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Abstract 

The nested logit model has been used extensively to model multi-dimensional choice situations. A 

drawback of the nested logit model is that it does not allow choice alternatives to share common 

unobserved attributes along all the dimensions characterizing the multi-dimensional choice context. 

This paper formulates a mixed multinomial logit structure that accommodates unobserved 

correlation across both dimensions in a two-dimensional choice context. The mixed multinomial 

logit structure is parsimonious in the number of parameters to be estimated and is also relatively 

easy to estimate using simulation methods. The mixed multinomial logit model is applied to an 

analysis of travel mode and departure time choice for home-based social-recreational trips using data 

drawn from the 1990 San Francisco Bay Area household survey. The empirical results underscore 

the need to capture unobserved attributes along both the mode and departure time dimensions, both 

for improved data fit as well as for more realistic policy evaluations of transportation control 

measures. 

 

Keywords: Nested logit model, error-components logit, mixed multinomial logit, simulation 

estimation technique, nonwork trip modeling, travel mode choice modeling, 

departure time analysis.   
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1.  Introduction 
Many discrete choice contexts are characterized by alternatives which represent a combination of 

two or more underlying choice dimensions. Examples of such multi-dimensional choice situations 

include (to list a few) purchase incidence and brand choice in marketing (Bucklin and Gupta, 1992), 

auto ownership and work travel mode choice in transportation (Train, 1980, and Koppelman and 

Pas, 1986), residential location and workplace choice in geography (Waddell, 1993 and Evers, 

1990), and dwelling type and residential location choice in urban economics (Fischer and Aufhauser, 

1988).  

The need to jointly analyze the dimensions characterizing a multi-dimensional choice 

situation arises from three considerations. First, the feasible choice set for a decision-making agent 

may be determined by a combination of the underlying choice dimensions. Second, there may be 

important observed determinants of choice which are associated with the combination of the 

underlying dimensions. Third, some of the joint choice alternatives may share unobserved attributes, 

leading to different patterns of substitution among different pairs of alternatives.  

The model structure used to analyze multi-dimensional choice depends, to a large extent, on 

the assumptions made regarding shared unobserved attributes. The multinomial logit (MNL) 

structure assumes the absence of any common unobserved attributes among the utilities of the joint 

choice alternatives. This assumption results in the Independence from Irrelevant Alternatives (IIA) 

property, which is untenable in most multidimensional choice contexts (and, at the least, should be 

empirically tested; see Stopher et al., 1981).  

The nested logit (NL) model (Daly and Zachary, 1979; McFadden, 1978) generalizes the 

MNL model. It has a closed-form mathematical structure and is relatively easy to estimate. The 

drawback of the NL model is that it imposes the rather unrealistic restriction that shared unobserved 

attributes can be associated with only one or the other (as opposed to both) choice dimensions (in the 

rest of this paper, we will restrict the presentation and discussion to a two-dimensional choice setting 

since most applications of multi-dimensional discrete choice models are confined to two 

dimensions). For example, in a joint travel mode and departure time context, it is likely that there 

will be unobserved factors (such as comfort and privacy) common to joint choice alternatives 

sharing the same travel mode as well as unobserved factors (such as personal scheduling 

preferences) common to joint choice alternatives sharing the same departure time. However, the NL 
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model would allow shared unobserved attributes along the mode dimension only or along the 

departure time dimension only. 

The multinomial probit (MNP) structure allows a flexible structure for the covariance among 

the unobserved attributes of the alternatives. Consequently, it allows a flexible substitution pattern 

among the joint choice alternatives. Unfortunately, in most choice contexts, the increase in 

flexibility of the MNP structure comes at the expense of evaluating very high dimensional 

multivariate normal integrals for the choice probabilities. Methodological developments in the past 

few years suggest approximating the high-dimensional integral with smooth, unbiased and efficient 

simulators which provide strictly positive values for the choice probabilities. A simulator that 

satisfies all these properties is one that combines accept/reject simulation techniques with a logit 

kernel (Ben-Akiva and Bolduc, 1996). The traditional accept/reject simulator is constructed for the 

MNP structure (or for any random utility structure) by (a) drawing values for the random terms from 

the multivariate normal distribution (or from the appropriate distribution for any random utility 

model); (b) calculating the resulting utility of each alternative and identifying the one with the 

highest utility; (c) repeating steps (a) and (b) several times, and (d) computing a simulated 

probability for each alternative as the proportion of draws for which that alternative had the highest 

utility. Such a simulator is unbiased, but not smooth (with respect to model parameters) and does not 

guarantee strictly positive choice probabilities for a finite number of draws (i.e., the simulated 

probability for an alternative may be zero if it is never the one with the highest utility in any of the 

draws). The use of a logit kernel replaces the deterministic 0-1 assignment for each alternative in 

each draw by a logit formula that takes the utility values as its arguments. The resulting choice 

probability simulator is smooth and strictly positive. The use of the logit kernel accept/reject 

simulator is equivalent to the addition of a Gumbel error term (distributed identically and 

independently across alternatives) to the utility of each alternative. Of course, the addition of such an 

error term changes the structure of the model. But, as indicated formally by McFadden and Train 

(1997) and more intuitively by Train (1997a), the addition of such a gumbel term is innocuous and 

does not change utility relationships. In fact, the model with the additional gumbel error term can be 

made to approximate the model without the gumbel term to any desired degree of closeness.  

Another impediment to the use of a MNP is the large number of parameters to be estimated if 

one allows a completely free covariance matrix (subject to certain identification considerations). The 

large number of covariance parameters generates a number of conceptual, statistical and practical 
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problems, including difficulty in interpretation, highly non-intuitive model behavior, and low 

precision of covariance parameter estimates (see Horowitz, 1991 for a discussion). An approach to 

alleviate the situation is to impose constraints on the covariance matrix, so the number of parameters 

is reduced while still providing sufficiently realistic substitution patterns among the alternatives for 

the choice situation under consideration. There are two ways of imposing such constraints. One 

approach is to impose them directly on the MNP covariance matrix. The second is to use an error-

components approach that induces the required correlations over alternatives along with the 

inclusion of an IID gumbel term. In the first approach, the dimensionality of the integral in the 

choice probabilities is on the order of J-1, J being the number of alternatives. In the second 

approach, the dimensionality is equal to the number of error components. When the number of 

alternatives is large, as is the case in many choice contexts, the number of error components will be 

smaller than the number of alternatives. Thus, there can be substantial gains in simulator efficiency 

and estimation cost if one uses the error-components approach (see also Brownstone and Train, 1996 

for an application that shows that the error-components approach with the gumbel IID error term can 

approximate MNP probabilities considerably more accurately than direct MNP simulators, given a 

specified amount of computer time).  

In the error-components approach with the IID gumbel term, the choice probabilities of the 

alternatives conditional on the error-components takes the familiar multinomial logit form. The 

unconditional choice probabilities are obtained by integrating the multinomial logit form over the 

distribution of the random parameters in the error-components. For this reason, the error-

components approach can be viewed as a “mixed multinomial logit” (MMNL) structure where the 

(unconditional) choice probability is a mixture of a logit form with the specified distribution of the 

random parameters. It is instructive to note here that a random-coefficients specification within a 

multinomial logit formulation also leads to the mixed multinomial logit structure (Revelt and Train, 

1998; Train, 1997b; Bhat, 1996a, 1997a; and Mehndiratti, 1996 for random-coefficients logit 

applications). Thus, a mixed MNL structure may be generated from an intrinsic motivation to allow 

flexible substitution patterns across alternatives (error-components) or from a need to accommodate 

unobserved heterogeneity across individuals in their sensitivity to observed exogenous variables 

(random-coefficients). 

In this paper, we will use the term “mixed logit” recognizing that this structure is motivated 

by a need to allow a flexible substitution pattern across alternatives. Specifically, we present a mixed 
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MNL model formulation that accommodates shared unobserved attributes along both dimensions in 

a two-dimensional choice situation. The particular form of the error-components structure used in 

this study has not been applied previously in the mixed logit literature and should be useful in 

several other choice contexts in addition to the one in the current paper. 

The rest of this paper is organized as follows. The next section develops the model 

formulation. Section 3 discusses the estimation procedure. Section 4 presents the empirical results 

obtained from applying the model to travel mode and departure time choice for home-based social-

recreational trips. The final section provides a summary of the research findings and identifies 

possible extensions of the current research.  

 

2.  Model Formulation 
We will develop the model formulation in the context of a joint model of travel mode and departure 

time choice. For simplicity in presentation, we will assume that all individuals have all alternatives 

available to them. Extension of the formulation to the case where some individuals have only a 

subset of alternatives available is straightforward.   

Assume M travel modes and T departure time periods in the choice set (the departure time 

choice is represented by several temporally contiguous discrete time periods which collectively span 

the entire day). Let the utility  that an individual associates with the mode-departure time 

alternative {m,t} be the sum of a deterministic component  (that depends on observed attributes 

of the alternative and the individual) and a random component 

mtU

mtV

mttmmt wz εηµζ +′+′=  (we develop 

the model structure at the individual level and so do not use an index for individuals).  is a row 

vector of dummy variables (of dimension M), each row being associated with a travel mode m

mz

′  

. If m = m , the corresponding row has a value of one; otherwise, the value is 0. ),...,...,2,1( Mmm =′ ′

µ  is a random row vector (of dimension M) with zero mean, whose elements are assumed to be 

independent of each other and normally distributed. The variance matrix of )( Σ=µ  is diagonal with 

the parameter  in the m th row.  2
m′σ ′ η  and  are row vectors of dimension T defined in a manner 

similar to 

tw

µ  and , respectively, but in the context of departure times. The variance matrix of mz

)( Ω=η  is diagonal with the parameter  in the 2
t ′δ t′ th row. The random vectors µ  and η  are 
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assumed to be mutually independent, and independent of mtε . The mtε  terms are assumed to be 

independent and identically standard Gumbel distributed (across alternatives). 

The error components specification adopted for the composite error term mtζ  generates a 

covariance across alternatives with the same mode  and also a 

covariance across alternatives with the same departure time . If we 

impose the restriction that  for all m and  for all t, we obtain the MNL structure. If we 

impose the restriction that  for all m, but  for all t, we obtain an analog to the nested 

NL model with shared unobserved attributes along the departure time dimension. On the other hand, 

if we impose the restriction that  for all m, but  for all t, we obtain an analog of the NL 

model that allows shared unobserved attributes along only the mode dimension. 

)  ;},(Cov{ *2
* ttUU mmtmt ≠=σ

)  ;},(Cov{ *2
* mmUU ttmmt ≠= δ

02 =mσ 02 =tδ

02 =mσ 02 ≠tδ

02 ≠mσ 02 =tδ

For given values of µ  and η  in the MMNL model, we get the familiar MNL form for the 

probability of choosing alternative mt (McFadden, 1973): 

 

)exp(
)exp()(

),(
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 w + z  + V    , | P
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=
∑

                                    (1) 

 
The unconditional probability of choosing alternative mt can now be obtained by integrating the 

conditional multinomial choice probabilities in equation (1) with respect to the assumed normal (and 

independent) distributions for the vectors µ  and η .: 

 

   f f 
w  + z  + V  

w  + z  + V      = P
tmtm

d ,m

tmmt
+

=

+

=
mt

****

**

ηµηµ
ηµ

ηµ

ηµ

dd)()(
)exp(

)exp(

)(
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

′′
′′

∑∫∫
∞

−∞

∞

−∞

          (2) 

 
Note that µ  and η  are vectors with M and T (independent and identically distributed) elements, 

respectively. Thus, the expression in equation (2) involves a (M+T)-dimensional integral. 
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3.  Model Estimation 
We assume a linear-in-parameters specification for the systematic utility of each joint choice 

alternative given by qmtqmt XV β ′=  for the individual q and alternative mt (we introduce the index for 

individuals in the following presentation since the purpose of the estimation is to obtain the model 

parameters by maximizing the likelihood function over all individuals in the sample). The composite 

random error term for the qth individual is given by qmttqmqqmt wz εηµζ +′+′= . We assume that  qµ , 

qη , and qmtε  are each independently and identically distributed across individuals: ),0(~ ΣNqµ , 

),0(~ ΩNqη , and )1,0(~ Gqmtε . The parameters to be estimated in the MMNL model are the 

parameter vector β , the diagonal variance matrix Σ  (that is, the parameters mσ  for each m), and the 

diagonal variance matrix  (that is, the parameters Ω tδ  for each t). Now define  and  as 

standard-normal row vectors of dimension M and T, respectively, so that  and 

.  Also, let  and  represent row vectors obtained by picking off the diagonal 

entries of   and , respectively. Then, the log-likelihood function for a given value of the 

parameter vector  takes the form shown below: 

qs qu

qqs µ2/1−Σ=

qqu η2/1−Ω= ][ 2/1Σ ][ 2/1Ω

2/1Σ 2/1Ω

)][,][,( 2/12/1 ′′Ω′Σ′= βθ
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where  is the choice set of alternatives available to the qth individual, qC (.)φ  represents the standard 
normal density function, and 
 

⎪
⎩

⎪
⎨

⎧

. otherwise     0 
 

,  ealternativ chooses individualth  the if    1 mtq  
 = yqmt                                   (4) 

 
The log-likelihood function for the estimation of the parameters (equation 3) involves a M+T-

dimensional integral, which cannot be evaluated analytically since it does not have a closed-form 

solution. Further, conventional quadrature techniques cannot be used to compute the integrals with 
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sufficient precision and speed for estimation via maximum likelihood, since the dimension of 

integration exceeds two (Revelt and Train, 1998; Hajivassiliou and Ruud, 1994). 

We apply simulation techniques to approximate the choice probabilities in the log-likelihood 

function of equation (3) and maximize the resulting simulated log-likelihood function. The use of 

simulation techniques to evaluate multi-dimensional integrals has received substantial attention in 

recent years. Our implementation of simulation methods to estimate the mixed multinomial logit 

model takes the same form as the procedure adopted by Revelt and Train (1998) and Bhat (1996a, 

1997a). The simulation technique approximates the choice probabilities by computing the integrand 

in equation (3) at randomly chosen values for each  vector and for each  vector. Since the 

elements within the vectors  and  are independent of each other and independent across 

individuals, and also because the vectors  and  are themselves independent (by assumption), we 

generate a matrix w of standard normal random numbers with Q*(M+T) elements (one element for 

each individual-travel mode combination and one element for each individual-departure time 

combination) and compute the corresponding choice probabilities for a given value of the parameter 

vector 

qs qu

qs qu

qs qu

θ . We then repeat this process R times for the given value of the parameter vector θ . Let 

)(~ θr
qmtP  be the realization of the choice probability in the rth draw (r = 1,2,..., R). The choice 

probabilities are then approximated by averaging over the )(~ θr
qmtP  values: 

 

 ,P    R = P r
qmt

R

 = r
qmt )(~1)(~

1

θθ ∑             (5) 

 
where )(~ θqmtP  is the simulated choice probability of the qth individual choosing alternative mt given 

the parameter vector θ . )(~ θqmtP  is an unbiased estimator of the actual probability . Its 

variance decreases as R increases. It also has the appealing properties of being smooth (i.e., twice 

differentiable) and being strictly positive for any realization of the finite R draws.  The former 

property is important since it implies that conventional gradient-based optimization methods can be 

used in the maximization of the simulated log-likelihood function. The latter property ensures that 

the simulated log-likelihood function (which involves the logarithm of the choice probabilities) is 

always defined. 

)(θqmtP
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The simulated log-likelihood function is constructed as: 

 

S‹  (6)  [ )(~ log)(
1

θθ qmtqmt
C  tm,

Q

 = q

P y    = 
q

∑∑
∈

]
 
The parameter vector θ  is estimated as the vector value that maximizes the above simulated 

function. Under rather weak regularity conditions, the maximum simulated log-likelihood (MSL) 

estimator is consistent, asymptotically efficient, and asymptotically normal (see Hajivassiliou and 

Ruud, 1994 and Lee, 1992). However, the MSL estimator will generally be a biased simulation of 

the maximum log-likelihood (ML) estimator because of the logarithmic transformation of the choice 

probabilities in the log-likelihood function. The bias of the MSL estimator decreases with the 

variance of the probability simulator; that is, it decreases as the number of repetitions increase. 

Brownstone and Train (1996) have shown the bias to be rather negligible with 250 repetitions in the 

context of the MMNL model. In the current paper, we use 500 repetitions for accurate simulations of 

the choice probabilities and to reduce simulation variance of the MSL estimator. 

All estimations and computations were carried out using the GAUSS programming language 

on a pentium personal computer.  Gradients of the simulated log-likelihood function with respect to 

the parameters were coded. 

 

4.  Application to Travel Mode and Departure Time Choice 

 
4.1.  Background 

Mode choice and departure time choice are important components of a traveler's decision regarding 

trip-making. At an aggregate level, these choices determine the number and temporal pattern of 

vehicle trips on urban roadways. From a policy standpoint, the recent Intermodal Surface 

Transportation Efficiency Act (ISTEA) and the Clean Air Act Legislations (CAAAs) require that 

travel demand models be able to evaluate a variety of transportation control measures (TCMs) such 

as peak-period pricing, congestion-pricing, restrictions on use of single occupancy vehicle (SOV) 

during certain time periods, and ride-sharing and transit-use incentives (Stopher, 1993; Weiner and 

Ducca, 1996). These TCMs may have an impact on travel mode, or departure time choice, or both. 

Consequently, understanding the factors that affect travelers' mode and departure time is a necessary 
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prerequisite to examining the potential effectiveness of policy measures aimed at alleviating traffic 

congestion and reducing mobile source emissions.  

Previous research on trip mode choice, and the very limited research on trip departure time 

choice, has primarily focused on the work trip (see Bhat, 1997a; Horowitz, 1993; Ben-Akiva and 

Lerman, 1985; Swait and Ben-Akiva, 1987; and Train, 1980 for work mode choice modeling and 

Abkowitz, 1981; Mannering, 1989; Chin, 1990; Hendrickson and Plank, 1984; Mahmassani and Jou, 

1996; and Small, 1982 for work departure time choice modeling). However, nonwork travel 

accounts for about three-fourths of the total trips in urban areas and projections suggest that this 

proportion is only likely to increase as suburbanization and lifestyle changes impact individuals' 

travel behavior (for a detailed discussion, see Lockwood and Demetsky, 1994). Further, in the 

context of departure time choice, nonwork trips offer a more interesting challenge than work trips. 

Most individuals do not have much flexibility in changing their work departure time because of the 

relatively rigid nature of work schedules; on the other hand, individuals are likely to have 

considerably more departure time flexibility for nonwork trips. The above reasons motivate our 

focus on nonwork trips; specifically, we direct our attention to home-based social-recreational 

(HBSR) trips in this paper. 

 

4.2.  Data Source and Model Specification 

The data for the study are drawn from the San Francisco Bay Area Household Travel Survey 

conducted by the Metropolitan Transportation Commission (MTC) in the Spring and Fall of 1990 

(see White and Company, Inc., 1991 for details of survey sampling and administration procedures). 

This survey included a single-weekday travel diary of households, and it is this single-day sample 

that is used here. In addition to the travel diary, detailed individual and household socio-

demographic information was also collected in the survey.   

The modal alternatives include drive alone, shared-ride, and transit. The departure time 

choice is represented by six time-periods: early morning (12:01-7 a.m.), a.m. peak (7:01-9 a.m.), 

a.m. offpeak (9:01 a.m.-12 noon), p.m. offpeak (12:01-3 p.m.), p.m. peak (3:01-6 p.m.), and evening 

(6:01 p.m.-12 midnight). For some individual trips, modal availability is a function of time-of-day 

(for example, transit mode may be available only during the a.m. and p.m. peak periods). Such 

temporal variations in modal availability are accommodated by defining the feasible set of joint 

choice alternatives for each individual trip.  
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Level of service data were generated for each zonal pair in the study area and by five time 

periods: early morning, a.m. peak, mid-day, p.m. peak, and evening.1 The mid-day impedances were 

applied to both the a.m. offpeak and p.m. offpeak periods. The impedance data were appropriately 

appended to the home-based trips based on the origin-destination of trips. 

The sample used in this paper comprises 3000 home-based social-recreational person-trips 

obtained from the overall single-day travel diary sample. The mode choice shares in the sample are 

as follows: drive alone (45.7%), shared-ride (51.9%) and transit (2.4%). The departure time 

distribution of home-based social-recreational trips in the sample is as follows: Early morning 

(4.6%), a.m. peak (5.5%), a.m. offpeak (10.3%), p.m. offpeak (17.2%), p.m. peak (16.1%), and 

evening (46.3%).  

Four sets of variables were used in the model specification: (a) alternative specific constants, 

(b) individual/household socio-demographics; (c) trip destination attributes, and (d) level-of-service 

variables. We arrived at the final specification based on a systematic process of eliminating variables 

found to be statistically insignificant in previous specifications and combining variables found not to 

have statistically different effects on the joint mode-departure time utilities. The sociodemographic 

variables influencing mode/departure time choice in the final specification included employment 

status (whether employed or not), age, an elderly flag indicator (whether above 65 yr or not), sex, a 

flag variable indicating presence of children (less than 16 yr) in the individual's household, income 

of individual's household, and the ratio of the number of vehicles to adults in the individual's 

household. The trip destination attributes included a San Francisco downtown destination indicator 

that identified whether a trip terminated in the San Francisco downtown area, and a Central Business 

District (CBD) destination flag that indicated whether a trip terminated in a CBD.2 Three level-of-

service variables were used in the current analysis: travel cost, total travel time, and out-of-vehicle 

travel time over trip distance. 

                     
1 The Metropolitan Transportation Commission in Oakland provided zone-to-zone level-of-service data by travel mode 
for two time periods of the day: AM peak and mid-day. We applied mode-specific factors to the AM peak and mid-day 
level-of-service data to obtain the level-of-service measures for the other time periods of the day. The factors were 
developed based on information extracted from the household travel survey. For a detailed discussion of the procedure, 
see Bhat (1997b). 
2 The CBD districts include the San Francisco superdistricts (except the downtown superdistrict which has an extremely 
high employment density and is identified separately) and the superdistricts of San Jose and Oakland. The superdistrict 
classification is based on a 34 system categorization developed by the Metropolitan Transportation Commission. 
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4.3.  Empirical Results 

We estimated four different models of mode-departure time choice: (1) the (MNL) model; (2) the 

MMNL model which accommodates shared unobserved random utility attributes along the departure 

time dimension only (we will refer to this model as the MMNL-T model); (3) the MMNL model 

which accommodates shared unobserved random utility attributes along the mode dimension only 

(we will refer to this model as the MMNL-M model); and (4) the proposed MMNL model which 

accommodates shared unobserved attributes along both the dimensions of mode and departure time 

(we will refer to this model as the MMNL-MT model). In the MMNL models, we allowed the 

sensitivity among joint choice alternatives sharing the same mode (departure time) to vary across 

modes (departure times). It is useful to note that such a specification generates heteroscedasticity in 

the random error terms across the joint choice alternatives. In the MMNL-T and MMNL-MT 

models, we found statistically insignificant shared unobserved components specific to the morning 

departure times (i.e., early morning, a.m. peak, and a.m. offpeak periods). Consequently, the 

MMNL-T and MMNL-MT model results presented here restrict these components to zero.   

The level-of-service parameter estimates, implied money values of travel time, data fit 

measures, and the variance parameters in ][Σ  and ][Ω  from the different models are presented in 

Table 1 (other parameter estimates are presented in section 4.5). The signs of the level-of-service 

parameters are consistent with a priori expectations in all the models. Also, as expected, travelers 

are more sensitive to out-of-vehicle travel time than in-vehicle travel time. A comparison of the 

magnitudes of the level-of-service parameter estimates across the four specifications reveals a 

progressively increasing magnitude as we move from the MNL model to the MMNL-MT model 

(this is an expected result since the variance before scaling is larger in the MNL model compared to 

the mixture models, and in the MMNL-M and MMNL-T models compared to the MMNL-MT 

model; see Revelt and Train, 1997 for a similar result). The implied money values of in-vehicle and 

out-of-vehicle travel times are lesser in the MMNL models relative to the MNL model. 

The four alternative models in Table 1 can be evaluated formally using conventional 

likelihood ratio tests. A statistical comparison of the MNL model with any of the mixture models 

leads to the rejection of the MNL. Further likelihood ratio tests among the MMNL-M, MMNL-T, 

and MMNL-MT models result in the clear rejection of the hypothesis that there are shared 

unobserved attributes along only one dimension; that is, the tests indicate the presence of statistically 

significant shared unobserved components along both the mode and departure time dimensions (the 
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likelihood ratio test statistic in the comparison of the MMNL-T model with the MMNL-MT model is 

14.2; the corresponding value in the comparison of the MMNL-M model with the MMNL-MT 

model is 23.8; both these values are larger than the chi-squared distribution with three degrees of 

freedom at any reasonable level of significance). Thus, the MNL, MMNL-T, and MMNL-M models 

are mis-specified. 

The variance parameters provide important insights regarding the sensitivity of joint choice 

alternatives sharing the same mode and departure time. The variance parameters specific to 

departure times (in the MMNL-T and MMNL-MT models) show statistically significant shared 

unobserved attributes associated with the afternoon/evening departure periods. However, as 

indicated earlier, we did not find statistically significant shared unobserved components specific to 

the morning departure times (i.e., early morning, a.m. peak, and a.m. offpeak periods). The 

implication is that home-based social-recreational trips pursued in the morning are more flexible and 

more easily moved to other times of the day than trips pursued later in the day. Social-recreational 

activities pursued later in the day may be more rigid because of scheduling considerations among 

household members and/or because of the inherent temporal "fixity" of late-evening activities (such 

as attending a concert or a social dinner). The magnitude of the departure time variance parameters 

reveal that late evening activities are most rigid, followed by activities pursued during the p.m. 

offpeak hours. The p.m. peak social-recreational activities are more flexible relative to the p.m. 

offpeak and late-evening activities. The variance parameters specific to the travel modes (in the 

MMNL-M and MMNL-MT models) confirm the presence of common unobserved attributes among 

joint choice alternatives that share the same mode; thus, individuals tend to maintain their current 

travel mode when confronted with transportation control measures such as ridesharing incentives 

and auto-use disincentives. This is particularly so for individuals who rideshare, as can be observed 

from the higher variance associated with the shared-ride mode relative to the other two modes. In the 

context of home-based social-recreational trips, most ridesharing arrangements correspond to travel 

with children and/or other family members; it is unlikely that these ridesharing arrangements will be 

terminated after implementation of transportation control measures such as transit-use incentives. 

The different variance structures among the four models imply different patterns of inter-

alternative competition. To demonstrate the differences, Table 2 presents the disaggregate self- and 

cross-elasticities (for a person-trip in the sample with close-to-average modal level-of-service 

values) in response to peak period pricing implemented in the p.m. peak (i.e., a cost increase in the 
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“drive alone-p.m. peak” alternative). We group all morning time periods together in the Table since 

the cross-elasticities for these time periods are the same for each mode (due to the absence of shared 

unobserved attributes specific to the morning time periods). 

The MNL model exhibits the familiar Independence from Irrelevant Alternatives (IIA) 

property (that is, all cross-elasticities are equal). The MMNL-T model shows equal cross-elasticities 

for each time period across modes, a reflection of not allowing shared unobserved attributes along 

the modal dimension. However, there are differences across time periods for each mode. First, the 

shift to the shared ride-p.m. peak and transit-p.m. peak is more than to the other non-p.m. peak joint 

choice alternatives. This is, of course, because of the increased sensitivity among p.m.-peak joint 

choice alternatives generated by the error variance term specific to the p.m. peak period. Second, the 

shift to the evening-period alternatives are lower compared to the shift to the p.m. offpeak period 

alternatives for each mode. This result is related to the heteroscedasticity in the shared unobserved 

random components across time periods. The variance parameter in Table 1 associated with the 

evening period is higher than that associated with the p.m. offpeak period; consequently, there is less 

shift to the evening alternatives (see Bhat, 1995 for a detailed discussion of the inverse relationship 

between cross-elasticities and the variance of alternatives). The MMNL-M model shows, as 

expected, a heightened sensitivity of drive alone alternatives (relative to the shared-ride and transit 

alternatives) in response to a cost increase in the DA-p.m. peak alternative. The higher variance of 

the unobserved attributes specific to shared-ride (relative to transit; see Table 1) results in the lower 

cross-elasticity of the shared-ride alternatives compared to the transit alternatives. The MMNL-MT 

model shows higher cross-elasticities for the drive alone alternatives as well as for the non-drive 

alone p.m. peak period alternatives since it allows shared-unobserved attributes along both the mode 

and time dimensions. 

The drive-alone p.m. peak period self-elasticities in Table 2 are also quite different across the 

models. The self-elasticity is lower in the MMNL-T model relative to the MNL mode. The MMNL-

T model recognizes the presence of temporal rigidity in social-recreational activities pursued in the 

p.m. peak. This is reflected in the lower self-elasticity effect of the MMNL-T model. The self-

elasticity value from the MMNL-M model is larger than that from the MMNL-T model. This is 

because individuals are likely to maintain their current travel mode (even if it means shifting 

departure times) in the face of transportation control measures. But the MMNL-T model 

accommodates only the rigidity effect in departure time, not in travel mode. As a consequence, the 
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rigidity in mode choice is manifested (inappropriately) in the MMNL-T model as a low drive alone 

p.m.-peak self-elasticity effect. Finally, the self-elasticity value from the MMNL-MT model is lower 

than the value from the MMNL-M models. The MMNL-M model ignores the rigidity in departure 

time; when we include this effect in the MMNL-MT model, the result is a depressed self-elasticity 

effect.  

 

4.4.  Substantive Policy Implications 

The substitution structures among the four models imply different patterns of competition among the 

joint mode-departure time alternatives. We now turn to the aggregate self- and cross-elasticities to 

examine the substantive implications of the different competition structures for the level-of-service 

variables. To limit the discussion, we focus only on the travel cost elasticities for the drive alone and 

transit joint choice alternatives in response to a congestion pricing policy implemented in the p.m. 

peak. 

Table 3 provides the cost elasticities obtained from the various models. The aggregate cost 

elasticities reflect the same general pattern as the disaggregate elasticities discussed earlier. Some 

important policy-relevant observations that can be made from the aggregate elasticities are as 

follows. The DA-p.m. peak self-elasticities show that the MNL and MMNL-T models under-

estimate the decrease in peak period congestion due to peak-period pricing, while the MMNL-M 

model over-estimates the decrease. Thus, using the DA-p.m. peak cost self-elasticities from the 

MNL and MNL-T models will make a policy analyst much more conservative than (s)he should be 

in pursuing peak-period pricing strategies. On the other hand, using the DA-p.m. peak cost self-

elasticity from the MMNL-M model provides an overly-optimistic projection of the congestion 

alleviation due to peak period pricing. From a transit standpoint, the MNL and MMNL-T under-

estimate the increase in transit share across all time periods due to p.m. peak period pricing. Thus, 

using these models will result in lower projections of the increase in transit ridership and transit 

revenue due to a peak period pricing policy. The MMNL-M model under-estimates the projected 

increase in transit share in all the non-evening time periods, and over-estimates the increase in transit 

share for the evening time period. Thus, the MNL, MMNL-T, and MMNL-M models are likely to 

lead to inappropriate conclusions regarding the necessary changes in transit provision to complement 

peak-period pricing strategies. 
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4.5.  Detailed MMNL-MT Model Results 

In this section, we present and discuss the parameter estimation results from the MMNL-MT model 

(see Table 4). We do not present the alternative-specific constant values due to space constraints. We 

also do not discuss the effect of level-of-service variables or the correlation parameters, since these 

have been presented earlier in Table 1.  

Among the socio-demographic variables, we observe that employed individuals tend to 

participate in home-based social-recreational (HBSR) activities primarily during the evening period. 

Employed individuals are particularly unlikely to pursue HBSR activities during the a.m. offpeak 

and p.m. offpeak periods since they would be at work during these times. The effect of employment 

on mode choice indicates that employed individuals are more likely to use the drive alone mode for 

HBSR trips than unemployed individuals. Age has a negative effect on making HBSR trips in the 

evening; in addition, individuals over 65 yr (the “elderly”) are most likely to pursue HBSR activities 

during the mid-day. These results suggest that older individuals tend to stay away from pursuing 

HBSR activities in the early and late parts of the day and also from the peak hours (possibly due to 

perceived safety/security considerations). The effect of sex on mode use suggests that women are 

more predisposed toward ridesharing arrangements than men. Individuals in households with young 

children have to work around the biological needs and sleeping schedules of the children, which 

make it difficult for them to pursue out-of-home activities in the early and late parts of the day (see 

Bhat and Koppelman, 1993). The negative effect of presence of children on early morning and 

evening departures from our analysis appears to confirm this. The strong positive effect of presence 

of children on use of the shared-ride mode is simply a reflection of adults traveling with their 

children to participate in social-recreational activities. The effects of income and the ratio of vehicles 

to adults in the household on departure time choice and mode choice, respectively, are also quite 

reasonable.   

The impact of the trip destination attributes on mode choice indicates that individuals who 

travel to the San Francisco downtown area or other CBDs are very likely to use the transit mode. 

This is to be expected because of the high traffic congestion in these areas and also since these high 

land-use density corridors are likely to be well served by transit. 
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5.  Conclusions and Direction for Future Research 
This paper proposes a mixed multinomial logit (MMNL) structure that is able to capture shared 

unobserved attributes along both dimensions in a two-dimensional choice context. In concept, the 

MMNL model generalizes the nested logit model which allows shared unobserved attributes along 

one or the other dimension (but not both). 

The MMNL model is applied to the estimation of mode-departure time choice for home-

based social-recreational trips using data drawn from the 1990 Bay area household travel survey. We 

estimated four alternative models: the MMNL model allowing unobserved attributes along both the 

mode and departure time dimension (MMNL-MT model), the MMNL model allowing unobserved 

attributes along the time dimension only (MMNL-T model), the MMNL model allowing unobserved 

attributes along the mode dimension only (MMNL-M model), and the commonly used multinomial 

logit (MNL) model. The results indicate that the MMNL-MT model outperforms the other models in 

terms of data fit. We also find that failure to accommodate shared unobserved attributes along both 

the mode and departure time dimensions leads to incorrect conclusions regarding the (disaggregate-

level and aggregate-level) elasticity effects of level-of-service variables. In summary, failure to 

accommodate shared unobserved attributes along both the mode and departure time dimensions can 

lead to inappropriate evaluations of transportation control measures and, consequently, mis-informed 

policy actions. 

Several methodological/empirical extensions of the MMNL model proposed here may be 

considered. First, the extent of covariance (or sensitivity) among alternatives that share the same 

mode and/or same departure time may be specified to be a function of observed (to the analyst) 

individual characteristics (see Brownstone and Train, 1996 and Bhat, 1996b for related models in the 

context of uni-dimensional choice situations). Second, the level-of-service response parameters may 

be parameterized to be functions of observed individual characteristics, while ensuring at the same 

time that the sign on the level-of-service parameters are always in the appropriate direction. Third, 

the level-of-service parameters may be specified to be functions of observed as well as unobserved 

individual characteristics (see Bhat, 1996a for a model that accommodates the second and third 

extensions in a uni-dimensional context). Fourth, the model may be extended to analyze destination 

choice along with mode and departure time choice. The current effort considers mode and departure 

time choice as decisions conditional on destination choice. However, it is likely that all three 
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decisions are made jointly. For example, the spatial non-uniformity in the implementation of policy 

actions such as congestion pricing can lead to changes in choice of destination. 

The extensions identified above are conceptually straight-forward. However, they lead to 

added dimensions of integration for the choice probabilities. Consequently, the increase in 

computation time necessary to achieve a desired level of accuracy can become quite substantial and 

may lead to unacceptably large convergence times in the simulated maximum likelihood estimation. 

It is, therefore, important to explore methods that can increase the accuracy of the logit simulator for 

a given number of simulation replications. 
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Table 1. Level of Service Parameters, Implied Money Values of Travel Time, Data Fit Measures,  
and Error Variance Parameters 

 
Attributes/data fit measures MNL model MMNL-T model MMNL-M model MMNL-MT model 

Level of service1     

Travel cost (in cents) -0.0031 (-3.13) -0.0036 (-3.02) -0.0044 (-2.88) -0.0045 (-2.83) 

Total travel time (in mins.) -0.0319 (-3.15) -0.0336 (-2.87) -0.0382 (-3.22) -0.0408 (-3.33) 

Out-of-vehicle time/distance -0.2363 (-3.42) -0.2429 (-4.82) -0.2508 (-4.19) -0.2589 (-4.26) 

Implied money values of time ($/hr)     

In-vehicle travel time 6.17 5.60 5.21 5.44 

Out-of-vehicle travel time2 13.66    12.23 10.80 11.09

LL at Convergence3 -6393.6    -6382.9 -6387.7 -6375.8

Error variance parameters     
δpm offpeak -    0.8911 (2.76) - 0.9715 (2.96)
δpm peak -    0.7418 (2.83) - 0.3944 (1.88)
δevening -    1.9771 (2.70) - 1.6421 (3.02)
σdrive alone -  0.6352 (1.91) 0.5891 (1.98) 
σshared ride -  1.9464 (3.06) 1.9581 (3.20) 
σtransit -  0.7657 (1.73) 0.7926 (2.07) 

                     
1 The entries in the different columns correspond to the parameter values and their t-statistics (in parenthesis). 

2 Money value of out-of-vehicle time is computed at the mean travel distance of 6.11 miles. 

3 The LL (Log-Likelihood) at equal shares is -8601.24 and the LL with only alternative specific constants and an IID error covariance matrix is -6812.07  
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Table 2. Disaggregate Travel Cost Elasticities in Response to a Cost Increase in the Drive Alone (DA) Mode during PM Peak 
 
 

Effect on Joint Choice 
Alternative MNL model MMNL-T model MMNL-M model MMNL-MT model 

DA-morning periods1  0.0072  0.0085  0.0141  0.0165 

DA-PM offpeak  0.0072  0.0060  0.0141  0.0131 

DA-PM peak -0.1112 -0.0993 -0.1555 -0.1423 

DA-evening  0.0072  0.0042  0.0141  0.0099 

SR-morning periods1  0.0072  0.0085  0.0059  0.0072 

SR-PM offpeak  0.0072  0.0060  0.0059  0.0055 

SR-PM peak  0.0072  0.0120  0.0059  0.0079 

SR-evening  0.0072  0.0042  0.0059  0.0045 

TR-morning periods1  0.0072  0.0085  0.0119  0.0131 

TR-PM offpeak  0.0072  0.0060  0.0119  0.0106 

TR-PM peak  0.0072  0.0120  0.0119  0.0150 

TR-evening  0.0072  0.0042  0.0119  0.0082 

 
 
 

                     
1 The morning periods include early morning, AM peak, and AM off-peak. The cross-elasticities for the morning periods within each mode with respect to a PM 

peak cost increase in the drive alone mode are the same in the mixture logit models because of the absence of shared unobserved attributes specific to the 
morning time periods.  



23 
 

 
 

 
Table 3. Aggregate Travel Cost Elasticities in Response to a Cost Increase in the Drive Alone (DA) Mode during PM Peak 

 
 

Effect on Joint Choice 
Alternative MNL model MMNL-T model MMNL-M model MMNL-MT model 

Drive alone (DA) alternatives     

Early morning  0.0146  0.0202  0.0290  0.0392 

AM peak  0.0125  0.0166  0.0259  0.0334 

AM offpeak  0.0121  0.0155  0.0250  0.0317 

PM offpeak  0.0123  0.0136  0.0254  0.0265 

PM peak -0.1733 -0.1536 -0.2355 -0.2192 

Evening  0.0146  0.0088  0.0293  0.0204 

Transit (TR) alternatives     

Early morning  0.0197  0.0260  0.0280  0.0371 

AM peak  0.0188  0.0237  0.0283  0.0358 

AM offpeak  0.0163  0.0195  0.0236  0.0291 

PM offpeak  0.0168  0.0175  0.0246  0.0251 

PM peak  0.0218  0.0393  0.0333  0.0485 

Evening  0.0205  0.0120  0.0299  0.0203 
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Table 4. MMNL-MT Model Results 
 

Departure Choice Sub-Model Mode Choice Sub-Model Variables 
Parameter    t-stat. Parameter t-stat.

Socio-demographic Attributes      
Employment status     

Early morning -0.4792 -0.99 - - 
AM peak -1.3739 -2.91 - - 
AM offpeak -1.8546 -4.04 - - 
PM offpeak -1.7450 -3.50 - - 
PM peak -0.6484 -1.45 - - 
Shared ride - -  -0.5776  -3.12 
Transit     - - -1.0630 -2.48

Age (specific to evening departure time) -0.0233 -2.40 - - 
Elderly (specific to AM/PM offpeak)  0.2345  1.57 - - 
Female (specific to shared ride)  -  -  0.6201  2.43 
Presence of children     

Early morning -0.6204 -2.85 - - 
Evening     -0.7569 -3.12 - -
Shared ride - -  1.5016  2.76 

Income (specific to evening departure time)  0.0043  1.87 - - 
No. of vehicles/No. of adults (specific to transit) - - -1.1158 -2.91 

 
Trip Destination Attributes     
San Francisco downtown (specific to transit) - -  3.2144  3.83 
Other CBDs (specific to transit) - -  1.9372  4.11 

 
  


