings (see Abay, 2015 for a similar finding). The MCMC approach 

performed very well for the cross-sectional data without correlation in the parameters and 

appears to be a good alternative approach to use for such a data setting. But, even in this case, 

the MACML approach dominates in terms of accuracy and precision of parameter recovery, as 

well as has a speed advantage by a factor of about five relative to the MCMC approach. Our 

simulations also indicate a notable limitation of the MCMC approach in recovering MNP 

parameters in cases where the random coefficients are correlated (both in the cross-sectional 

and panel settings). This finding needs to be further investigated to examine ways to improve 

the MCMC method in the presence of correlated random coefficients.  

The results in this paper are encouraging in that the emerging methods – MACML, 

CML, and MCMC – are making the estimation of MNP models easier and faster than before. 

But there is a need for continued simulation experimentation with these alternative methods to 

provide more general guidance under a wider variety of data settings, including different 

numbers of alternatives, different sample sizes, different numbers of repeated choice occasions 

in the panel case, a range of correlation structures across coefficients and choice occasions, and 

different numbers of exogenous variables and types of exogenous variables (including discrete 

and binary variables). Also, there are a variety of potential ways to improve upon the MACML 

and MCMC approaches in particular, such as alternative analytic approximations for the 

MVNCD function (see Trinh and Genz, 2015) in the MACML, and reducing MACML 

computation time by sampling pairings for an individual rather than using the full set of 

pairings as done here. Finally, future research needs to investigate ways to improve the MCMC 

performance in correlated random coefficients cases and consider Imai and van Dyk’s (2005) 

method of scaling utilities at the beginning of the estimation.  
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Table 1: Overall summary of the simulation results 

  

Cross-sectional data, uncorrelated 
random coefficients 

Cross-sectional data, correlated 
random coefficients 

Panel data, uncorrelated random coefficients Panel data, correlated random coefficients 

MACML 
GHK-
Halton 

GHK-
SGI   

MCMC MACML
GHK-
Halton 

GHK-
SGI   

MCMC MACML
GHK-
Halton 
FIML 

GHK-
Halton 
CML 

GHK-
SGI  

CML 
MCMC MACML

GHK– 
Halton 
FIML 

GHK-
Halton 
CML 

GHK-
SGI  

CML 
MCMC 

Absolute Percentage Bias (APB) 

All 
parameters 

2.64 3.89 3.05 3.45 3.16 4.25 3.72 16.43 3.08 7.53 4.49 28.15 8.23 3.62 8.43 6.14 33.09 20.42 

Mean 
parameters 

0.65 1.25 2.27 4.23 0.71 0.85 0.8 1.12 1.63 3.42 2.13 22.35 6.48 2.23 3.86 2.89 24.39 3.45 

Covariance 
parameters  

3.30 4.77 3.31 3.19 3.98 5.38 4.69 21.53 3.56 8.90 5.25 30.08 8.81 4.08 9.95 7.22 35.99 26.08 

Finite Sample Standard Error (FSSE) 

All 
parameters 

0.33 0.46 0.42 0.24 0.30 0.34 0.28 0.33 0.26 0.25 0.23 0.16 0.18 0.18 0.21 0.21 0.12 0.21 

Mean 
parameters 

0.22 0.28 0.26 0.25 0.28 0.32 0.26 0.35 0.19 0.21 0.19 0.14 0.17 0.19 0.22 0.22 0.13 0.23 

Covariance 
parameters  

0.37 0.52 0.47 0.24 0.31 0.35 0.29 0.32 0.28 0.26 0.24 0.16 0.18 0.18 0.20 0.20 0.12 0.2 

Asymptotic Standard Error (ASE) 

All 
parameters 

0.33 0.46 0.44 0.23 0.25 0.36 0.27 0.28 0.22 0.25 0.23 0.16 0.17 0.17 0.22 0.20 0.16 0.19 

Mean 
parameters 

0.24 0.30 0.28 0.23 0.27 0.31 0.28 0.31 0.16 0.20 0.19 0.15 0.16 0.20 0.19 0.21 0.17 0.18 

Covariance 
parameters  

0.36 0.51 0.49 0.23 0.24 0.38 0.26 0.27 0.24 0.27 0.24 0.16 0.17 0.16 0.23 0.19 0.15 0.19 

RMSE and Coverage Probability (CP) 

RMSE  0.345 0.466 0.429 0.360 0.309 0.429 0.373 0.541 0.291 0.384 0.318 0.560 0.386 0.316 0.395 0.343 0.631 0.507 

CP80% 92.12 89.95 90.47 90.14 88.28 86.49 86.12 57.25 80.42 63.73 74.01 52.46 59.23 75.86 58.17 71.53 49.55 55.46 

Computation Time (minutes) 

Convergence 
time 

0.72 1.06 0.86 5.31 2.07 2.79 2.66 6.44 5.88 13.42  6.75 14.48 7.02 8.73 24.53 9.76 27.36 8.97 

ASE 
computation 
time 

0.31 0.33 0.31 -- 0.41 0.38 0.36 -- 12.98 17.23  13.85 18.29 -- 14.36 20.45  17.53 22.01 -- 

Total runtime 1.03 1.39 1.17 5.31 2.58 3.17 3.02 6.44 18.86 30.65  20.60 32.77 7.02 23.09 44.98  27.29 49.37 8.97 

 


