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ABSTRACT 
In this paper, a joint model of vehicle type choice and utilization is formulated and estimated on a data set 
of vehicles drawn from the 2000 San Francisco Bay Area Travel Survey. The joint discrete-continuous 
model system formulated in this study explicitly accounts for common unobserved factors that may affect 
the choice and utilization of a certain vehicle type (i.e., self-selection effects). A new copula-based 
methodology is adopted to facilitate model estimation without imposing restrictive distribution 
assumptions on the dependency structures between the errors in the discrete and continuous choice 
components. The copula-based methodology is found to provide statistically superior goodness-of-fit 
when compared with previous estimation approaches for joint discrete-continuous model systems. The 
model system, when applied to simulate the impacts of a doubling in fuel price, shows that individuals are 
more likely to shift vehicle type choices than vehicle usage patterns.   
 
 
Keywords: vehicle type choice, vehicle usage, vehicle miles of travel, copula-based approach, discrete-
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INTRODUCTION 
There is growing consensus in the scientific community that the earth’s climate is changing. Global 
climate change, the broader term used to reflect recent warming trends, has been linked unequivocally to 
human activity that results in the emission of greenhouse gases. In the United States, energy-related 
activities account for three-quarters of total human-generated greenhouse gas (GHG) emissions, mostly in 
the form of Carbon Dioxide (CO2) emissions from burning fossil fuels. While about one-half of these 
emissions come from large stationary sources such as power plants, the transportation sector ranks second 
and accounts for about one-third of all human generated GHG emissions (EPA, 2007). Within the 
transportation sector, automobiles and light duty trucks (SUVs, pickup trucks, vans and minivans) 
account for nearly two-thirds of these emissions. Between 1990 and 2003, while emissions from 
passenger cars increased by just about two percent, GHG emissions from light duty trucks (LDTs) 
increased by about 50 percent (EPA, 2006). The increase in GHG emissions from automobiles and LDTs 
reflects the substantial shift in household vehicle fleet composition towards larger, less fuel-efficient 
vehicles as well as the overall growth in vehicle miles of travel (VMT). The SUV market share, in 
particular, increased from just about one percent in 1976 to over 25 percent in 2003, while passenger cars 
experienced a decrease in share from over 80 percent to just about 47 percent during this period (EPA, 
2006). It is clear that a combination of vehicle type choice and usage (miles traveled) has contributed to 
the increase in GHG emissions attributable to the transportation sector.  

However, one wonders whether there is a glimmer of hope on the horizon. Over the past five 
years (2003-2008), fuel prices in the United States have increased by as much as 100 percent (though 
these fuel prices came down substantially in late 2008). However, it has long been known that travel 
demand (measured in terms of VMT) is highly inelastic to fuel prices (Hughes et al., 2006, Gicheva et al., 
2007). Even with the increase in fuel prices between 2007-2008, the decrease in VMT in the United 
States was only marginal. In fact, the fuel price elasticity of VMT was only of the order of about -0.1. 
Prior to 2007, VMT continued to rise (albeit at a slower rate) despite increases in fuel prices, suggesting 
that individuals just absorbed the higher energy costs with virtually no impact on activity-travel demand. 
The natural next question is: How do household and individual adjust to increases in fuel prices? Recent 
reports show that households are rapidly moving away from large vehicles in favor of smaller and more 
fuel-efficient vehicles (Buss, 2008). Auto manufacturers are moving forward with the development of 
alternative fuel vehicles of various kinds. These shifts in consumer demand toward smaller and fuel-
efficient vehicles, coupled with new automotive technologies hitting markets around the world, may 
actually facilitate a continued growth in vehicular travel demand despite the increase in fuel prices. 

The above discussion points to the close interplay between vehicle type choice (vehicle fleet 
composition in households) and usage (vehicle miles of travel) in the transport energy and emission arena. 
Households adjust to cost structures, socio-economic dynamics, the built environment, and environmental 
sensitivity by making conscious decisions or choices on the types of vehicles that they will acquire and 
the amount of miles that the vehicles will be driven (Bhat and Sen, 2006). In other words, vehicle type 
choice and usage may be interrelated dimensions of a single choice package rather than two independent 
choices. These choice dimensions (i.e., type of vehicle and miles of travel) together determine the amount 
of fuel consumed and the amount of GHG emissions that the household will produce from its travel. It is 
therefore of interest to model these two choice dimensions jointly in an integrated modeling framework.  

In this paper, a joint model of household vehicle type choice and usage is formulated and 
estimated on a data set derived from the 2000 San Francisco Bay Area Travel Survey (BATS). The joint 
model system recognizes that vehicle type choice and usage are two dimensions of a single choice bundle. 
That is, the choice of type of vehicle is not an exogenous factor in determining household vehicle miles of 
travel. On the contrary, vehicle type choice is an endogenous variable in its own right and there may be 
common unobserved (and, of course, observed) factors that simultaneously influence vehicle type choice 
and miles of travel. To account for such endogeneity of vehicle type choice, the model takes the form of a 
joint discrete-continuous structure. The discrete component represents the vehicle type choice dimension 
and the continuous component represents the miles of travel.  
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In addition to contributing substantively to the topic of vehicle type choice and usage, the model 
developed in this paper makes a methodological contribution in the estimation of joint systems with 
polychotomous (or multinomial) discrete endogenous variables. Most such joint systems have been 
estimated using either Lee’s (1983) full-information maximum likelihood approach or the two-step 
methods of Hay (1980) and Dubin and McFadden (1984). Lee’s approach uses a technique to transform 
potentially non-normal variables in the discrete and continuous choice equations for each multinomial 
regime into normal variates, and then adopts a bivariate normal distribution to couple the transformed 
normal variables. A limitation of Lee’s approach is the imposition of a bivariate normal coupling, which 
allows only linear and symmetric dependencies. The two-step approaches of Hay (1980) and Dubin and 
McFadden (1984) are based on Heckman’s (1974, 1979) method for binary choice situations, and impose 
a specific form of linearity between the error term in the discrete choice and the continuous outcome 
(rather than a pre-specified bivariate joint distribution). But these two-step methods do not perform well 
when there is a high degree of collinearity between the explanatory variables in the choice equation and 
the continuous outcome equation, as is usually the case in empirical applications, which can lead to 
unstable and unreliable estimates for the outcome equation (see Leung and Yu 2000, Puhani, 2000).  

In this paper, we adopt a flexible copula-based approach for estimation of joint discrete-
continuous systems with a multinomial discrete choice that generalizes Lee’s framework by adopting and 
testing a whole set of alternative bivariate couplings that can also accommodate non-linear and 
asymmetric dependencies. Further, the copula approach offers a closed-form expression for evaluating the 
log-likelihood function in the estimation of model parameters, without requiring any simulation 
machinery.1 The Copula approach to discrete-continuous models is based on the concept of a multivariate 
dependency form (or “copula”, which means “link” or “tie” in Latin) for the joint distribution of random 
variables, in which the dependency is independent of the pre-specified parametric marginal distributions 
for each random variable (Bhat and Eluru, 2009). This concept has been recognized in the statistics field 
for several decades now, but it is only recently that it has been explicitly recognized and employed in the 
econometrics field.  

The remainder of this paper is organized as follows. Following a brief discussion of the literature 
on modeling vehicle type choice and usage, the paper presents the Copula-based modeling methodology. 
This is followed by a description of the data and model estimation results. The penultimate section 
provides results of a policy simulation to demonstrate how the model can be applied to test the impact of 
changes in fuel prices or any other exogenous factors on household vehicle type choice and usage. The 
final section offers concluding thoughts and directions for further research.  
 
MODELING VEHICLE TYPE CHOICE AND USAGE 
The analysis and modeling of vehicle type choice and usage has been much of interest to the profession 
for many years. Several early studies (e.g., Mannering and Winston 1985, Train 1986) examined vehicle 
type choice in terms of the number of vehicles and vintage. More recent studies, however, have examined 
vehicle choice in terms of the number of vehicles by type (e.g., Fang, 2008, Feng et al., 2005) or vintage 
and type (Goldberg, 1998, Bhat at el., 2009, West, 2004). Thus, the focus of research in the vehicle 
holdings arena has clearly shifted to understanding the type of vehicles possessed by households and this 
has been largely motivated by energy and environmental concerns, and facilitated by the availability of 
detailed data about household vehicle holdings. In all these studies, vehicle miles of travel (VMT) serves 
as the measure of usage.  

The studies cited previously employ, for the most part, discrete-continuous model specifications 
of vehicle ownership (discrete) and utilization (continuous) choices. Typically, the jointness is modeled 
by capturing the statistical correlation between unobserved variables affecting vehicle type choice and 

                                                            
1 In some few cases, simulation-based approaches (such as mixed joint models) that approximate multidimensional 
integrals have also been used to jointly model multinomial discrete choices and continuous outcomes (see, for 
example, (Pinjari et al., 2007). However, these approaches involve computationally intensive simulation-based 
estimation methods.  
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utilization. Many of these studies adopt sequential estimation techniques proposed by Dubin and 
McFadden (1984) that involve the use of conditional expectation correction terms (West 2004) or 
instrumental variables (Mannering and Winston, 1985, Train, 1986, Goldberg, 1998). A considerable 
advance has been made recently in the modeling of vehicle holdings and usage with the development of 
the multiple discrete-continuous extreme value (MDCEV) model (Bhat and Sen, 2006). More recently, 
Bhat et al. (2009) adopted a joint nested MDCEV-MNL model structure to capture additional dimensions 
of vehicle holdings.  

In contrast to these recent MDCEV-based studies, this paper reverts to the treatment of household 
vehicle type choice as a simple multinomial choice variable by considering the most recent vehicle 
purchased by a household. The MDCEV model structure, although very useful to capture the mix of 
vehicle holdings at any given point in time, fails to capture the dynamics associated with vehicle 
acquisition. By considering the type of vehicle purchased most recently by a household, one can examine 
the choice of vehicle type in the context of the other vehicles already owned by the household. Thus, the 
unit of analysis in this paper is no longer a household as such, but the actual vehicle purchase itself. As in 
earlier studies, vehicle miles of travel (VMT) is used as the measure of vehicle usage. This leads to the 
formulation of a more classic joint multinomial logit (MNL) – continuous regression model of vehicle 
type choice and usage. This formulation constitutes a discrete-continuous model system with the ability to 
account for endogeneity or self-selection effects (Mannering and Hensher, 1987). These effects are 
captured through error dependencies that account for unobserved factors that affect both vehicle type 
choice and usage. For example, an individual who “likes to drive” may choose to purchase a certain 
premium type of car (e.g., high performance car, luxury vehicle) and put many VMT on it. This 
unobserved personal attribute or preference will then lead to self-selection or error dependency effects. In 
this way, this paper provides a unique perspective on the dynamics of vehicle purchase decisions as 
opposed to the MDCEV-based snapshot perspective of household vehicle holdings.2  

In this paper, we develop a copula-based joint vehicle type choice and usage model to test a host 
of different dependency surfaces (as opposed to the usual joint normal distribution used de facto in earlier 
studies) between vehicle type choice and usage equations. The Copula approach to discrete-continuous 
models is based on the concept of a multivariate dependency form (or “copula”) for the joint distribution 
of random variables, in which the multivariate dependency is independent of the pre-specified parametric 
marginal distributions for each random variable (Bhat and Eluru, 2009).  This approach is particularly 
suited to estimate flexible dependency structures between the discrete vehicle type and continuous usage 
equations, by allowing one to test several different copulas (see Nelsen, 2006) for the joint distribution of 
the error terms in the two equations (as opposed to the usual joint normal distribution used de facto in 
earlier studies). Specifically, six different types of copulas (Normal, FGM, Frank, Gumbel, Clayton, and 
Joe) are tested in the current paper to characterize the dependence structure. In addition, the independent 
form (with no error correlation) is tested as well. In short, this paper is intended to offer a model capable 
of determining the extent to which differences in the VMT between different vehicle types are due to 
“true” effects of vehicle type attributes and policy variables (such as fuel prices), or due to individuals 
self-selecting to choose vehicle types based on their attitudes, preferences, needs, and desires; and this is 
done using a novel methodology that obviates the need for adopting less flexible and restrictive model 
specifications of the past.  

                                                            
2 There are two other limitations of the MDCEV approach relative to the more classic discrete-continuous 
approaches. First, the MDCEV approach ties the discrete and continuous choices in a restrictive framework by 
having a single stochastic utility function (and therefore, a single error term) that underlies both the discrete and 
continuous choices.  Second, the MDCEV approach needs to have an exogenous total mileage budget of households 
for implementation.  
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MODELING METHODOLOGY 
In this section, we present the structure of the copula-based joint multinomial logit – regression modeling 
framework to jointly model vehicle type choice and usage. First, the structure of the vehicle type choice 
model component is discussed, then the vehicle mileage model component is presented, and finally the 
joint structure between these two model components is described. The procedure used for model 
estimation is also presented in this section.  
 
The Vehicle Type Choice Model Component 
Let (  = 1,  2,  ...,  )q q Q  and ( 1, 2, ... )i i I=  be the indices to represent households and vehicle types, 
respectively. The vehicle type choice model component takes the familiar discrete choice formulation. 
Consider the following equation that represents the utility structure of the vehicle type choice model: 

* '
qi i qi qiu xβ ε= +      (1) 

In the equation above, *
qiu  is the latent utility that the thq  household derives from acquiring a vehicle of 

type i , qix  is a column vector of household attributes (including a constant, demographics, and activity-

travel environment characteristics) affecting the utility, iβ  is the corresponding coefficient 

(column)vector, and qiε  is the error term capturing the effects of unobserved factors on the utility 

associated with vehicle type i . With this utility specification, as with any discrete choice model, a 
household (q) is assumed to choose a vehicle of type i  if it is associated with the maximum utility among 
all I  vehicle types; that is, if 

1,2,..., ,

* *max
j I j i

qi qju u
= ≠

>  (2) 

Next, following Lee (1983), the polychotomous discrete choice model is recast in the form of a 
series of binary choice formulations, one for each vehicle type. To do so, let qiR  be a dichotomous 

variable that takes the values 0 and 1, with 1qiR =  if the thi  alternative is chosen by the thq  household 

and 0qiR =  otherwise. Subsequently, substituting '
i qi qixβ ε+  for *

qiu  [from Equation (1)] in Equation 

(2), one can represent the discrete choice model formulation equivalently as: 
,1 if ( 1, 2, ... )'

qi i qi qiR x i Iβ ν= > =      (3) 

1,2,..., ,

*where { max }
j I j i

qi qj qiuν ε
= ≠

= −      (4) 

Equation (3) represents a series of binary choice formulations, which is equivalent to the multinomial 
discrete choice model of vehicle type. In this equation, the distribution of the qiν  term depends on the 

distributional assumptions of the qiε  terms [see Equation (4)]. The distribution of the qiν  terms, in turn, 

will determine the form of vehicle type choice probability expressions. For example, type-1 extreme value 
distributed qiε  terms that are independent (across i ) and identically distributed imply a logistic 

distribution for the qiν  terms, and, consequently, the vehicle type choice probability expressions 

resemble the multinomial logit probabilities. 
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The Vehicle Mileage Model Component 
The vehicle mileage model component takes the form of the classic log-linear regression, as shown 
below: 

* *, 1[ 1]     '
qi i qi qi qi qi qim z m R mα η= = =+  (5) 

In the equation above, *
qim  is a latent variable representing the logarithm of household (q)’s annual 

mileage on the vehicle of type i  if the household were to choose that type of vehicle in its recent vehicle 
acquisition. This latent vehicle usage variable is mapped to observed household attributes and the 
corresponding attribute effects in the form of column vectors qiz  and '

iα , respectively, as well as to 

unobserved factors through a qiη  term. On the right hand side of this equation, the notation 1[ 1]qiR =  

represents an indicator function taking the value 1 if household q  chooses vehicle type i , and 0 

otherwise. That is, *
qim  is observed (in the form of qim ) only if household q  is observed to hold a 

vehicle of type i . 
 
The Joint Model: A Copula-based Approach 
The specifications of the individual model components discussed in the previous two sections may be 
brought together in the following equation system: 

* *

,1 if ( 1, 2, ... )

, 1[ 1]

'
qi i qi qi

'
qi i qi qi qi qi qi

R x i I

m z m R m

β ν

α η

= > =

= = =+
 (6) 

The linkage between the two equations above, for each vehicle type ( 1, 2, ... )i i I= , depends on the type 

and the extent of the dependency between the stochastic terms qiν  and qiη . As indicated earlier, in this 

paper, copula-based methods are used to capture and explore these dependencies (or 
correlations/linkages/couplings). More specifically, copulas are used to describe the joint distribution of 
the qiν  and qiη  terms. In this approach, first, the qiν  and qiη  terms are transformed into uniform 

distributions using their inverse cumulative distribution functions. Subsequently, copulas are applied to 
“couple” the uniformly distributed inverse cumulative distributions into multivariate joint distributions. 
To see this, let the marginal distributions of qiν  and qiη  be (.)iFν  and (.)iFη , respectively, and let the 

joint distribution of qiν  and qiη  be , (., .)i iFν η . Subsequently, consider , 1 2( , ),i iF y yν η  which can be 

expressed as a joint cumulative probability distribution of uniform [0,1] marginal variables 1U  and 2U  
as below: 

1 2

1 1
1 21 2

1 21 2

, 1 2( , ) P( , )

P( ( ) , ( ) )

P( ( ), ( ))

qi qii i

i i

i i

F y y y y

F U y F U y

U F y U F y

ν η

ν η

ν η

ν η

− −

< <

< <

< <

=

=

=

 (7) 

Then, by Sklar’s (1973) theorem, the above joint distribution (of uniform marginal variables) can be 
generated by a function (., .)Cθ  such that: 

 1 21 2, 1 2( , ) ( ( ), ( ))i i i iF y y u F y u F yCν η θ ν η= ==  (8) 
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where (., .)Cθ  is a copula function and θ  is a dependency parameter (assumed to be scalar), together 

characterizing the dependency (or correlations/linkages/couplings) between qiν  and qiη . The joint 

distribution formed in the above-discussed manner is used to derive the joint vehicle type choice and 
vehicle mileage probabilities and log-likelihood expressions. 
 
Model Estimation 
The joint model has the following log-likelihood expression for a random sample of Q  households 
(  = 1,  2,  ...,  )q Q : 

( ) ( ){ }
1 1

| qi
Q I

qi i qi qi i qi qi
q i

R' 'L P m x P xβ ν β ν
= =

⎡ ⎤
= > × >∏ ∏⎢ ⎥

⎢ ⎥⎣ ⎦
. (9) 

The conditional distributions in the above expression can be expressed as: 

( ) ( )

( ) ( )

( ) ( )

1

1

1

,

,

1 2

2

| ,

1
,

1 ,

qi qi

i

i

'm ziti

i

qi i qi
qi i qi qi i qii i

qi

i i

i i '
i q q qi i qi

ii
q i

'm z' ' 'P m x P x F xi qi qi
m

' 'P x F x ti qi qi i qit

C u u m z
'P x fi qi qi u

η

η

α
η σ

η

ν η

ν η

θ
η

η

α
β ν β ν β

σ

β ν β
σ

α
β ν

σ σ

−

−

−

−
=

⎛ ⎞−∂⎡ ⎤ ⎜ ⎟> = >⎢ ⎥⎣ ⎦ ⎜ ⎟∂ ⎝ ⎠
∂⎡ ⎤= >⎢ ⎥⎣ ⎦ ∂

∂
⎡ ⎤= >⎢ ⎥⎣ ⎦ ∂

×

× ×

⎛ ⎞−
× × ⎜ ⎟⎜

⎝ ⎠
⎟

 (10) 

where (., .)iCθ is the copula corresponding to 1 2, ( , )i i
q qi iF u uν η  with 1 ( )i '

q i i qiu F xν β=  and 

2
'

qi i qi

i

zi
q i

m
u F

η
η σ

α⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠

= , 
( )1 2

2

,i i
i q q

i
q

C u u

u

θ∂

∂
 is the partial derivative of the copula with respect to 

2
i
qu (see Bhat and Eluru, 2009), ifη  is the probability density function of qiη , and iησ  is the scale 

parameter of qiη . 

Substitution of the above conditional distribution expression back into Equation (9) provides the 
following log-likelihood expression for the joint vehicle type choice and usage model: 

( )1 2

1 1 2

,1
qii i 'Q I i q q qi i qi

iiq i i iq

R
C u u m z

L f
u

θ
η

η η

α

σ σ= =

⎡ ⎤⎧ ⎫⎛ ⎞∂ −⎢ ⎥⎪ ⎪⎜ ⎟= ×∏ ∏⎢ ⎥⎨ ⎬⎜ ⎟∂⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎢ ⎥⎣ ⎦

 (11) 

A particular advantage of the copula-based approach is that, in the above log-likelihood expression, a 
variety of copula [i.e., (., .)iCθ ] functions can be explored to characterize the dependency between 
vehicle type choice and usage (see Bhat and Eluru, 2009 for a review of alternative copula functions 
available in the literature), and the copulas (hence, the dependency) can be different for different vehicle 
types. Another appealing feature is that the dependency characterization does not depend upon, and is not 
limited by, the marginal distributions of qiν  and qiη , even if they are differently distributed. However, to 

complete the model specification, in this paper, we assume that the qiε  terms (for 1, 2, ... )i I=  
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associated with the vehicle type choice model component are independent and identically distributed 
(IID) type-1 extreme value distributed, and that the qiη  terms associated with the switching regressions 

of the logarithm of vehicle mileage follow a normal distribution centered at zero (and, as indicated earlier, 
with variance 2

iησ ). Given these marginal distributions, the log-likelihood expression in Equation (11) 

has a closed form expression for most of the copulas available in the literature and hence obviates the 
need for numerical/simulation-based estimation. 
 
DATA DESCRIPTION 
The primary data set used for this analysis is derived from the 2000 San Francisco Bay Area Travel 
Survey (BATS). This survey was designed and administered by MORPACE International, Inc. (2002) for 
the Bay Area Metropolitan Transportation Commission. The survey collected information on vehicle fleet 
composition and two-day activity travel information for over 15,000 households in the San Francisco Bay 
Area. To each vehicle record from this data, a host of vehicle attributes (such as cost, internal dimensions, 
performance characteristics, fuel emissions, and fuel type) obtained from the Consumer Guide (2005) and 
EPA Fuel Economy Guide (EPA, 2005) were appended. In addition, residential built environment 
attributes were constructed and extracted from several secondary sources of data (land use/demographic 
coverage data, Census 2000 data, and GIS layers of bicycle and transportation network facilities; see Bhat 
et al. (2009) for a detailed description of data compilation). Finally, based on the two-day activity-travel 
information available in the data, each vehicle was assigned to one person (labeled as the primary driver) 
in the household who drove the maximum number of miles on the vehicle over the two-day diary period.  

In this study, the logarithm of annual vehicle miles traveled (for each vehicle) serves as the 
continuous dependent variable. Annual vehicle mileage was computed for each vehicle using the 
odometer readings recorded at the end of the diary period, reported mileage at the time of vehicle 
possession, the survey year, and the year of possession. The annual vehicle mileage is then:  

 

possession ofYear  year Survey 
possessionon  Miles-survey  of endat  recorded Mileage  Mileage Annual

−
=  (12) 

 
A logsum variable was computed from the multinomial logit (MNL) model results presented in 

Bhat et al. (2009) for the choice of vehicle make/model for each vehicle type. This log-sum variable 
contains information on the vehicle attributes, fuel price, and household characteristics (i.e., household 
size and income) that affected the choice of vehicle make/model within each vehicle type category.  

To capture the dynamics of vehicle type choice and usage, this study focuses on “recently 
acquired vehicles” by the households in the sample. Thus, only those vehicles that were acquired within 
the preceding five year period of the survey were selected for analysis. Vehicles that were purchased prior 
to the five year span were deliberately excluded from the analysis to avoid the data consistency problem; 
all attribute data is for the year 2000 and hence it was considered prudent to ensure that only those vehicle 
acquisitions reasonably close to the year 2000 were included in the analysis.  

The final sample for analysis includes 3770 recent vehicle purchase occasions by households. The 
vehicle purchase at each occasion was classified into one of six vehicle body types, based on the need for 
an adequate number of chosen instances for each body type: (1) Compact Sedans (including subcompact 
sedans), (2) Large Sedans (including mid-size sedans and station wagons), (3) Coupes, (4) Sport utility 
vehicles (SUV), (5) Pickup Trucks and (6) Vans (including minivans). Of all these 3770 recently acquired 
vehicles, about one-quarter (24.1%) are compact sedans while 30.9% percent are larger sedans, and 8.2% 
are coupes. The SUV, pickup truck, and van categories are associated with smaller, but still substantial, 
percentages (14.7%, 11.6%, and 10.5%, respectively) in terms of the share of all acquisitions. More 
importantly, they are associated with higher average vehicle miles of travel, all in excess of 15,500 miles 
per year. On the other hand, all of the car categories (sedans and coupe) are associated with mileages that 
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are less than 14,500 miles per year. Thus, it appears that larger vehicles are driven more miles, on 
average, than smaller vehicles – with subsequent implications for energy consumption and emissions.  

 
MODEL ESTIMATION RESULTS 
This section presents a description of model estimation results for the copula-based joint model of vehicle 
type choice and vehicle miles of travel. The empirical analysis involved estimating the joint model with 
all different copula-based dependency structures as well as the independent structure (i.e., independent 
models). Six different copulas were explored to estimate the jointness between the vehicle choice 
component and the usage component for each vehicle type. The six types are Gaussian (same as the Lee, 
(1983) specification), FGM, Frank, Gumbel, Clayton, and Joe (a detailed discussion of the nature of each 
of these copulas is available in Bhat and Eluru (2009); we are unable to provide such a discussion here 
due to space considerations). 

The maximum likelihood estimation of the sample selection model with different copulas leads to 
a case of non-nested models. Thus, the traditional likelihood ratio test for comparing alternative model 
specifications is not applicable in this context. An approach to select among the competing copula-based 
models is the Bayesian Information Criterion (BIC), which collapses to a comparison of the log-
likelihood values across different models if all of the competing models have the same exogenous 
variables and a single copula dependence parameter θ.  

It was found that the best model fit was obtained when the Frank copula was used for the 
continuous regression model associated with all six vehicle types. The log-likelihood value at 
convergence for the Frank copula-based model is found to be -9403.47. The likelihood value at 
convergence for the independent model structure is -9774.67, clearly rejecting the hypothesis of 
independence between the vehicle type choice and vehicle usage equations in favor of the model structure 
that recognizes error correlations. In addition to the final joint model with Frank copulas and the 
independence model, we estimated a joint model with Gaussian copulas in which all the copulas were 
specified to be Gaussian (i.e., equivalent to Lee’s model). The log-likelihood at convergence for the 
Gaussian copula-based model was found to be -9609.96, a significant improvement over the model based 
on independence, but significantly worse than the Frank copula-based model fit.   

The Frank copula-based model estimation results are shown in Table 1. The first numbered-row 
in the right block of the table shows the copula dependency parameters (and the t-statistics in parentheses 
beneath the parameters) for each vehicle type. As can be observed, all the dependency parameters are 
significantly different from zero, indicating a significant magnitude of unobserved factors that affect both 
vehicle type choice and VMT for each type of vehicle. The corresponding Kendall’s measures of 
dependency3 are: -0.55 (Compact Sedans), -0.53 (Large Sedans), -0.56 (Coupe), -0.52 (SUV), -0.58 
(Pickup truck) and -0.54 (Vans). To interpret these dependency parameters, note that Equation (3) can be 
written as: 0,1 if '

qi i qi qiR xβ ν >= −  and 0.0 if '
qi i qi qiR xβ ν <= −  The error term qiν  

enters with a negative sign in the equation. Therefore a negative correlation (or dependency) between this 
error term and the error term qiη  in the vehicle usage equation implies that unobserved factors that 

increase (decrease) the propensity to choose a vehicle of type i also increase (decrease) the usage of that 
vehicle type. Similarly, a positive correlation between the qiν  and the qiη  terms implies that unobserved 

factors that increase (decrease) the propensity to choose a vehicle of type i also decrease (increase) the 
usage of that vehicle type. Based on intuitive consideration, one can expect the estimated dependency 
                                                            
3 Kendall’s measure of dependency (τ ) transforms the dependency parameter (θ ) into a number between -1 and 1 

(see Bhat and Eluru, 2009). For the Frank copula, 
0

4 11 1
1t

t

t dt
e

θ

τ
θ θ =

⎡ ⎤
= − −⎢ ⎥−⎣ ⎦

∫  and  –1 < τ  < 1. Independence 

is attained in Frank’s copula as .0→θ  
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parameters between the qiν  and the qiη  terms to be negative, so that the dependency between vehicle 

type choice and usage is positive. As expected, the dependency parameters suggest that unobserved 
factors that make a household/individual more(less) inclined to acquire a certain vehicle type also make 
the individual more(less) inclined to put more miles on that vehicle. The magnitudes of the correlation are 
slightly higher for the coupe and pick-up truck vehicle types, suggesting that there is a higher level of 
loyalty associated with these vehicle types. These individuals are likely to be those who enjoy driving and 
enjoy high-performance vehicles; those who are drawn towards these vehicle types are likely to be those 
who drive and accumulate more miles more than others.  

It is interesting to note that the dependency parameters between the qiν  and qiη terms obtained 

using Gaussian copulas (i.e., the Lee (1983) approach) are positive and significant for all vehicle types 
with the exception of vans (Gaussian copula estimates are not shown in tables, but are available from the 
authors). These positive correlations between the error terms are counter-intuitive (see West, 2004 for a 
similar result obtained using the Lee approach). That is, as discussed in the previous paragraph, the 
implication from the Gaussian copula is that unobserved factors that increase (decrease) the propensity to 
purchase a certain vehicle type also decrease (increase) the usage of that vehicle type. Further, as 
indicated earlier, the statistical fit of the joint model using Gaussian copulas is significantly inferior to 
that using Frank copulas.  

The remainder of this discussion (based on Table 1) is intended to provide a description of the 
impacts of various exogenous variables on the dependent variables of interest in the context of the Frank 
copula-based model specification that offered the best fit among all the specifications with different 
copulas.  

The first six numbered-columns of Table 1 present the results of the discrete choice component of 
the model, while the next six numbered-columns present the linear regressions corresponding to usage. 
The constants (shown in the second row of the table) appear to suggest that in the five year period prior to 
2000, households tended to acquire SUVs in preference to other vehicle types and had the lowest 
preference for the acquisition of vans.  

The next few rows correspond to individual demographics (age, gender, and race), household 
socio-demographics (income, presence of children etc.), land use attributes and transportation network 
measures. Individual demographic effects include the following: (a) The younger age group (16-35 years) 
tend to acquire compact sedans in comparison to all other vehicle types, while the middle age group (36-
55 years) tend to acquire coupes and vans, (b) Males are more likely than females to acquire large sedans, 
coupes, SUVs, and pick-up trucks, and least likely to acquire vans, and (c) African-Americans are less 
likely to acquire pick-up trucks and vans, Hispanics are less likely to acquire large sedans and coupes, and 
Asians are more prone to acquiring sedans and vans.  

Among household socio-demographics, households with high income appear to be more likely to 
acquire large sedans, coupes, SUVs, and vans and less likely to acquire pick-up trucks. The presence of 
children is generally associated with a propensity to acquire large sedans, SUVs, and vans. The presence 
of seniors in the household is associated with the purchase of large sedans and vans, but a lower 
propensity to acquire SUVs. Larger household sizes are associated with the purchase of vans. All of these 
findings are consistent with expectations and with the large body of literature that speaks to the types of 
vehicles that households acquire in the context of their socio-demographic characteristics. Finally, among 
the household variables, it is interesting to note that the variable representing the number of workers was 
associated with a negative coefficient on four of the six vehicle types. It is likely that these households 
have already acquired the vehicles that they need and simply did not need to purchase vehicles (other than 
specialty vehicles such as compact sedan or pick-up truck) in the five year period covered by this data set.  

Among the land-use attributes, population density did not show a significant impact on vehicle 
type choice. However, households residing in high employment density areas were found to be less likely 
to acquire coupes and pick-up trucks. It is likely that pick-up trucks are more suitable to the rugged 
terrains of suburban/rural areas or the occupational and family needs of households residing in such areas. 
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The land use mix variable provides a rather similar indication. However, it is not immediately clear why 
the coupe vehicle type also has a negative coefficient associated with its acquisition. The built 
environment influences may need to be investigated more closely, particularly because the built 
environment may be endogenous, at least in the long term. As the commercial and industrial acreage 
within a one mile radius of the household location increases, the probability of purchasing a SUV or van 
decreases. This is consistent with the notion that SUVs and vans tend to be vehicles acquired by 
suburban/rural households that are likely to be farther away from commercial and industrial property.  

The transportation network attribute impacts suggest that those who reside in neighborhoods with 
shorter walk access to transit stops are found to be less likely than those residing in neighborhoods with 
longer walk access to acquire larger vehicles (large sedans, pick-up trucks, and vans). It is possible that 
households with short walk access to transit are residing in higher density areas with limited parking 
space and maneuverability. Hence there is a lower likelihood of acquiring large vehicles. This is further 
confirmed with the finding that, as the number of zones accessible by bicycle within six miles (or zonal 
bicycle network connectivity) increases (i.e., as zonal density increases4), the probability of purchasing 
pick-up trucks decreases.  

Finally, there is history dependency in vehicle acquisition. If a household already owns a pick-up 
truck or a van in its fleet, then it is less likely that the household will acquire another one of these vehicle 
types. On the other hand, if a household already owns a large sedan or a coupe, then the household is 
more likely to acquire the same vehicle type again. It is conceivable that pick-up trucks and vans are 
specialty vehicles (large vehicles) and most households do not need more than one of these types of 
vehicles. Therefore, if one of these vehicle types already exists in the fleet, then the household is unlikely 
to acquire another one of these. On the other hand, sedans and coupes constitute general purpose 
automobiles and households may have multiple vehicles of these types for various members of the 
household.  

The logsum parameter was not found to be statistically different from one, and so is set to one, 
indicating independence among the utilities of make/model alternatives within each vehicle body type 
category in vehicle make/model decisions. The corresponding logsum variable captures the utility derived 
from the different make/model combinations within each vehicle type.  

The second set of six columns includes the linear regressions for the vehicle usage variable. There 
is one equation for each vehicle type. It is found that young individuals are more likely to drive more than 
other age groups. Males drive more miles on most vehicle types, except for coupes and pick-up trucks. 
These findings are rather surprising as one would expect males to put more miles on coupes and pick-up 
trucks. However, the fact that males are more likely to purchase one of these vehicle types does not 
necessarily mean that they are going to put more miles on it. Asians are associated with lower mileage on 
compact and large sedans and vans. African-Americans put more miles on all of the car types – compact 
and large sedans, and coupes.  

Those in the middle income range put more miles on cars, while those in the higher income group 
accumulate more miles on coupes and SUVs. Those with young children (less than or equal to four years 
of age) put less miles on compact sedans and vans, presumably because of the constraints associated with 
traveling with very young children. However, as the number of older children increases, households 
accumulate more miles across a range of vehicle types (as evidenced by the positive coefficients 
associated with variables representing number of children by age group). Seniors accumulate fewer miles 
across all vehicle types, larger households put fewer miles on coupes and pick-up trucks, and households 
with more workers accumulate more miles on three of the six vehicle types. Virtually all of these findings 
are consistent with expectations.  

Higher population density and the greater presence of physical activity centers in the vicinity of 
the residential area contribute negatively to the accumulation of miles, particularly for small cars and 
SUVs. This finding is consistent with the notion that higher densities are associated with lower vehicular 
miles of travel. Zonal density is also negatively associated with miles accumulated on pick-up trucks.  
                                                            
4 Zonal bicycle network connectivity represents how small and compact the zones are (i.e., the zonal density). 
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Finally, the significant scale parameter suggests that there are considerable unobserved factors 
affecting usage patterns for all vehicle types.  
 
A POLICY ANALYSIS EXAMPLE  
This section presents a policy application example using the proposed model system. Specifically, the 
changes in vehicle type choice and usage are predicted due to an increase in the fuel price from about 
$2.55 (the fuel price per gallon in the year 2000, converted to current dollars) to $5.00 per gallon; a 96 
percent increase in fuel price. The changes are applied to each vehicle type in the model through the 
recalculation of the vehicle make/model log-sum variable according to the specification in Bhat et al. 
(2009). This log-sum variable is used as an explanatory variable in the vehicle type choice model 
component.  

The effect of the fuel price change on aggregate vehicle holdings and usage patterns is measured 
along two dimensions, i.e., the percent change in acquisition of various vehicle types, and the percent 
change in the annual vehicle usage (VMT) for each vehicle type. Results of the shifts brought about by 
the 96 percent change in fuel costs considered in this study are tabulated in Table 2.5 The results in Table 
2 are presented for three model specifications: (1) The independent model specification, (2) The Gaussian 
copula-based model specification, and (3) The Frank copula-based model specification. The policy 
analysis results using the independent model specification suggest a decrease in the market share of 
SUVs, pickup trucks, and vans, and an increase in the market share of compact and large sedans and 
coupes (see the first numbered column in the table). Similar results are found using the models with 
Gaussian copulas and Frank copulas (see the third and fifth numbered columns, respectively). However, 
notable differences can be found when the vehicle usage changes are compared with the vehicle type 
market shares across all the three models. First, within the results of the independent model (in numbered 
columns two and three), the percent change in vehicle usage is the same as that for vehicle type choice, 
reflecting the assumption of independence in this model specification. No jointness is assumed in the 
model formulation and therefore, the use of each vehicle type simply tracks according to the shift in 
vehicle type choice. Second, the results from the Gaussian copula-based model (i.e., Lee’s (1983) model) 
suggest that the adjustments in vehicle miles of travel will exceed the shifts in vehicle type choice. All of 
the percent changes in usage are greater than the percent shifts in vehicle type choice (except for vans 
where it is identical; this is because the corresponding dependency parameter was not statistically 
different from zero or independence). Third, the policy analysis results of the Frank copula-based model 
suggest the reverse. That is, while there is a shift from larger vehicles to smaller vehicles similar to the 
indications provided by the Gaussian copula-based model, the magnitude of shift in vehicle usage is 
smaller than the magnitude of shift in vehicle type choice behavior. In other words, the Frank copula-
based model is suggesting that people will shift vehicle type choices more than they will shift or change 
vehicle miles of travel (amount of travel undertaken).  

The results from the Frank copula-based model are more in agreement with the recent real-world 
vehicle acquisition and usage trends discussed the “introduction” section that consumers are migrating 
away from large vehicles to smaller and more fuel-efficient vehicles, but the demand for vehicular travel 
has remained inelastic to increases in fuel prices. While these simulation results agree with real-world 
trends, appear intuitive, and corroborate the superiority of the Frank copula-based model over the other 
models, these results need to be used with caution. This is because the model specification did not directly 
include the impact of gas prices on vehicle usage equation and neglects the possibility that consumers 
may be considering trade-offs across different vehicle types not only in the vehicle purchase decisions but 
also in the vehicle usage decisions.      

 

                                                            
5 The prediction procedure considers the dependency between the vehicle type and usage equations (see Bhat and 
Eluru, 2009 for details). 
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CONCLUSIONS 
This paper makes a methodological contribution in the formulation and estimation of discrete-continuous 
model systems by adopting a copula-based methodology wherein flexible error dependency structures can 
be accommodated between the discrete and continuous choice equations. To our knowledge, this is the 
first instance in the econometric literature of the development and application of a copula-based joint 
model with an endogenous multinomial choice variable rather than a binary choice variable.  

The model is applied to jointly estimate and analyze vehicle type choice and usage of recently 
acquired household vehicles. Model estimation was undertaken on a data set of 3770 vehicles acquired in 
a five year period just preceding the year 2000 survey of a sample of households in the San Francisco Bay 
Area. Various copula functions were explored to test the presence of different forms of dependency 
between vehicle type choice and usage for each vehicle type, and the model with Frank copulas for all 
vehicle types provided the best statistical fit. The corresponding model estimation results showed the 
presence of significant unobserved factors contributing to positive dependency between vehicle type 
choice and usage across all vehicle types. When compared with the results of an independent model (that 
ignores error correlations) and a Gaussian copula-based model (i.e., the Lee (1983) approach), it was 
found that the Frank copula-based model offered statistically superior goodness-of-fit. More importantly, 
when the models were applied in the context of a policy simulation example in which fuel price was 
increased by 96 percent, the Frank copula-based model suggested that shifts in vehicle usage are smaller 
than shifts in vehicle type choice. Given that vehicle miles of travel (VMT) has generally been inelastic to 
rising fuel prices over the past five years, and that vehicle sales figures from automakers show a clear 
migration of consumers to smaller and more fuel-efficient vehicles, it is likely that the Frank copula-based 
model offers behaviorally realistic representation of shifts in consumer and travel patterns in response to 
fuel price hikes.  

The model simulation results suggest that habitual behavior or inertial forces play a role in 
shaping the dynamics of activity-travel patterns of individuals and households (Gärling and Axhausen, 
2003). While there may be subtle adjustments in activity-travel patterns in response to fuel price shifts (or 
any other travel demand management strategy), it appears that households may exhibit greater shifts in 
vehicle type choice with the intent of minimizing the adjustments that need to be made to vehicle miles of 
travel. The analysis suggests that greater impacts on greenhouse gas emissions and energy consumption 
may be made by spurring technological innovation, by providing tax incentives for people to shift more 
quickly to fuel-efficient and low-emission vehicles, and by having automakers (either through voluntary 
means or through regulatory mechanisms such as raising of corporate average fuel economy or CAFE 
standards) greatly increase production of smaller fuel-efficient and hybrid-fuel vehicles to meet shifts in 
consumer demand.  Relying on reductions in vehicle miles of travel (VMT) to combat global climate 
change and dependence on oil may not only prove ineffective, but may also result in degradation of 
quality of life and slowing of economic activity. 

There are at least two important directions for further research. First, future studies would benefit 
from a better measurement and representation of land-use and transportation network measures in models 
of vehicle type choice and usage. Second, this study concentrates only on the recently acquired vehicle 
type and usage. It is possible to get a better picture of the impact of gas prices on vehicular demand for 
travel when the overall household vehicle usage (across all vehicles rather than just the recently acquired 
vehicle’s usage) is analyzed.  
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Table 1. Estimation Results of the Joint Model with Frank Copulas – Parameters (and t-statistic) 

 

Variable 
MNL  Regression (Dependent variable = LogVMT) 

Compact 
Sedan 

Large 
Sedan Coupe SUV Pickup 

Truck Van Compact 
Sedan 

Large 
Sedan Coupe SUV Pickup 

Truck Van 

Copula dependency parameter (θ) - - - - - - -6.730 
(-12.47) 

-6.405 
(-12.78) 

-6.967 
(-8.07) 

-6.209 
(-9.42) 

-7.352 
(-10.54) 

-6.605 
(-8.96) 

Constant - -0.501 
(-2.93) 

-0.535 
(-3.21) 

0.122 
(0.74) 

-0.433 
(-2.30) 

-2.396 
(-9.91) 

8.467 
(127.99) 

8.610 
(183.36) 

8.241 
(61.47) 

8.569 
(104.90) 

8.437 
(76.09) 

8.755 
(126.34)

Age (age >= 56 yrs is base)             

    Age between 16 and 35 yrs - -0.362 
(-4.52) 

-0.362 
(-4.52) 

-0.362 
(-4.52) 

-0.362 
(-4.52) 

-0.362 
(-4.52) 

0.161 
(6.45) 

0.161 
(6.45) - 0.161 

(6.45) 
0.161 
(6.45) 

0.161 
(6.45) 

   Age between 36 and 55 years - - 0.368 
(4.23) - - 0.368 

(4.23) - - - - - - 

Male - 0.142 
(1.91) 

0.142 
(1.91) 

0.142 
(1.91) 

1.564 
(11.76) 

-0.157 
(-1.28) 

0.040 
(1.92) 

0.040 
(1.92) 

-0.136 
(-1.68) 

0.040 
(1.92) - 0.040 

(1.92) 
Ethnicity (Caucasian is base)             

    African-American - - - - -0.731 
(-2.26) 

-0.731 
(-2.26) 

0.261 
(3.58) 

0.261 
(3.58) 

0.261 
(3.58) - - - 

    Hispanic  -0.310 
(-1.98) 

-0.310 
(-1.98) - - - - - - - - - 

    Asian - - -0.346 
(-2.54) 

-0.346 
(-2.54) 

-1.508 
(-5.02) - -0.104 

(-2.74) 
-0.104 
(-2.74) - - - -0.104 

(-2.74) 

    Other  - - - -0.582 
(-1.91) 

-0.582 
(-1.91) - - - - - - - 

Annual household income              

   Annual income (35K-90K) - 0.350 
(2.76) 

0.350 
(2.76) 

0.350 
(2.76) - 0.350 

(2.76) 
0.084 
(3.23) 

0.084 
(3.23) - - - - 

   Annual income (>90K) - 0.649 
(4.57) 

0.649 
(4.57) 

0.649 
(4.57) 

-0.205 
(-1.68) 

0.649 
(4.57) - - 0.145 

(3.41) 
0.145 
(3.41) - - 

No. of children in the household             

   No. of children < = 4 yrs - - -0.311 
(-2.64) 

0.246 
(3.34) 

-0.311 
(-2.64) 

0.246 
(3.34) 

-0.053 
(-1.75) - - - 0.252 

(2.31) 
-0.053 
(-1.75) 

   No. of children  5 - 10 yrs - 0.300 
(3.87) - 0.300 

(3.87) 
0.300 
(3.87) 

0.300 
(3.87) - - 0.117 

(1.74) - 0.117 
(1.74) - 

   No. of children 11 - 15 yrs - - -0.591 
(-3.11) - - - - 0.102 

(3.51) - 0.102 
(3.51) - - 

   No. of children 16 and 17 yrs - - - - - - - 0.081 
(1.21) - - - - 
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Table 1. Estimation Results of the Joint Model with Frank Copulas (continued) 
 

Variable 
MNL  Regression (Dependent variable = LogVMT) 

Compact 
Sedan 

Large 
Sedan Coupe SUV Pickup 

Truck Van Compact 
Sedan 

Large 
Sedan Coupe SUV Pickup 

Truck Van 

Number of senior adults (> 65 
years) in the household - 0.331 

(4.88) - -0.453 
(-3.33) - 0.331 

(4.88) 
-0.141 
(-6.75) 

-0.141 
(-6.75) 

-0.141 
(-6.75) 

-0.141 
(-6.75) 

-0.141 
(-6.75) 

-0.141 
(-6.75) 

Household size - - - - - 0.495 
(11.12) - - -0.069 

(-2.21) - -0.069 
(-2.21) - 

Number of employed individuals 
in the household  - -0.163 

(-3.67) 
-0.163 
(-3.67) 

-0.163 
(-3.67) - -0.163 

(-3.67) 
0.070 
(4.45) 

0.070 
(4.45) - - 0.070 

(4.45) - 

Land Use Variables             

Population Density - - - - - - -0.004 
(-2.50) - - -0.002 

(-1.28) - - 

Employment Density - - -0.002 
(-1.99) - -0.002 

(-1.99) - - - - - - - 

Land use mix (range 0 - 1)  - - -0.544 
(-2.70) - -0.544 

(-2.70) - - - - - - - 

Presence of 4+ physical activity 
centers   - - - - - - -0.050 

(-1.26) - -0.050 
(-1.26) 

-0.050 
(-1.26) - - 

Commercial / Industrial Acres 
within 1 mile radius - - - -0.001 

(-2.31) - -0.001 
(-1.98) - - - - - - 

Local Transportation Network 
Measures             

Walk access time to in-zone 
transit stop - 0.012 

(2.04) - - 0.012 
(2.04) 

0.012 
(2.04) - - - - - - 

No. of zones accessible by bike 
within 6 miles - - - - -0.010 

(-4.58) - - - - - -0.006 
(-3.88) - 

Presence of old vehicles (same 
type) - 0.110 

(1.40) 
0.110 
(1.40) - -0.404 

(-2.66) 
-0.404 
(-2.66) - - - - - - 

Logsum parameter 1.000 1.000 1.000 1.000 1.000 1.000 - - - - - - 

Scale parameter - - - - - - 0.848 
(30.99) 

0.743 
(33.13) 

1.047 
(19.37) 

0.803 
(22.99) 

1.114 
(24.40) 

0.765 
(22.46) 
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Table 2. Impact of Increase in Fuel Price from $2.55 to $5.00 per Gallon (96% Increase in Fuel Cost) 

 

Independent Model Joint Model (with Gaussian Copulas) Joint Model (with Frank Copulas) 

% change in 
holdings of vehicle 

type 

% change in 
overall use of 
vehicle type 

% change in 
holdings of vehicle 

type 

% change in 
overall use of 
vehicle type 

% change in 
holdings of vehicle 

type 

% change in 
overall use of 
vehicle type 

Compact Sedan   1.21   1.21   1.35   1.73   1.25   0.98 

Large Sedan   0.27   0.27   0.35   0.43   0.28   0.23 

Coupe   0.28   0.28   0.37   0.58   0.30   0.26 

SUV -1.56 -1.56 -1.56 -2.14 -1.57 -1.33 

Pickup Truck -1.04 -1.04 -1.07 -1.54 -1.04 -0.82 

Van -0.85 -0.85 -0.87 -0.87 -0.88 -0.80 

Total - -0.11 - -0.15 - -0.13 

 


