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ABSTRACT 
This paper investigates the factors shaping dining-out preferences, focusing on the allocation of 
monthly weekday dinner occasions across four key restaurant segments: quick-service restaurants 
(QSRs), coffeehouses (CHs), casual-service restaurants (CSRs), and full-service restaurants 
(FSRs). The paper employs a Multiple Discrete-Count Extreme Value (MDCNTEV) modeling 
approach to analyze the data obtained from an online survey conducted in Texas in 2022. The 
findings reveal the compromises and considerations consumers make when determining their 
dining habits. Model estimation results indicate that frequent restaurant diners are white, affluent, 
single men, own multiple vehicles, and work full-time from a physical workplace location. There 
are also notable differences in those who tend to patronize different restaurant segments. QSRs 
attract younger, non-white, low-income individuals living with roommates, and residing in QSR-
dense areas. CHs primarily draw in younger, non-white, working individuals. CSRs are favored 
by older individuals, single white women, car-less individuals, and residents of high-restaurant-
density areas. FSRs are popular among non-white, high-income individuals. Our findings highlight 
the multifaceted interactions of demographic, socioeconomic, lifestyle, and location factors 
influencing consumer dining behavior, offering valuable insights for the transportation and urban 
planning, public health, and food service sectors. 
 
Keywords: Consumer dining behavior; Teleworking; Built Environment; Multiple Discrete-Count 
Extreme Value model; Count model 
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1. INTRODUCTION 
The past two decades have witnessed a significant shift in public sentiment toward eating out at 
restaurants. Previous research has shown that consumers prefer dining out not only because it is a 
convenient option, but also because it is a social and cultural activity that contributes to the overall 
well-being of individuals. In 2021, households spent 55% of their food budget on meals consumed 
outside of the home, resulting in the restaurant and food service industry earning over $799 billion 
in sales (National Restaurant Association, 2022, U.S. Department of Agriculture, 2021). As the 
restaurant industry continues to grow, and as individual preferences pivot toward more dining out, 
restaurant choices are becoming more sophisticated and complex.  

In today’s market, consumers are presented with a range of restaurant segments, each 
offering distinct attributes, services, and environments that meet varying customer needs and 
expectations. These segments include fast-food restaurants (referred to as quick-service 
restaurants, or QSRs), casual service restaurants (or CSRs), and fine dining restaurants (referred 
to as full-service restaurants, or FSRs). In addition to selecting among the many restaurant 
segments, consumers also have to consider the different channels through which meals can be 
consumed, including in-person dining, in-person pickup, and delivery (see, for example, Dias et 
al., 2020, and Kim and Wang, 2021). Over the past decade, the popularity of pickup and delivery 
channels has increased tremendously due to the development of technology platforms, such as 
Uber Eats, DoorDash, and Grubhub. The COVID-19 pandemic in early 2020 further accelerated 
this growth due to restaurant closures, lockdowns, social distancing measures, and fear of infection 
(Ahuja et al., 2021, Shi and Xu, 2021). 

Despite the decrease in demand for eating out during the height of the pandemic, in-person 
dining has mostly rebounded in the past couple of years to pre-pandemic levels. Extensive data 
collected between February 2020 and December 2022 reveals a sharp decrease in the percentage 
of in-person diners, with the lowest point occurring between April and May of 2020. However, 
this trend began to reverse gradually after the widespread administration of COVID-19 vaccines 
in 2021. Notably, since early 2022, the percentage of in-person diners has consistently matched 
that of 2019, the year preceding the pandemic (OpenTable, 2022). At the same time, Yelp's data 
corresponding to the first quarter of 2022 shows a remarkable 6,360% increase in online searches 
for indoor dining at restaurants compared to 2019 when indoor dining was the norm (Yelp, 2022). 
While Yelp’s data represents consumer online search activity rather than actual dining behavior, 
the desire to eat out is clear. Overall, these industry and consumer statistics highlight the resiliency 
of in-person restaurant dining and further suggest that consumers still value the full restaurant 
experience, including social interaction, ambiance, and table service.  

The renewed intensity of in-person restaurant dining (which we will also refer to as the 
“eat-out” channel in the rest of this paper), while clearly showing movement back toward pre-
pandemic levels, has not been uniform across all restaurant segments. In particular, QSRs have 
recovered back to pre-pandemic level sales, but FSR and CSR sales have yet to fully recover. This 
discrepancy reflects dissimilarities across restaurant segments (Marchesi and McLaughlin, 2022), 
based on the unique experience afforded by each restaurant segment in the cognitive mind space 
of consumers. In this regard, both hedonic and utilitarian motives serve as a foundation to 
determine the overall value of the dining experience (Kim and Chung, 2011, Ryu and Han, 2010, 
Shin et al., 2019). Hedonic motives are pleasure-oriented and relate to the enjoyment derived from 
eating out, while utilitarian motives are function-oriented and associated with the cost, 
convenience, and accessibility of eating out (Kim and Chung, 2011, Ryu and Han, 2010, Shin et 
al., 2019). Of course, the precise boundary between hedonic and utilitarian motives may be blurred 
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in the sense that the motives may be characterized as a continuum in the mental map of consumers. 
In this continuum, QSRs appeal to utilitarian motives for dining out, through their emphasis on 
affordability, efficiency, and productivity rather than necessarily ambiance and other hedonic 
motives (Parsa et al., 2020). Accordingly, QSRs are typically chains that limit their menus to 
specific products that are prepared in a standardized manner to enable quick production (Canziani 
et al., 2016). At the other end of the spectrum, FSRs appeal more to the hedonic motives of 
individuals more so than mainstream utilitarian considerations, through their offering of the 
highest quality of service, ingredients, and atmosphere (Harrington et al., 2011, Canziani et al., 
2016, Parsa et al., 2020). Menus are carefully designed by professional chefs and typically provide 
a large selection of alcoholic drink choices (Parsa et al., 2020, Walker, 2017). The service involves 
highly trained wait staff who are often formally dressed. In return, patrons are expected to maintain 
a certain dress code and cover a high check (Hwang and Ok, 2013, Parsa et al., 2020). Between 
the utilitarian and hedonic ends, lies the appeal of CSRs, which offer full-service dining with 
servers placing and serving the orders of seated diners. CSR prices are moderate and the 
atmosphere is informal, friendly, and laid-back (Hwang and Ok, 2013). Their menus are often 
diverse and include comfort foods, tried and true items, and limited alcohol options (Parsa et al., 
2020, Walker, 2017). This segment includes a vast range of restaurants, such as ethnic, family, and 
midscale casual (Walker, 2017).  

Clearly, each restaurant segment offers a distinct mix of utilitarian and hedonic stimulation 
through associated attributes, as also summarized in Table 1. At the same time, consumers too 
continually shift and adjust their desired mix of utilitarian and hedonic desires. This behavior is 
supported by the theory of “optimal arousal”, which suggests that repeated experiences in similar 
restaurant types can result in diminishing satisfaction due to decreasing marginal utility (Chua et 
al., 2020; Foxall, 1993, Lee et al., 2020). In fact, Jung and Yoon (2012) suggest that even highly 
satisfied customers still exhibit an intention to switch to other restaurants due to a variety-seeking 
orientation. Further, because different individuals will, in general, have different preferences for 
their respective utilitarian and hedonic desires, there will be heterogeneity across individuals in 
the intensity of variety-seeking  (Ha, 2020). Furthermore, variety-seeking behavior persists across 
different financial situations. While some studies suggest decreased variety seeking among 
financially constrained individuals (see Fan et al. 2020), others have found evidence of consumer 
resilience and adaptive strategies. For instance, research has shown that consumers with low 
socioeconomic status who perceive low economic mobility may actually seek more variety as a 
coping mechanism to compensate for their low sense of personal control (see Yoon and Kim, 2018, 
and Hamilton et al., 2019). Overall, consumers patronize a “portfolio” (or bundle) of restaurant 
segments that, over a period of time, provide them optimal utility in their quest for fulfilling both 
utilitarian and hedonic desires. Such variety-seeking behavior also would imply that an exogenous 
variable that increases the choice of one particular segment while pulling away from other 
segments may also have a “push” effect. For example, an increase in the number of fast food 
restaurants in an individual’s residential neighborhood may increase fast food consumption, at the 
expense of consumption at other restaurant segments due to a “pull-based” substitution effect. But, 
because fast food restaurants are typically lower cost than other segments, and because of variety 
seeking, there may be an increase in total eat-out count. That is, a combination of income and 
variety-seeking effects can increase total eat-outs and “push” consumption toward other segments. 
Thus, in this situation, while the consumption of fast food will necessarily increase, the 
consumption of other segments may increase or decrease. 
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Motivated by the preceding discussion, in this paper, we estimate an individual-level 
portfolio choice model of restaurant segments over the period of a month as a function of 
individual/household demographics, employment characteristics, and residential built 
environment (BE) attributes while accommodating variety seeking and the bundled nature of the 
dining-out consumption behavior. Specifically, we develop a multivariate count model that 
produces as output the total monthly weekday dinner eat-out occasions (referred to as “total eat-
outs”) of an individual as well the total eat-outs broken down by restaurant segment. The restaurant 
segments include (1) QSR (including food trucks), (2) coffee houses (CH), (3) CSR, and (4) FSR. 
The CH segment, while not discussed earlier, is considered a fourth segment, given the growing 
popularity of CHs.  

The rest of this paper is structured as follows. The next section provides a brief overview 
of earlier relevant studies and positions the current study. Section 3 discusses the objectives and 
contributions of this research. Sections 4 and 5 present the methodology for the survey data 
collection process and modeling. Section 6 presents the estimation results. Section 7 discusses the 
magnitudes of impacts of variables on the outcomes and discusses policy implications related to 
transportation systems, urban planning, public health, and social equity. The final section 
concludes by summarizing our findings and discussing policy implications. 

  
2. RELEVANT BACKGROUND 
The past two decades have experienced a surge in research dealing with restaurants and eat-out 
activities, though not in the transportation field. DiPietro (2017), Rodríguez-López et al. (2020), 
and Rejeb et al. (2022) have recently conducted comprehensive bibliometric analyses of the related 
published academic research. Through a comprehensive review of the existing literature, we are 
able to group earlier studies into five distinct paths of analysis (A through E), as presented in Figure 
1 and discussed below. 

In general, almost all earlier studies examine factors that influence consumers' perceptions 
of restaurant-specific attributes (such as price, food quality, service quality, menu variety, and 
location in relation to the residential/work office location). Such relationships, which expressly 
consider the effects of consumer characteristics (that is, consider the individual-attribute link 
represented by Path C in Figure 1), and also sometimes control for event type (Path A) and 
restaurant segment (Path B), are estimated (imputed) from the choice of restaurant from a larger 
set of unlabeled restaurant alternatives, each with specific attributes (that is, by using the restaurant 
choice as the endogenous outcome; see bottom of Figure 1). The endogenous outcome itself in the 
studies may be in the form of the last eat-out occasion (see Chua et al. (2020) and Ha and Jang 
(2013)), typical eat-out occasion (see Harrington et al. (2011, 2013) and Olise et al. (2015)), or 
revisit intention when already at a restaurant (see Rajput and Gahfoor (2020), and Ryu and Han 
(2010)). A few studies have also used stated choice experiments, presenting two to three unlabeled 
restaurant alternatives with specified restaurant-specific attributes and asking respondents to pick 
one alternative (see, for example, Jung et al. (2015)).1 Almost all these earlier studies, however, 
either consider (a) all restaurant segment categories together without distinguishing among 

 
1 Some studies in Paths A and B with restaurant choice as the endogenous outcome do not examine individual-level 
heterogeneity in the relative sensitivities across individuals in restaurant attributes. Similarly, there are studies that 
directly ask individuals to rank the importance of attributes they consider in making their restaurant choice, but do not 
consider heterogeneity in attribute selection/priority across individuals (that is, these studies ignore Path C -- the 
individual-attribute link; see, for example, Jang and Namkung, 2009 and Chua et al., 2020). We do not review such 
studies here, which tend to be descriptive rather than predictive. We only consider those studies that expressly consider 
Path C (that is, controlling for individual characteristics) as they study Paths A and B.  
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restaurant segments (that is, ignore Path B entirely – Group 1 studies), or (b) focus on only one 
specific restaurant segment (thus acknowledging the Path B “segment-attribute link”, but not 
modeling the choice of restaurant segment as a horizontal choice of all restaurant segments at once 
– Group 2 studies).2  

 
2.1. Studies Ignoring Path B Entirely (Group 1) 
An example of a study that did not differentiate restaurant segments is Choi et al. (2009), who 
reported significant differences based on consumer characteristics in the ranking of restaurant 
attributes. Specifically, Choi et al. (2009) revealed that taste, cleanliness, service quality, and menu 
healthiness were attributes that exhibited significant differences based on gender, with women 
expressing a stronger preference. Additionally, higher-income individuals placed greater emphasis 
on service quality and ambiance compared to lower-income consumers. Choi et al. also reported 
that the availability of healthy meals was significantly more important to older consumers. Another 
similar study by Alonso et al. (2013) also identified significant discrepancies in restaurant attribute 
preferences by gender and age. In particular, women placed more emphasis on service timeliness 
and the health aspects of menu items compared to men. Additionally, consumers aged 40 to 49 
showed less sensitivity to the attribute of “A feeling of openness and space in a restaurant” 
compared to other age groups. However, income and education levels were not found to 
significantly impact restaurant attribute preference in the study. More recently, a 2016 survey in 
the U.S. found that younger individuals earning less than $35,000 a year and living in a single-
person household placed more emphasis on price, while older individuals earning a high income 
and residing in urban and suburban areas indicated a higher influence of service quality (Statista, 
2016). Nevertheless, all consumers ranked food quality as the most significant restaurant attribute. 
  
2.2. Studies Considering a Single Restaurant Segment (Group 2) 
Another group of studies evaluated the effect of consumer characteristics on the importance levels 
of restaurant attributes for different restaurant segments separately. For example, Harrington et al. 
(2013) studied the importance of the various attributes in the context of QSRs by asking survey 
respondents to rank the importance of several selection factors. They found that younger 
individuals tend to place higher importance on price, value, and convenience, while older 
individuals prioritize food quality and ambiance to a greater extent (Harrington et al., 2013). In the 
context of CSRs, Duncan et al., (2015) classified older consumers as “Functional Feasters” who 
prioritize restaurant cleanliness and location over the quality of service and ambiance. 
Additionally, Harrington et al. (2011) found that gender and age significantly influence the 
importance of restaurant attributes in FSR settings. Women rated price, quality, and dietary 
attributes as substantially more important than men when selecting an FSR. Regarding age, older 
consumers placed a higher emphasis on reputation, quality, and ambiance factors rather than price, 
compared to their younger counterparts. Similarly, Ma et al. (2014) concluded, also in the context 
of the FSR segment, that women tend to assign higher ratings to factors such as food quality, 
service quality, and image compared to men. In contrast, Lee and Hwang (2011) did not find 

 
2 We are not aware of a study of restaurant attribute selection that considers consumer characteristics (that is, 
accommodates Path C effects), while also considering event type effects on restaurant attribute type choice (that is, 
Path A) or even restaurant segment choice (that is, Path D). Besides, from a predictive standpoint, considering event 
type in a model would require that event types themselves be predicted, which can be challenging given the vagaries 
of life events. So, in the rest of this review and paper, we will not focus on the effect of event type choice on restaurant 
attribute ranking (Path A) or restaurant segment choice (Path D).  
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significant gender differences in attitudes toward service quality at FSRs. However, their 
conclusion regarding age aligned with Harrington et al. (2011). Furthermore, Lee and Hwang 
investigated the effect of income on attitudes toward service quality attributes and found that low-
income consumers generally hold more negative attitudes toward overall service quality at luxury 
restaurants, a distinction not examined by Harrington et al. (2013).  
  
2.3. Critical Analysis of Existing Literature 
The preceding sections have underscored the importance of distinguishing among restaurant 
segments when considering consumer heterogeneity in restaurant attribute preferences (that is, 
highlighting the importance of considering Paths B and C together). However, according to Ha 
and Jang (2013), given the overwhelming number of restaurant choice possibilities, consumers 
actually engage in a more rationally-bounded two-stage process when selecting restaurants in ways 
that align with their desired values. They initially identify and choose a specific segment that caters 
to their needs, preferences, and situational factors. Once a segment is chosen, consumers evaluate 
the attributes of the restaurants within that segment, with the evaluation process potentially varying 
based on the consumers' individual characteristics. This emphasizes that individual-level 
characteristics have a first precursor impact on restaurant segment choice (Path E in Figure 1 or 
the individual-restaurant segment link), and then, given the choice of a restaurant segment at any 
point in time (Path B), affect restaurant attribute preferences (Path C) leading up to a specific 
restaurant choice within the restaurant segment. This points to the importance of modeling Path E 
before moving to Paths B and C.  

Surprisingly, there is little literature on Path E (the individual-restaurant segment choice 
link), which will be the focus of the current study. And the few studies that examine path E confine 
their attention to the QSR segment. For instance, Athens et al. (2016) and Moore et al. (2009) 
examined the influence of consumers’ proximity to QSRs on the weekly frequency of fast-food 
dining, consistently finding a significant positive association between residential 
density/accessibility of QSR restaurants and QSR patronage. The Athens et al. study considered 
the self-reported weekly count of fast-food restaurant visits, while the Moore et al. study 
categorized the self-reported weekly count into the three categories of “never”,” <1 time/week”, 
and ≥1 time/week. The former study did not investigate variations in dining frequency based on 
consumer demographic characteristics, while the latter found that white, higher income, and more 
highly educated participants were less likely to be influenced by proximity effects in their fast food 
consumption frequency. Similar to Athens et al. and Moore et al., AlTamimi et al. (2022) also used 
a categorical measure of fast food consumption, but in the form of two binary variables: whether 
or not there typically is a fast food intake one or more times a month, and whether or not there is 
a fast food intake one or more times in a day. AlTamimi et al. confined their analysis to younger 
adults between the ages of 20-35 years in the population of men in Saudi Arabia, and reported 
increased fast food consumption among older age individuals living with family, and with high 
education and income levels. In contrast to AlTamimi et al., Hidaka et al. (2018) examined weekly 
QSR patronage frequency, but specifically in the week prior to the survey (rather than in a typical 
week), in the three categories of “None,” “Once a week”, and “≥2 times a week.” While AlTamimi 
et al. focused on younger adults, Hidaka et al. confined their analysis to a sample of older (50-79 
years of age) low-income adults. Their results revealed a positive association between highly 
educated employed women and their weekly fast-food consumption. The authors attributed these 
findings to the time poverty experienced by women because of their typically asymmetric share of 
domestic responsibilities.  
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The studies above have provided important insights regarding QSR patronage over either 
a week or a month. However, no study that we are aware of has focused on predicting the frequency 
of CSR and/or FSR visits. The general emphasis on the QSR restaurant segment in the literature 
is ostensibly because QSR is the restaurant category most tied to health-related concerns. However, 
from a broader transportation, public health, and restaurant service perspective, it is important to 
consider participation in each type of restaurant segment. Besides, as discussed in Section 1, each 
restaurant segment offers a distinct mix of utilitarian and hedonic stimulation, and so there is a 
clear need to recognize the “portfolio” (or bundled) nature of restaurant segment choices over a 
period of time, such as a month, rather than as a series of single discrete-choice decisions at each 
eat-out occasion.  
 
3. OBJECTIVES AND CONTRIBUTIONS 
This research introduces a novel approach to modeling individual dining behaviors. We develop 
an individual-level portfolio multivariate count model that estimates two key aspects of an 
individual's dining-out patterns: the total number of weekday dinner eat-out occasions per month, 
and how these occasions are distributed across different restaurant segments. The proposed model 
is explicitly based on the “optimal arousal” process underlying dining consumption. This, 
combined with the unique utilitarian/hedonic mix offered by each restaurant segment, leads to our 
formulation of the dining choice process as a deliberate “at-once” horizontal choice of a portfolio 
of restaurant segment participation occasions over a period of time. To do so, we employ the 
Multiple Discrete-Count Extreme Value (MDCNTEV) modeling approach recently proposed by 
Bhat (2022). The primary data for this study is obtained from a 2022 online survey collected in 
Texas and includes information on individuals’ food service venue choices for their eat-out dining 
occasions, as well as individual and household characteristics.  

To our knowledge, this is the first study to consider the frequency of participation in each 
restaurant segment, while also accounting for variety-seeking and joint portfolio choice. In doing 
so, we acknowledge the heterogeneity across individuals in the preference for each segment, as 
well as in the variety-seeking behavior across segments. Also, in contrast to a multivariate count 
model that would mechanically stitch the counts of participation across different types of segments 
without considering variety seeking or complex income/substitution effects, we develop a model 
that accommodates both of these issues. In doing so, our study incorporates four key 
considerations. First, it expressly focuses on the eat-out (that is, dine-in at the restaurant) counts, 
because of the clear passenger travel demand and restaurant service impact of eat-outs. Second, it 
considers a monthly count of eat-outs by segment, which is better able to model the cardinal count 
of actual eat-outs rather than force the analyst to employ a bracketed representation of eat-outs 
when considering a weekly time period (because of the relatively few weekly episodes of eat-out). 
Third, the study implements the Multiple Discrete-Count Extreme Value (MDCNTEV) modeling 
framework (Bhat, 2022). This two-stage method initially addresses multiple discreteness by 
viewing consumer choice as a portfolio choice made within a specified time frame. Following this, 
the second stage assesses total demand as a cumulative count, representing the aggregation of all 
consumption events. Specifically, we focus on examining consumers’ discrete restaurant segment 
decisions over a single month, along with the number of their total monthly eat-out occasions. 
Fourth, in addition to presenting model estimates, our study extends the analysis to include “what-
if” scenarios, quantifying the effects of variations in essential built-environment and 
sociodemographic variables on the overall frequency of dining out at restaurants and the 
distribution of restaurant visits across different segments. By conducting these analyses, we gain 
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insights into the implications of dining choices for the transportation and urban planning, public 
health, and food service fields. Specifically, from a transportation and urban planning perspective, 
it is important to understand that travel demand is fundamentally derived from the need to 
participate in activities distributed across space and time. Eating out is one such activity that 
generates significant travel demand. Consequently, models forecasting the total eat-out count by 
restaurant segment type can be used along with land-use models of restaurant locations by 
restaurant segment to better characterize the generation of eat-out trips as well as the location of 
eat-out trips. These models can be integrated into activity-based models that, for the most part, 
today either use an aggregate social/recreational activity purpose or an aggregate eat-out purpose 
without disaggregation by restaurant segment type. In addition, we consider the effects of a 
substantially changed landscape of work arrangements, as well as residential BE effects, on eat-
out activity patterns. The consideration of BE effects provides insights into land-use and zoning 
policies. From a public health perspective, non-home-cooked meals are generally associated with 
poorer diet quality than home-cooked meals (see Wellard-Cole et al., 2022 for an extensive 
review). This is especially so for QSRs that typically offer affordable, but calorie-rich and nutrient-
poor meals. Thus, the number of eat-outs and the patronage patterns by restaurant segment have 
implications for physical health. Models such as the one estimated here can, therefore, uncover 
health disparities, particularly among specific groups such as dual-earner couples, single mothers, 
individuals with lower income, and racial/ethnic minorities. From a food services standpoint, 
particularly after the onset of the pandemic, it is critical that restauranteurs and food service 
professionals understand the factors that drive consumers to eat out and influence their restaurant 
segment selection, so they can cater to their customer base and implement effective marketing 
strategies (Chua et al., 2020, Ha and Jang, 2013). Such insights, to be accurate, need to 
accommodate satiation effects in restaurant type choice, recognizing that decisions regarding 
segment choice are not single discrete choice occasions in a vertical process over time, but 
constitute a deliberate “at-once” horizontal choice of a portfolio of restaurant segment participation 
occasions over a period of time.  

 
4. THE DATA 
4.1. The Survey 
The data for our analysis is obtained from a 2022 online survey undertaken between mid-February 
and mid-March in the state of Texas, U.S. The survey was restricted to Texas residents, and was 
promoted via e-mail to several chambers of commerce across the state of Texas, alongside other 
businesses, professional organizations, and media outlets, as well as a database of roughly 55,000 
Texas residents’ email addresses. The survey collected detailed information about respondents’ 
individual and household socio-demographics, residential characteristics, employment 
arrangements, and perception of the threat of COVID-19, in addition to revealed preferences (RP) 
regarding weekday dinner eat-out activity participation over one month. Specifically, the survey 
asked the following questions to solicit the total count of monthly weekday dinner eat-out 
occasions (i.e. total eat-outs) and the count of eat-out occasions at each of the four different 
restaurant segments. The relevant survey questions include the following: 

• In the past month, across weekdays (that is, not counting weekend trips), how many times 
did you go out to eat for dinner? 

• Please break down your eat-out dinner occasions by restaurant type: 
o Fast food/food truck 
o Café/coffee shop 
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o Casual sit-in restaurant 
o Fine/luxury dining restaurant 

A total of over 1,479 responses were obtained through the survey effort. However, 387 
individuals did not respond to the dining-related questions or provided a count that exceeded the 
number of weekdays in a month and/or did not provide information on basic socio-demographics 
and job-related questions. The final sample included 1,092 individuals. 
  
4.2. Endogenous Outcome Variables 
The endogenous outcome variables correspond to the monthly weekday dinner counts of eat-out 
by each of the four restaurant segments: QSR, CH, CSR, and FSR. Table 2 presents the distribution 
of total eat-outs for each of the four restaurant segments. The table shows that, among the 1,092 
individuals in the sample, 284 (26.0%) individuals did not engage in any dinner eat-out activities 
over the course of the month prior to the survey. The statistics also reveal that irrespective of the 
total count of eat-outs (the x-axis in Table 2), the CSR segment is the most popular corresponding, 
on average, to 65% of eat-out activities, followed by the QSR segment, which, on average, 
accounts for 19% of the eat-out occasions.  

Table 3 highlights the multiple discreteness in the data by examining the distinct number 
of different restaurant segments visited by individuals who eat out at least one time per month. 
Individuals who eat out frequently are more likely to diversify their restaurant choices and visit 
multiple segments. For example, 41.88% of those who eat out twice a month choose to visit two 
different restaurant segments, rather than always going to the same segment. While not shown in 
Table 3, the most visited restaurant segment pair among those who eat out twice a month 
corresponds to CSRs and QSRs. Additionally, people who eat out more than twice a month tend 
to spread their visits across a greater variety of restaurant segments. For example, people who eat 
out 11 or more times a month tend to visit at least three different restaurant segments, as indicated 
by the last two rows in Table 3. This is because individuals seek variety in their dining experiences, 
and want to explore different cuisines and styles of restaurants. 

Given the retrospective nature of our survey, we acknowledge the potential for recall bias 
in reporting monthly weekday dinner eat-out occurrences across restaurant segments. However, 
we implemented several measures to mitigate this bias, aligning with established survey methods 
(see Groves et al., 2009, and Babbie, 2010). In this study, we focused on dinner eat-out occasions, 
which tend to involve more conscious decision-making between cooking at home versus eating 
out and are often for special occasions rather than simply fulfilling a biological need (Cadario and 
Morewedge, 2022). Therefore, it is likely that monthly dinner eat-out occasions would be easier 
to recall than other types of meals. Our survey also used precise language, asking about “times did 
you go out to eat for dinner” and included prompts for different restaurant types to aid memory 
retrieval. This approach, which asks about frequency for each restaurant segment separately, aligns 
with the recommendation by Groves et al. (2009), who provide an example of effective memory 
prompts: “The NCVS item on shopping tries to offer respondents help in remembering by listing 
various kinds of stores they may have visited (‘drug, clothing, grocery, hardware, and convenience 
stores’)….The best cues are the ones that offer the most detail, provided that the specifics in the 
cue match the encoding of the events.” By focusing on the “last month,” we aimed to minimize 
recall bias compared to longer retrospective periods or open-ended questions about general dining 
habits (as is the case in most published surveys). Additionally, to ensure the reliability of our data, 
we implemented rigorous quality control measures. This included removing responses submitted 
within two minutes of starting, based on a pilot experiment indicating a typical completion time 
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of 15-20 minutes. Additionally, we incorporated internal consistency checks in our survey, 
excluding responses where the reported number of meals fell outside the expected range of 1 to 22 
(the number of weekdays in a month), ensuring consistency and reliability in our dataset. 

Lastly, our findings align with national trends, though direct comparisons are not strictly 
possible due to survey data administration differences and national data not necessarily reflecting 
Texas-specific data. Our average of 3.42 dinner eat-outs per month is consistent with a 2022 survey 
reporting 3 dinner-time eat-outs per month (USFOODS, 2023). Furthermore, other surveys from 
2016 and early 2022 found that 22% and 23.4% of Americans, respectively, never eat out at 
restaurants (see Statista, 2016, and YouGov, 2024). These figures are comparable to our 26% 
finding. While we cannot eliminate recall bias entirely, our approach incorporates several 
strategies recommended in the literature to mitigate its effects. Future research could consider 
complementary data collection methods, such as real-time logging or receipt collection, to further 
validate and enhance data accuracy. 

 
4.3. Exogenous Variables 
Several categories of exogenous variables are considered in our analysis. Individual-level 
demographics (gender, age, race/ethnicity, and education level), household characteristics (annual 
income, motorized vehicle ownership level, and household structure), employment status/job 
characteristics (not employed/part-time employed/full-time employed based on employment status 
and hours of work per week, self-employed or not, number of days of work per month, commute 
duration, and the fraction of work undertaken from a third workplace location and home), and 
COVID-19 threat/perspective variables were obtained directly from the survey responses.  

The built environment (BE) factors of the residential location included three different sets 
of variables. The first set was obtained from the survey and involved the classification of 
residential neighborhoods into urban, suburban, or rural categories, as self-reported by 
respondents. A second set of BE variables was developed based on the home location zip code, 
which was recorded in the survey. These zip codes were mapped to census block groups (CBG), 
and then bestowed with built-environment (BE) attributes as obtained from the U.S. Environment 
Protection Agency (EPA) Smart Location Database (or SLD; see Chapman et al., 2021, and 
Ramsey and Bell, 2014). This second set of BE variables included employment and residential 
density, a walkability index (ranging from 0 to 20, based on a combination of intersection density, 
proximity to transit stops, and jobs-housing balance mix), and the proportion of employment in 
five sectors (retail (Ret), office (Off), industrial (Ind), service (Srvc), and entertainment (Ent)). 
The latter employment-related variables were used to calculate a land-use mix diversity index 
ranging between 0 (low land-use diversity) and 1 (high land-use diversity), based on Bhat and 
Gossen (2004). The actual form of the land-use index is: 

1 1 1 1 1%Ret - + %Off - + %Ind - + %Srvc - + %Ent - 
5 5 5 5 5LUDI = 1- 8

5

 
  
 
 
  

                  (1) 

Finally, a third set of residential BE attributes was developed by the authors using a web-
scraping approach to create a comprehensive database of restaurants across the state of Texas, 
along with their location and restaurant category from Yelp. From this compiled list, the total 
number of restaurants and the proportion of quick-service restaurants (QSRs), coffee houses 
(CHs), casual service restaurants (CSRs), and fine service restaurants (FSRs) were computed for 
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each zip code area. Our methodology involved compiling a list of all Texas cities and towns and 
then using the Yelp API to search for restaurants in these locations. We extracted zip codes and 
tags related to restaurant price and type. The categorization was as follows: Restaurants tagged as 
“Fast Food” were classified as QSRs; establishments tagged as “Coffee,” “Coffee & Tea,” or 
“Coffee Roasteries” were categorized as CHs; restaurants with more than three dollar ($$$) signs 
in their pricing were considered FSRs; and all other restaurants not falling into the above categories 
were classified as CSRs. For more information, readers can refer to the Yelp API documentation 
(Yelp, 2024). Additionally, data scraped from Areavibes.com was used to assess the livability and 
amenities of each zip code area (AreaVibes, 2023). The Livability Score, which ranges from 0 to 
100, assesses the quality of an area based on amenities, cost of living, crime rates, employment 
density, housing affordability, school quality, and general public ratings. Higher scores indicate a 
better quality of life. It is important to note that this score was not calculated by the authors but 
were obtained directly from the AreaVibes platform. 

Table 4 presents the socioeconomic and demographic characteristics of the sample. The 
table also provides statistics corresponding to the State of Texas to compare the analysis sample 
to the general population demographics. The population statistics are obtained from the five-year 
estimates from the 2021 American Community Survey (ACS) and the 2020 Texas Census. In cases 
where the State of Texas values are not readily available, there is a “--” in the table. The data in 
the table illustrates that certain demographic groups are overrepresented in our sample, including 
women, individuals aged 50 or older, white individuals, those with higher levels of education, and 
those from households with high income and high motorized vehicle ownership (in the rest of this 
paper, we will use the label “vehicle ownership” to refer to motorized vehicle ownership). The 
sample also includes a higher proportion of couples without children. Regarding employment 
status, our sample's non-employment rate (21%) closely mirrors the non-employment rate of the 
Texas population (24%). On the other hand, our sample includes a lower percentage of part-time 
employees (4.6% in our sample versus 14.9% in the Texas population) and a higher percentage of 
full-time employees (74.4% in our sample versus 61.1% in the Texas population).3 Despite these 
differences, our sample's average commute time to work (22.8 minutes) and average number of 
work days per month (21.5 days) are comparable to the corresponding population averages of 26.6 
minutes and 22 workdays, respectively.4  

It is unsurprising that certain sociodemographic groups are overrepresented in the sample. 
This may be attributed to the survey being distributed online and through professional 
organizations, which will attract individuals who are highly educated, have high incomes, and are 
part of the full-time workforce. Additionally, selection bias is also likely to have played a role, as 
individuals with strong opinions on the survey's main topic (the impact of COVID-19 on 
workplace choices) may be more inclined to participate. These individuals are expected to have 
white-collar jobs that offer workplace flexibility and are associated with higher education and 
income levels. Given the deviation from population statistics, caution should be exercised when 
generalizing descriptive statistics for endogenous outcome variables. However, our objective is 
not to estimate descriptive statistics for the population of Texas, but rather to determine how 
changes in exogenous factors related to demographics, households, work, COVID-19 perspectives, 

 
3 Part-time workers are those who work 30 hours or less per week, while full-time workers are those who work more 
than 30 hours per week.  
4 The commute time here refers only to those employed individuals with a designated out-of-home work office (or 
simply “office” for short from hereon) that they commuted to at least occasionally in the month. The Texas mean of 
26.6 minutes also refers to only those who had a designated office and commuted at least occasionally to that office.  
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and built-environment affect dining behavior outcomes. Moreover, within the exogenous variables 
used in our analysis, there is substantial variability in the demographic categories such that each 
segment of the population is reasonably represented. Therefore, for our case where we estimate 
causal effects using data obtained through exogenous sampling (that is, not based on endogenous 
sampling as would be the case if our survey were administered among patrons at restaurants), an 
unweighted estimation procedure is appropriate (see Wooldridge, 1995 and Solon et al., 2015 for 
an extensive discussion of this point).  

Lastly, Table 5 summarizes the descriptive statistics for the BE variables included in our 
analysis. The majority of these variables are continuous, and for these, we report the mean, 
standard deviation, minimum, and maximum values. For the residential area type categorical 
variable, we provide the frequency and relative frequency of respondents living in rural, suburban, 
or urban areas.  

 
5. METHODOLOGY 
In this paper, we employ an “at-once horizontal choice” approach recently proposed by Bhat 
(2022). This approach, originating from a utility-theoretic framework, is based on the notion that 
consumers seek a social-psychological sense of “optimal arousal” in restaurant food consumption 
patterns based on stability (psychological security) as well as change (novelty). Accordingly, the 
model structure includes two components. The first component is a total count model, framed 
within a generalized ordered-response (GOR) framework. A linking function from the second 
fractional split multiple discrete-continuous (MDC) model component appears in this total count 
model. This linking function allows for the total count of eat-outs to increase in response to an 
increase in the preference for any single restaurant segment, as discussed earlier.  In the second 
MDC model component, the discrete component corresponds to whether or not an individual has 
a non-zero eat-out occasion at each restaurant segment, and the continuous component refers to 
the proportion of eat-out occasions allocated to QSRs, CHs, CSRs, and FSRs, over a specific time 
period. 
 
5.1. Reverse Gumbel MDCEV Model of Fractional Split Model (RG-MDCEV) 
The RG-MDCEV model represents the second stage of the two-stage budgeting framework. For 
an individual with a positive count of eat-out occasions, the amount of occasions allocated to each 
alternative k (i.e. restaurant segment) is modeled using the following functional form for utility 
(Bhat, 2022):   

1
( ) ln 1

K
k

k k
k k

fU γ ψ
γ=

 
= + 
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  (2) 

1
. . 1 

K

k
k

s t f
=
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In the above function, we suppress the index for individuals. ( )U f is a quasi-concave, increasing, 
and continuously differentiable utility function, and 1( ,..., ) 'Kf f=f    is a ( 1)K × -vector 
representing the fraction of the total eat-out count allocated to each restaurant segment k with 
0 1kf≤ ≤  for all k. In the context of this paper, K=4 for the four restaurant segments of QSR, CH, 
CSR, and FSR. The kψ  parameter ( 0kψ > ) represents the baseline marginal utility at the point of 
zero eat-outs at restaurant segment k, while the kγ  parameter allows for corner solutions (zero 
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patronage for restaurant segment k) as well as accommodates satiation effects. The baseline 
marginal utility, kψ , is parameterized as follows:  

( )exp exp( ), where exp( )k k k k k k kq qψ ε ε′ ′= + = =β z β z ,  (3) 

and kz  is an ( 1)L× -vector which includes the individual-specific attributes (including a constant) 
that are relevant in the individual’s evaluation of alternative k, and β  is a corresponding ( 1)L× -
vector of coefficients to be estimated. kε  is an error term representing idiosyncratic (unobserved) 
characteristics impacting the baseline utility of alternative k, assumed to follow an independent 
and identical distribution (across individuals and alternatives) with a reverse Gumbel (0, )κ  
distribution.5 The exponential form is utilized to ensure the positivity of baseline utility. 
 We also consider heterogeneity in the MDC satiation parameters (the kγ  parameters) by 
parameterizing as follows:  

exp( )k kγ ′= μ ω ,                  (4) 

where kω  is a vector of decision maker-related characteristics and μ  is a vector to be estimated 
(note that 0 ).k kγ > ∀  A positive element in μ  implies that an increase in the variable has the 
effect of increasing the kγ  parameter and decreasing satiation (that is, increasing repeat visits of 
the individual to restaurant segment k), while a negative parameter has the effect of decreasing the 

kγ  parameter and increasing satiation (that is, decreasing repeat visits of the same individual to 
restaurant segment k). To determine the optimal distribution of consumption across restaurant 
segments, we employ a mathematical optimization approach. This involves constructing the 
Lagrangian function and deriving the first-order equations based on the Karush-Kuhn-Tucker 
(KKT) conditions. In our model, we designate one restaurant segment (let's call it segment 1) as a 
baseline, assuming it receives some non-zero fraction of consumption. This assumption is valid 
because our second-level model is predicated on a positive eat-out count. In particular, designate 
restaurant segment 1 as a purpose to which the individual allocates some non-zero fraction of 
consumption (at least one restaurant segment must be chosen for consumption because this second-
level model is contingent on a positive eat-out count). The fractional consumption of the first 

alternative is automatically determined from that of other inside alternatives as * *
1

2
1

M

k
k

f f
=

= −∑  . 

Then, the probability expression for the fractional allocation pattern with the first M restaurant 
segments being consumed at levels *

kf  ( 2,3,...,k M= ) and the remaining restaurant segments see 
zero patronage; i.e., * 0kf =  ( 1, 2,...,k M M K= + + ); is (see Bhat, 2022):  

 
5 Unlike the prior formulation in Bhat (2022) where the scale of the error terms in the baseline preference parameters 
was normalized to one, in this paper, we relax the scale parameter to be freely estimated. This results in superior model 
performance in terms of goodness-of-fit measures and forecasts.  



13 

* * *
2 3Prob[ , ,..., ,0,0...,0]Mf f f  

1 1| |
( 1)

{ 1, 2,..., },| | 1 0

1 1

exp exp
| | ( 1)! ( 1)

exp exp exp

M M
k k

i iD
M MM M MD M M K Dk k k

k k k D

V V
J M

V V V
κ κ

κ
κ κ κ

= =
−

⊂ + + ≥

= = ∈

              −        = + −          +                  

∑ ∑
∑

∑ ∑ ∑
        

where 
11

1| |  ,  where  
M M

i
ii i

J c
c==

  
=   
  

∑∏ *

1
i

i i

c
f γ

 
=  

+ 

, and (5) 

*

ln 1k
k k

k

fV
γ

 
′= − + + 

 
β z



 (k = 1, 2, 3,…, K), and 0k kV ′= −β z (k = 1, 2, 3,…, K). 

D in the above equation represents a specific combination of the restaurant segments appearing in 
parenthesis, and |D| is the cardinality of the specific combination D. The probability that all the 
inside restaurant segments see some patronage at fractional levels * * *

2 3, ,..., Kf f f    is: 
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The probability that none of the restaurant segments, except the first one, are consumed is: 
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The model’s estimation process involves determining the values of three sets of parameters: the β  
vector, the 1 2( , ,..., )Kγ γ γ=γ  vector, and the κ  scalar. Since the MDCEV fractional model shares 
some parameters with the total budget model, we defer a detailed discussion of the estimation 
procedure to Section 5.4.  
 
5.2. Linking with the Fractional Split Model 
Linking the fractional split model, which is concerned with the allocation of goods (i.e. restaurant 
segments) within the commodity group of interest (i.e. eat-outs), with the total eat-outs count 
model in a single framework requires a specialized function that reconciles the theoretical and 
empirical preliminaries of both these model components in a utility consistent manner. Bhat (2022) 
derives the appropriate structure of this link function, which takes the following form (see Bhat, 
2022 for details of this derivation): 

1/

1
ln exp( )

K

k k k
k

q κκ τ γ
=

  Λ =    
∑ ,              (8) 

where kτ  is another set of standard reverse Gumbel stochastic terms allowing unobserved 
heterogeneity (across individuals) in the linkage function (we use a different set of error terms kτ  
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above than the error terms kε  in Equation (3) to obtain a closed-form integrated model by avoiding 
unobserved correlations across the MDC fractional split model and the total count model discussed 
in the next section).  
 
5.3. The Total Count Model 
The modeling framework used for analyzing individuals’ monthly eat-out frequency takes the form 
of a Count Model proposed by Castro et al. (2012) (also see Bhat et al., 2015). Castro et al. (2012) 
show that a Poisson count regression model can be considered a special case of a Generalized 
Ordered-Response Probit (GORP) that allows for more flexibility compared to the ordinary 
Poisson model. This section discusses the mathematical formulation for the Multivariate Count 
Model and formulates the linkage with the fractional split model. 

Let  ( 0,1, 2,..., ) = ∞  be the frequency of total monthly eat-outs for an individual. The 
utility maximization process underlying the fractional split model gets linked to the count model 
by embedding the Λ  linkage function from Equation (8) into the latent continuous stochastic 
propensity *y  that is associated with the count variable (see Bhat, 2022):  

*y θ ζ= Λ − , y =   if *
1 y−Θ < < Θ

 

, 
0

( ) ,  {0,1,2,..., }j
j

f α
=

Θ = + ∈ ∞∑


 

x                               (9) 

In the above equation, *y  is a latent continuous stochastic propensity variable associated with the 
count variable that maps into the observed count   through the Θ  vector (which is a vertically 
stacked column vector of thresholds 1 0 1 2( , , ,  ,...)− ′Θ Θ Θ Θ ; 1−Θ = −∞ ; −∞< 0 1 2 ...)Θ < Θ < Θ < ). θ  
is the linking parameter. ζ  is a random error term assumed to be reverse Gumbel distributed with 
scale θκ . ( )f



x  is a non-linear function of a vector of individual-specific variables x  ( x  includes 
a constant), and the α  terms are threshold shifter parameters to be estimated to accommodate high 
or low probability masses (spikes and dips) for specific count outcomes without the need for using 
zero-inflated or related mechanisms in multi-dimensional model systems 1(α− = −∞  and 1 0α =  

for identification). Also, let  where { }1( ) ln ln( )S t tζ θκ− = −     is 

the inverse survival function of the reverse Gumbel with scale θκ , and ( ) eλ ′= xx ϖ  (ϖ  is a 
coefficient vector to be estimated). Accordingly, the thresholds in Equation (9) take the following 
form: 

[ ]1 ( )

0 0

( )
!

j

j
j j

S e
j

λ
ζ

λ
α− −

= =

 
 Θ = − +
 
 

∑ ∑
 



x x
, with 0jα =  if *j L> ,  (10) 

where *L  represents an appropriate count level, which is determined based on the empirical context 
of the study.   
 By incorporating Λ  from Equation (8) in *y  in Equation (9), we get: 
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where *ζ  is now a standardized reverse Gumbel distributed variable. A normalization needs to be 
made in the above count model specification because the scale θκ  is not identified (that is, it can 
be set to any value). But the scale of the MDC error term κ  is estimable from the fractional split 
model. In this paper, we achieve identification by setting the linking parameter exp(1) 2.718.θ = =  
Also, Bhat (2022) derived the properties of the error term distribution of 

( )
1

ln exp
K

k k
k

aδ θκ ξ τ
=

  = −  
  
∑ , which he labeled as a minlogistic distribution. Based on this 

minlogistic distribution, the probability of an individual with a count value of   is:  
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The expression is dependent on both the fractional split model as well as count model parameters 

(the fractional split parameters are embedded in ka ; 1/ exp k
k k k ka q κγ γ

κ
′ = =  

 

β z . 

 
5.4. Estimation 
As mentioned in the previous section, using kτ  instead of kε  in the linking function results in the 
independence of error terms in the total count and the fractional split models. Consequently, the 
likelihood function for an individual with a count value of g (g > 0), and consuming the first M 
goods at levels *

kf  ( 2,3,...,k M= ), may be obtained from Equations (5) and (12) as follows:  

{ }
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Similar likelihood expressions may be derived for the case when all K restaurant segments are 
consumed, and none of the restaurant segments except the first are consumed. For the case of zero 
total eat-outs, the likelihood function is: 
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6. EMPIRICAL RESULTS 
In the empirical specification process, we investigated different functional forms and combinations 
of explanatory variables. For variables in bracketed form (age and income) and those naturally 
discrete (gender, race/ethnicity, education level, motorized vehicle ownership level, household 
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structure, employment status, self-employed status, and urban/suburban/rural residential living, 
count of workdays per month, and COVID perspectives/threat variables), dummy variables were 
created in the most disaggregate form possible, and progressively combined based on statistical 
tests to yield parsimonious specifications. For variables in continuous form (commute duration, 
fraction of work days worked from home, fraction of work days worked from a third workplace, 
residential and employment density, walkability index, land-use diversity index, number of 
restaurants by type per square area in the zip code of the respondent’s residence, and fraction of 
fast food eateries), various functional forms were tested, including a continuous linear form, a 
continuous logarithm form, a piece-wise linear form, and a set of dummy variables for different 
ranges. But the non-linear dummy variable form outperformed the linear form in terms of data fit, 
except for the fraction of workdays from home, land-use mix, walkability index, restaurant density, 
and proportion of restaurant segments. Further, we examined a number of interaction effects across 
variables, including single women interacted with children of different age groups and 
employment status of adults in the household interacted with children. However, none of such 
interaction effects turned out to be statistically significant, even at a t-statistic threshold of 1.00 to 
retain variables (corresponding to a 0.32 level of significance or 68% confidence level).  

The final linked model specification is presented in Table 6. As may be observed from the 
table, not all variables included in the model are statistically significant at a 95% confidence level. 
This is to acknowledge the relatively small sample size of our estimation that may have led to the 
marginal significance of some of the variables, which nonetheless can provide valuable insights 
for future investigations with larger sample sizes. Also, we use the label “na” in Table 6 to indicate 
that the corresponding endogenous outcome alternative is the base category when representing the 
effects of exogenous variables. In contrast, a “—” is used to signify that a variable is not 
statistically significant for a given alternative. Finally, an exogenous variable affecting the baseline 
preference or satiation for any alternative in the MDC model also indirectly affects the total count 
of eat-out through the linking function. In addition, the same exogenous variable may also have an 
additional direct effect through inclusion in the count model.  

The exogenous variables in the model are arranged vertically in Table 6, while the 
parameters of the baseline utility and satiation components of the MDC model, and the count 
model parameters, are organized in columns. The parameter estimates for the MDC baseline 
marginal utility present the impact of variables on the logarithm of the baseline preference (that is, 
represent elements of the β  vector), and accommodate heterogeneity across individuals in the 
baseline preference function. The satiation model estimates (elements of the μ  vector), which 
allow for heterogeneity in the MDC satiation parameters, are also presented in Table 6. The 
exogenous effects in the count model correspond to the non-constant elements of the ϖ  vector. 
These represent direct effects on the count model, after accommodating any indirect effects 
through the linking function. In terms of the direct effects, a positive coefficient in ϖ  shifts the 
threshold toward the left of the propensity scale, which has the effect of reducing the probability 
of the zero-eat-out outcome (increasing the overall probability of the non-zero eat-out outcome).6 
A negative coefficient, on the other hand, shifts the threshold toward the right of the propensity 
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scale, which has the effect of increasing the probability of the zero eat-out outcome (decreasing 
the overall probability of the non-zero outcome).  

The bottom of Table 6 provides the constant estimate in the ϖ  vector, and the elements of 
the threshold shifter terms (elements of the α  vector) embedded in the thresholds of the count 
model. The constant does not have any substantive interpretation, except for mapping the latent 
propensity optimally to the observed counts, given the coefficients on other variables embedded 
in the threshold function. Similarly, the threshold shifter elements of the vector α also do not have 
any substantive interpretation, though they provide flexibility in the count model to accommodate 
high or low probability masses for specific outcomes. In the current empirical analysis, the best 
specification was reached with eight threshold shifter terms that are listed toward the bottom of 
Table 6. The large positive value for the first threshold reflects the large share of individuals who 
have zero monthly eat-out occasions. Also, the large negative threshold between the counts of 14 

and 15 adjusts for the small share of individuals reporting 14 eat-out occasions and a rather large 
share reporting 15 eat-out occasions (potentially due to rounding in recollection and/or self-
reporting). Finally, the linking function coefficient is normalized as discussed in Section 5.3, and 
the scale of the error terms in the MDC model is estimated. These are provided toward the bottom 
of the table. Note that, because of the linking coefficient, a shift in a variable that positively impacts 
the baseline preference or the satiation parameter of any MDC alterative (that is, increases the 
consumption of any MDC alternative) has the effect of increasing total eat-out count too, an effect 
we discuss further in Section 7.2. In the rest of this section, we discuss the effects of exogenous 
variables on the baseline preference/satiation components of the MDC model and on the total eat-
out count model (to conserve on space, and also because the model estimates themselves did not 
show too much differences between the linked and unlinked models, we relegate the table 
containing the unlinked model estimates to Appendix A; however, we briefly discuss the different 
implications of the linked and unlinked models toward the end of Section 7.2).  

  
6.1. Exogenous Variable Parameter Estimates 
6.1.1.  Individual Demographics 
Based on the MDC component results in Table 6, middle-aged (49-64 years) and senior adults (65 
years or older), relative to their younger peers, generally exhibit a reduced preference for quick 
service restaurants (QSRs), coffee houses (CHs), and casual service restaurants (CSRs), a 
relationship that is consistent with earlier studies (see, for example, Fryar et al., 2018, Slack et al., 
2021, and Wolfson and Bleich, 2015). For instance, Fryar et al. (2018) examined fast food 
consumption in American adults using National Health and Nutrition Examination Survey 
(NHANES) data between the years 2013 and 2016 and found that 44.9% of younger adults aged 
20-39 reported consuming fast food, compared to 37.7% of middle-aged adults, and only 24.1% 
of older adults aged 60 and over. Possible reasons for this age-related effect include concerns over 
health and nutrition (Hiza et al., 2013), as well as a preference for higher quality and more socially-
oriented dining experiences (Harrington et al., 2011). Additionally, our results regarding CH 
preferences align with the findings of the National Coffee Association, which indicate that younger 
generations are more interested in specialized coffee houses that offer innovative and premium 
coffee products compared to older generations (National Coffee Association, 2020). In addition to 
offering food and beverage, CHs also serve as a popular third workplace location (Ferreira et al., 
2021). Interestingly, middle-aged and senior adults have less satiation in CSR consumption (higher 
CSR monthly participation occasions) if they partake at all in CSR consumption. In terms of the 
total eat-out count model, the absence of a direct association between age and the frequency of 
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eating out may be indicative of dining out becoming an integral part of modern-day life for 
individuals, irrespective of age (Haddad et al., 2023). 

The race-based effects reveal a lower inclination to dine out at the CSR segment for people 
of color compared to white individuals. But, when the walkability of the residential neighborhood 
is interacted with race, we find that the overall negative effect for CSR preference among people 
of color, while still existent, gets tempered (note that that range of the walkability index/100 
variable is between 0 to 0.2). One explanation is that walkable neighborhoods are generally 
associated with good CSR dining options (see Baobeid et al., 2021), as well as good racial diversity 
in the resident population. Thus, while several ethno-racial studies have reported biased treatment 
of racial minorities at restaurants (Billingsley, 2016, Brewster and Heffner, 2021), as also 
suggested by the lower participation of non-white individuals in total eat-outs from our count 
model results in Table 6, the combination of good CSR dining options and racial diversity in areas 
of good walkability may provide a more positive dining environment for all individuals. These 
results highlight the intricate interplay of race, exposure, and cultural factors in shaping restaurant 
preferences and the frequency of eating out.  
 Formal education degree attainment has no effect on restaurant segment choice, but 
indicates more zero total eat-outs among those who have attained a graduate degree, consistent 
with the results from Mills et al. (2018) and Haddad et al. (2023). Many previous studies have 
reported that higher educational attainment leads to higher food literacy and heightened health 
consciousness, leading to more home-cooked meal consumption relative to non-home-cooked 
meal consumption (Krause et al., 2018, Nogueira et al., 2016). 
   
6.1.2.  Household Characteristics 
While educational attainment does not directly influence individuals' preferences for specific 
restaurant segments, income is a key factor that drives such preferences. Overall, the many income-
related coefficients indicate a strong preference for the FSR restaurant segment among those with 
an annual household income of $100,000 or more, a clear sign of hedonic pursuits associated with 
a desire for (and projection linked to) luxury, exclusiveness, sophistication, and power signaling 
of social status and wealth (Kraus et al., 2017, Sung and Huddleston, 2018). The satiation and total 
count model specifications also demonstrate a direct positive and consistent association between 
income and the extent of eating out, attributable to the greater purchasing power of high-income 
individuals and their inclination to invest in the added convenience and time-saving benefits 
offered by non-domestically prepared meals (Clifford Astbury et al., 2020, Spurlock et al., 2020).  

Vehicle ownership is another significant factor in determining restaurant segment 
preferences, though not total eat-out count. Households owning two or more vehicles have a higher 
baseline reference for QSRs and CHs for weekday dinners, compared to those with less than two 
vehicles. Households with more vehicles may prioritize speed and convenience in their general 
lifestyle, including in their meal choices, consistent with the attribute offerings of QSRs and CHs 
(see Table 1).  

In terms of household structure, relative to single men, women and those from multiple 
related adult households (including two-adult and other types of joint families, but mainly two-
adult households) appear to be less satiated (more participation occasions conditional on 
participation) in the CSR restaurant segment (for women) and the QSR segment (for those from 
multiple related adult households). Also, both single women and those from multiple adult 
households are less likely to have eat-out episodes than single men. The latter result is consistent 
with earlier studies. Women tend to eat less outside the home (and more home-cooked meals) 
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because of their greater health and diet consciousness, attributable in part to a higher body 
shape/image emphasis placed by society on women as well as women’s higher priority to mental, 
emotional, physical, and spiritual well-being  (Bärebring et al., 2020, Marques-Vidal et al., 2015, 
Pop et al., 2021). Furthermore, single women may feel particularly vulnerable dining out alone in 
the evening (Brown et al., 2020, Lahad and May, 2017). The finding that individuals living in 
households with multiple related adults tend to eat out less has also been reported in earlier studies, 
and ascribed to the cultural norm of viewing the dinner meal as an in-home family gathering event 
(Fulkerson et al., 2011) and/or to the time-cost efficiency gains of cooking at home by collectively 
allocating income, time, and market goods and services (see Stewart and Yen, 2004). Also, the 
results in Table 6 reveal that individuals from households composed of two or more unrelated 
adults (e.g., roommates) are more likely than individuals from other (related adult or single adult) 
households to dine at QSRs, though satiation effects seem to set in sooner among such individuals 
for QSRs. Financial constraints may be responsible for the QSR baseline preference, as individuals 
living with roommates typically have limited resources and may be looking for a more affordable 
option for dining out. At the same time, such individuals may also be seeking more variety in 
restaurant segments because of the diversity in their social dining company, resulting in a 
distribution of dinner eat-out meals across multiple restaurant segments.  Regardless of restaurant 
segment preference, individuals from unrelated adult households, not surprisingly, are more likely 
to partake in eat-outs, presumably due to the social lifestyle and lifecycle associated with 
roommate living (see Cho et al., 2019, Kenyon and Heath, 2001).  

Finally, the presence of children has important effects on eat-out preferences and 
frequency, particularly in the context of QSRs, with households with children exhibiting a strong 
preference for QSRs. Children are often attracted to fast food establishments for several reasons, 
including the availability of salty and sweet meal options, and the promise of fun and novelty with 
on-site playgrounds and toys with their meals (Ipatenco, 2012,  Thomas, 2018). Interestingly, these 
findings contradict previous research suggesting that parents prioritize their children's dietary 
intake and so refrain from potentially unhealthy food options for the children (Jones, 2018, 
Petersen et al., 2014). However, it appears that this parental care for children's health is more 
focused on the frequency of eating out as a whole rather than the choice of a restaurant segment, a 
finding that is also supported by Kim and Kim (2021) and Haddad et al. (2023). This suggests that, 
while parents may be mindful of their children's nutrition, they do not seem to perceive QSRs as 
providing particularly unhealthy options.  

 
6.1.3. Employment Status/Job Characteristics 
Several employment and job characteristics are examined. The intensity of work can be described 
either by the number of workdays per month or the number of work hours per week (with part-
time being characterized as 30 hours or less per week and full-time being more than 30 hours per 
week). Our analysis reveals that both of these job characteristics affect dining behaviors and 
preferences, though in distinct ways.  

The number of work days per month does not affect restaurant segment preference but 
positively influences eat-out participation. However, there is a tempering of this latter effect as the 
fraction of workdays from home grows. The net result is that eating out is a more common 
occurrence among those working many days per month rather than fewer days, and this is 
especially the case for those working primarily from their in-person workplace (rather than from 
home). Work-related activities contribute to time constraints (see Bernardo et al., 2015, and Giurge 
et al., 2020), resulting in increased instances of dining out. Also, as individuals work more from 
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their office and are already outside the home, there is greater accessibility and convenience to visit 
restaurants on the work-to-home evening commute. Moreover, individuals who work frequently 
from home may have a general lifestyle preference for eating in the comfort and familiarity of their 
homes (Xiao et al., 2021) due to a frame of body and mind that may be linked to the psychological 
theory of homeostasis (see Marks, 2022).  

While the number of workdays (and working from home) affects eat-out participation but 
not restaurant segment preference, the reverse holds for the number of work hours per week (see 
the results under “employment status” in Table 6). Specifically, relative to those not employed, 
employed individuals (regardless of part-time or full-time) have a predisposition toward CHs, 
perhaps due to the professional-social atmosphere offered by such establishments, which may be 
conducive to networking outside the office environment (Ferreira et al., 2021). Further, 
employment status also affects the extent of QSR consumption (conditional on positive QSR 
consumption). Specifically, individuals who are employed tend to visit QSRs more frequently 
compared to their unemployed counterparts, with this effect being particularly strong for those 
employed part-time. While time poverty and a quest for efficiency may explain the reason for 
frequent QSR participation (that is, less satiation for the QSR segment), the reasons for the lower 
QSR satiation among part-time workers (relative to full-time workers) need further study and 
exploration.  

Interestingly, commute duration to the in-person workplace did not turn out to be a 
significant predictor of the frequency of eating out or preference for any particular restaurant 
segment, even for those individuals who always traveled to the office on each work day. 

 
6.1.4. Residential Location BE Factors 
Our analysis identified four residential location factors that significantly influence dining choices 
and eating-out frequency, including the walkability index, land-use diversity index, restaurant 
density, and proportion of QSRs. Based on the results in Table 6, customers are less likely to visit 
QSRs in more walkable areas (this is a main effect, separate from the race and walkability 
interaction effect discussed earlier), potentially because those living in walkable areas are 
generally health-conscious and avoid QSRs (see Lamb et al., 2020). Residents in high land-use 
diversity residential neighborhoods, on the other hand, have an elevated preference for CSRs, even 
though there is also higher satiation for CSRs among such individuals. Mixed land-use areas offer 
multiple attractions to explore and tend to be more vibrant and culturally diverse (Yue et al., 2017). 
In such areas, CSRs may be particularly popular because their ambiance, menu, and overall 
atmosphere often reflect the unique culture and character of the neighborhood. For the same 
reason, a higher residential land-use diversity is associated with higher satiation in terms of visits 
to CSRs, indicating a more diverse segment portfolio. Restaurant density and exposure to various 
restaurant segments also affect dining preferences as well as the frequency of eating out. As 
expected, individuals exposed to a high number of QSRs (as a fraction of the total restaurants in 
their residence area) are more likely to dine at fast food restaurants (Athens et al., 2016, Bell et al., 
2020, Burgoine et al., 2018), and individuals residing in high-density restaurant neighborhoods 
generally eat-out more (Haddad et al., 2023, Wang and He, 2021). 
 
6.1.5. COVID-19 Perspectives 
The COVID-19 pandemic has significantly impacted the restaurant industry and has caused shifts 
in consumer behavior and attitudes toward dining out. Our study reveals that “being 
immunocompromised or having an immunocompromised loved one” (simply 
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“immunocompromised” for short) significantly reduces the appeal of CHs. Unlike the other three 
restaurant segments, which primarily focus on providing food services, CHs are typically viewed 
as socialization or working spots where food is considered to be a secondary service. As a result, 
individuals who are immunocompromised may be more likely to avoid CHs as well as eating out 
altogether. Also, individuals who perceive that their “well-being was or still is at risk during the 
pandemic” tend to be more predisposed to CSRs and reticent to be patrons of QSRs. The latter 
result may be traced to the relatively crowded nature of QSRs. Not surprisingly, those 
immunocompromised and/or worried about their well-being are more likely to have zero eat-outs, 
though older individuals with a heightened worry about their well-being appear to be less risk-
sensitive than their younger peers. 
 
6.2. Goodness of Fit 
Goodness-of-fit statistics are computed to compare the constant and threshold shifters (CT)-only 
model (all parameters set to zero, except the constants and the threshold shifter terms in the count 
model), unlinked MDCNTEV model, and the linked MDCNTEV model. The different models can 
be compared using the Bayesian Information Criterion (BIC) statistic [ ˆ( )L= − Θ + 0.5 (# of model 
parameters) log (sample size)] for the linked and unlinked models ( ˆ( )L Θ  is the log-likelihood at 
convergence with the estimated parameter vector denoted by Θ̂ ).7 A lower BIC statistic implies 
better model performance. The linked and non-linked models can also be compared using a non-
nested likelihood ratio test. The adjusted likelihood ratio index 2ρ  is calculated as follows: 
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where ˆ( )L Θ and ( )L c  are the log-likelihood functions at convergence and for the CT-only model, 
respectively, and M  is the number of parameters (excluding the constants and thresholds) 
estimated in the model. If the difference in the adjusted likelihood ratio indices for the linked 
(subscript 2) and unlinked (subscript 1) models is 2 2
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In addition to likelihood-based performance, we evaluate the performance of the models 
intuitively and informally using the average probability of correct prediction statistic for the 
observed multivariate count outcome.  

Table 7 presents the results of these disaggregate likelihood-based goodness-of-fit 
statistics. It is evident that both the linked and unlinked model log-likelihood values outperform 
the constants-only model, as confirmed by the nested likelihood ratio test. Furthermore, the BIC 
and the results of the non-nested likelihood ratio test comparing the linked and unlinked models 
demonstrate that the linked model exhibits a better fit compared to the unlinked model. Also, the 

 
7 The linked and non-linked models are non-nested (see Bhat, 2022), because the kernel error term distributions are 
different between the two models. While many measures have been suggested in the literature to evaluate model fit 
among non-nested models (see Dziak et al., 2020), the BIC-based measures demand a higher strength of evidence to 
add complexity than do the other measures, and thus the BIC-based measure favors more parsimonious models. 
8 The L(c) values differ for the unlinked and linked models because of the different count component error structures 
in the two models. For consistency and comparison purposes between the unlinked and linked models, in all 
computations in the current section, we use the L(c) value for the unlinked model.  
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average probability of correct prediction at the multivariate count level is 0.098 for the unlinked 
model and 0.105 for our proposed linked model. This average probability may also be computed 
separately for the zero counts and for the non-zero counts. The average probability of correct 
prediction for zero counts is 0.300 for the unlinked model and is 0.326 for the linked model. The 
corresponding average probability of correct prediction for non-zero counts is 0.027 for the 
unlinked model and 0.028 for the linked model.  

To complement the disaggregate-level goodness-of-fit outcomes, we also evaluated the 
data fit of the linked and unlinked models at the aggregate level. For clarity and manageability, we 
focused on the univariate count of visits to each restaurant segment (rather than considering the 
234,256 possible multivariate eat-out count combinations). Table 8 presents the results of this 
assessment, comparing the predicted and observed values for each restaurant segment in terms of 
the (a) number of individuals with zero consumption, (b) number of individuals with positive 
consumption, and (c) total number of visits to each segment. We used two metrics for comparison, 
including the average absolute percentage error (APE) and the weighted APE (WAPE), which is 
obtained by multiplying the APE with the observed share in the data for each restaurant segment. 
The linked model demonstrates significantly better performance, particularly in predicting the 
number of individuals with zero consumption (WAPE of 8.34% for the linked model versus 
12.72% for the unlinked model) and the number of individuals with positive consumption (WAPE 
of 18.79% for the linked model versus 28.21% for the unlinked model). Both models perform 
reasonably well in predicting the total number of visits across segments.  

Overall, all the goodness-of-fit statistics demonstrate the importance of linkage from a data 
fit perspective. However, based on the discussion in Bhat (2022), it is the linkage implications 
from a behavioral perspective that are even more important, as further discussed in Section 7.2.  
 
7. MAGNITUDE EFFECTS OF VARIABLES 
7.1. Analysis Preparation 
The estimation results in the previous section do not provide information on the actual effects of 
the variables on eat-out frequency by restaurant segment, nor do they provide a sense of the relative 
magnitudes of impacts of different variables. To determine directionality and magnitude effects, 
the estimates need to be translated to actual outcome effects. But unlike the model coefficients in 
Table 6, the effect of any variable change on the count outcomes will vary based on the current 
level of the variable as well as the levels of other variables. However, an average effect of a change 
in a variable may be computed across individuals, assuming the levels of other variables are fixed 
for each individual at those currently in the sample. Specifically, for each exogenous variable, we 
consider all sample individuals to be at each specific state of the exogenous variable. For example, 
we consider all individuals to be in the youngest age category (18 to 29 years old). Then, using the 
forecasting procedure discussed in detail in Bhat (2022), we compute the expected counts in each 
restaurant segment as well as the total eat-outs for each individual, and compute the average across 
all individuals. Next, we consider all individuals to be over 65 years old, and repeat the procedure 
above. Finally, we compute the percentage ATE change in trip-making per capita at the total eat-
out level as well as separately for each restaurant segment due to a change in age from 18-29 years 
to over 65 years.  

The above procedure can be applied to compute the ATE for the change from any state of 
a variable to any other state. But, for presentation simplicity, we only report the ATEs for a change 
between a specific pair of states for categorical variables that can take more than two states. 
Specifically, we consider the following pair of states for each individual/household demographic 
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variable: age (change from 18-29 years to 65 years and older), race (change from white to non-
white), education degree attainment (from less than graduate degree to graduate degree), 
household income (from <$25,000 to >$150,000), vehicle ownership (from zero/one vehicle to ≥3 
vehicles), and household structure (from the state of single men to single women, multiple 
unrelated adults to multiple related adults without children, and multiple related adults without 
children to multiple related adults with children). For employment status/job characteristics, we 
only consider the case of a change of being unemployed to working from the office every day, to 
working from home 60% of the days (3 days a week), to working from home every day (that is, a 
change in the fraction of work days from home from 0 to 1 for those employed, while keeping all 
other job-related variables at their current values). Finally, for the continuous residential 
location/BE factors, we change the variable from the 10th to the 90th percentile to compute an ATE 
measure.  

Table 9 provides a summary of the computed Average Treatment Effects (ATEs) for each 
variable. To illustrate, let us consider the interpretation of the first numeric row corresponding to 
the age variable. If all sample individuals were adults in the 18 to 29 years old age category, they 
are estimated to make a total of 3,237 weekday monthly dinner eat-out trips (an average of 2.96 
monthly eat-out trips per individual). Out of these trips, 22.2% are allocated to QSRs, 15.8% to 
CHs, 48.7% to CSRs, and 13.3% to FSRs (fourth broad column of Table 9). In contrast, adults 
who are 65 or more years old (treatment level) make a total of 3,266 eat-out trips (an average of 
2.99 monthly eat-out trips per individual), with 15.3% allocated to QSRs, 3.7% to CHs, 67.8% to 
CSRs, and 13.2% to FSRs (fifth broad column of Table 9). In terms of net effect on total eat-outs 
and individuals segment eat-outs, one has to multiply the proportions with the total eat-outs in each 
of the base and treatment cases, and then get the percentage ATE. Thus, according to the results, 
older adults are estimated to have 0.9% more monthly eat-outs compared to the base younger age 
group, with 30.4% lower QSR eat-outs, 76.4% lower CH eat-outs, 40.5% higher CSR eat-outs, 
and 0.1% lower FSR eat-outs (last broad column of Table 9). Similar interpretations can be made 
for all other variables reported in the table. 

  
7.2. ATE Results 
The ATE findings in Table 9 generally align with our expectations and are consistent with the 
model results. The outcomes suggest that individuals who frequently eat out (see the percentage 
ATE shift in the last broad column under “total eat-outs”) tend to be young, white, have an 
educational attainment below a graduate degree, enjoy a high income, own three or more motor 
vehicles, are single men, are couples or other related adults without children, work full-time from 
an office, and those who perceive less personal risk due to COVID-19 and are not 
immunocompromised. The income effect is particularly strong, dominating over other variables. 
Additionally, our analysis reveals distinctive demographic groups for QSR, CH, CSR, and FSR 
dining. The demographic groups that are particularly conspicuous in the QSR and CH segments 
include individuals who are younger than 30 years and not white, have a formal education degree 
that is below a graduate degree with low income levels, have three or more motorized vehicles, 
are single men and full-time employees (especially if working only from the office). Not 
surprisingly, those residing in areas with a high fraction of QSRs are also likely to be QSR patrons. 
For the CSR segment, the demographic groups that stand out include young, white individuals 
from high income households, individuals living with multiple-unrelated adults, and full-time 
employees with no work from home. Meanwhile, in the FSR segment, the prominent demographic 
groups are individuals who are from high income households, single men, multiple-unrelated 
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adults, and full-time employees with no work from home. Overall, in terms of demographics, there 
is much more commonality between frequent patrons of QSRs and CHs on the one hand, and CSRs 
and FSRs on the other.  

An important observation from Table 9 is that variables that only directly affect the 
fractional splits among the different restaurant segments (without directly affecting the total eat-
out count) still do indirectly affect the total eat-out count through the composite linkage from the 
segment model to the total eat-out count model.  For instance, consider the effect of three or more 
vehicles (versus zero or one), full-time employed and working all days from home (versus 
unemployed), and the fraction of QSR restaurants in a residential neighborhood. All these variables 
positively affect one or both of QSR and CH patronage, but do not directly impact the total eat-
out count. However, through the composite linkage (that is, a combination of income and variety 
seeking effects) in our linked model, all these variables lead to an overall increase in total eat-out 
count too. Besides, our linked model also increases the eat-outs at some other restaurant segments. 
For example, consider the effect of being full-time employed and working from home every day 
(versus being unemployed). This increases the fractions of QSR/CH eat-outs and the total eat-outs, 
but also increases patronage at the CSR (12.1% increase) and FSR (2.7% increase) segments 
because of the increased total eat-outs (see the last two entries in the final row of Table 9). On the 
other hand, the unlinked model necessarily (and incorrectly) estimates that full-time employees 
working from home every day, while having a higher fraction than their peers of QSR/CH eat-
outs, also reduce their patronage of CSR and FSR restaurant segments. This shows the kind of 
complementary effects across restaurant segments that are possible in our linked model, rather 
than the strictly substitutive relationship that would be imposed by a more naïve unlinked model.  

 
7.3. Implications 
The ATE results point to several important implications, emphasizing the multidisciplinary nature 
of eating-out behavior and revealing the intricate interplay between transportation systems, urban 
planning, public health, and social equity.  

First, there is no substantial difference in total eat-outs based on age, though there are clear 
age effects based on restaurant segments, with elevated visits to QSRs and CHs among young 
individuals relative to their older counterparts. This does suggest lower vehicle miles of travel 
among the younger individuals (because QSRs and CHs are closer to places of residence than 
CSRs and FSRs), but also does not portend too well from a public health standpoint, given the 
typically low nutrient value of foods and snacks at QSRs and CHs relative to CSRs and FSRs. 
While reduced vehicle miles align with transportation sustainability goals, the increased 
consumption of less nutritious food conflicts with public health objectives. Policymakers must 
navigate this trade-off, potentially by incentivizing healthier options at QSRs and CHs or 
improving public transit or active transportation mode access to CSRs and FSRs. Additionally, 
public health policy efforts need to highlight the strong connection between healthy eating and 
healthy living among this younger adult group are warranted. Also, nutritional programming and 
education at high schools and even earlier for the upcoming generation of adults would be 
beneficial and can put a stop to the inter-generational poor meal sourcing domino effect. 

 Second, there are strong racial disparities in the total eat-outs and CSR eat-outs, as can be 
observed from the last column panel of Table 9. But, interestingly, the relative proportions of the 
allocation of eat-outs to different restaurant segments are affected by the walkability of the area 
(even though the ATEs in the last column panel do not show much variation between high and low 
walkability areas based on race). In less walkable built environments, individuals of color allocate 
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27.4% of their restaurant visits to QSRs and 45.0% to CSRs, while, in high walkable built 
environments, individuals of color allocate a reduced 20.9% to QSRs and an increased 49.6% to 
CSRs. Overall, the findings consistently validate that individuals of color exhibit lower rates of 
eating out, but also reflect a higher propensity for consuming relatively unhealthy fast food. While 
this may imply fewer trips generated from a travel perspective as the US population continues to 
diversify, it also portends a widening health disparity gap based on race, as well as an unhealthier 
population, unless appropriate interventions are designed and implemented (note that the ATEs in 
the last column of Table 9 are consistently higher for the QSR and CH segments among people of 
color relative to white individuals). For instance, the presence of enhanced walkability fosters an 
inclusive and diverse dining environment, effectively reducing the health disparity gap based on 
race. This suggests that building walkable environments not only has transportation and active 
lifestyle-based public health benefits but can also help a more equitable playing field in terms of 
the nutrient quality of food consumption. By advocating and prioritizing walkable environments, 
policymakers can stimulate a diverse culinary ecosystem, promote healthier dining practices, and 
mitigate racial disparities tied to the distribution of visits to healthier dining establishments. In this 
regard, future studies should focus on the effect of studying specific urban design features that 
promote walkability, such as safe pedestrian crossings, well-lit streets, and attractive walking 
routes. Also, policymakers can further promote healthy diets and better access to ingredients for 
healthier meal preparation by launching free diet and nutrition clinics that provide nutritional 
education, resources, and personalized guidance.  

Third, income appears to be the strongest determinant of eating out behavior and preference 
as evident from the high ATE values associated with both the overall frequency of dining out and 
the distribution of visits across various restaurant segments (especially in the CSR and FSR 
segments). These findings highlight the profound influence of income disparities on eating 
behaviors, with individuals in lower income brackets displaying a significantly greater reliance on 
the unhealthy meal options provided by QSRs (20.1% of eat-outs are allocated to QSRs among 
low income individuals, relative to 11.3% for high income individuals, as can be observed from 
the “base level” and “treatment level” columns for the income variable). This tends to be the case 
because healthy food options are often more expensive than processed and unhealthy alternatives, 
causing low-income individuals to prioritize cheaper, calorie-dense, and nutrient-poor foods. 
Access to affordable, nutritious food options in underserved areas through initiatives such as 
community gardens and pantries, farmers' markets, and subsidized grocery programs can help 
promote healthy eating habits among low income individuals. 

 Fourth, an increase in the number of vehicles (typically correlated with high income) also 
increases overall eat-out trip-making, though, interestingly, much of this additional trip-making is 
targeted at QSRs and CHs, with an increase by 85.3% for trips to QSRs and 73.4% to CHs. The 
availability of personal vehicles, a key component of the transportation system, clearly influences 
not only the frequency of eat-out trips but also the types of restaurants visited. While convenient 
for car owners, the easy access to drive-throughs and ample parking at QSRs engendered by car 
availability may contribute to a sedentary lifestyle and poorer dietary choices, potentially leading 
to increased obesity and related health problems. In contrast, the findings emphasize the potential 
benefits of having a walkable environment, and promoting walking as a transportation mode across 
all individuals, which can not only have a direct walkability-based benefit to transportation and 
public health as discussed earlier, but also an indirect benefit to both transportation and public 
health through a reduced vehicle ownership effect. The close linkage between transportation, urban 
design, and public health brought about by a walkable environment becomes clear here through 
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(a) reduced motorized trip-making, (b) a higher level of walking and physical activity, (c) 
inexpensive and ready walk mode access to healthy eating environments, and (d) a direct negative 
effect on relatively unhealthy food consumption. Building on these findings, further research is 
needed to understand the complex relationship between transportation systems and eating-out 
behavior. Studies on the length of eat-out trips, their spatial-temporal patterns, and the modes of 
transportation used could provide valuable insights. While our results show increased eat-out trips 
with higher vehicle ownership, particularly to QSRs and CHs, there is a need in the future to 
examine how alternative transportation options might influence eat-out patterns, issues that have 
not been considered in the current research. For instance, enhanced public transportation 
accessibility could counteract the increased visits to QSRs and CHs associated with higher vehicle 
ownership. Further, the role of ridesharing and micro-mobility services in eat-out trip patterns, 
especially in areas with high vehicle ownership, merits investigation. Lastly, analyzing how 
parking availability and costs in different urban contexts impact decisions to dine out could offer 
additional insights. This could help explain the higher prevalence of QSR and CH visits among 
vehicle owners and inform strategies to promote healthier eating-out behaviors across different 
transportation contexts.  

Fifth, the impact of employment and workplace location on dining habits also deserves 
attention, especially given the disruption in work location arrangements engendered by the 
pandemic. There has been substantial debate in the transportation literature about whether 
teleworking from home for a few days will lead to urban sprawl and even reduced commute vehicle 
miles traveled (VMT). In a recent paper by Asmussen et al. (2024), the authors indicate that, while 
some sprawl is inevitable as people choose residential locations that are not necessarily proximal 
to their work location due to the flexibility of teleworking, commute VMT over a period of a month 
also reduces as long as teleworking is in the order of two days per week or more (teleworking one 
day a week or less often actually increases commute VMT, based on their analysis, due to the 
increased commute distance more than making up for the one-day reduction in commuting). The 
results here suggest that teleworking, especially at high levels, also has the benefit of reducing 
non-commute eat-out trip-making (see also Caldarola and Sorrell, 2022). In particular, working 
from home three days a week for workers who work five days a week (corresponding to 60% work 
from home in the table) cuts down eat-out trip-making from an average of 3.83 per capita (for 
employees working all days from an office) to 3.10 per capita (see the total eat-outs per capita 
within the treatment column panel), constituting a 19% decrease in eat-out trip-making. This total 
eat-outs per capita further reduces by 30% for those who work all days from home relative to those 
who work all days from the office. While teleworking may increase other non-work travel relative 
to not teleworking, our results do indicate that, at least in the context of eating out, there is a net 
and clear benefit in trip reduction associated with eat-outs. As importantly, the results also indicate 
that the allocation across the many restaurant segments stays relatively fixed regardless of 
teleworking or not teleworking (see the percentage allocations across the three employment rows 
in the treatment level column panel of Table 9), suggesting that telework, while having benefits in 
terms of transportation, does not adversely impact public health considerations in terms of the 
nutrient quality of food consumption.  

Sixth, built environment measures (land-use mix, exposure to QSRs, and restaurant 
density) all play a role in shaping individuals' dining patterns, though land-use mix and restaurant 
density have relatively little effect on dining choices. However, the fraction of QSRs does have a 
more tangible positive effect on overall eat-out trip-making, and particularly on visitations to 
QSRs. These findings indirectly reflect the influence of transportation systems on eating-out 
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behavior. For instance, areas with high restaurant density are likely to have more developed 
transportation networks, potentially increasing eat-out trips via various modes. The accessibility 
of QSRs, often designed with car-centric transportation in mind (e.g., drive-throughs, ample 
parking), appears to have both negative implications for transportation as well as for public health, 
highlighting the importance of managing restaurant density and diversity to cultivate a balanced 
and healthier dining landscape. Policymakers may want to consider these insights when developing 
zoning regulations that limit restaurant density and the concentration of QSRs within residential 
zones, especially in areas with a high population of low-income individuals. This approach, 
combined with investments in walkable environments and alternative transportation options, can 
nudge individuals towards healthier choices and reduce reliance on car-dependent fast food. 

Finally, dining behaviors are notably affected by perceived pandemic risk, with overall eat-
outs decreasing and preference shifting towards CSRs. 

Overall, this discussion highlights the complex and nuanced interplay between 
transportation systems, urban design, public health outcomes, and socioeconomic factors in 
shaping eating-out behavior. It also demonstrates that interventions aimed at improving 
community well-being cannot be siloed within a single domain. Instead, effective and sustainable 
policies must consider the existing interactions across sectors. For instance, transportation 
decisions influence not just mobility, but also dietary choices and public health outcomes. 
Similarly, urban planning affects both the physical landscape and the health equity of communities. 
By recognizing and leveraging these interconnections, policymakers can collaborate across sectors 
to develop more holistic and effective strategies that simultaneously address multiple aspects of 
community well-being, from transportation efficiency and environmental sustainability to public 
health and social equity. 
 
8. CONCLUSIONS AND LIMITATIONS 
The results of this study contribute to the existing literature on dining choices by demonstrating 
the significant role of individual demographics, household characteristics, employment status/job 
characteristics, residential location BE factors, and COVID-19-related perceptions in determining 
the frequency of eating out and preferences for different restaurant segments for weekday dinner 
meals. The study recognizes the unique utilitarian/hedonic mix offered by each restaurant segment, 
leading to a formulation of the dining choice process as a deliberate “at-once” horizontal choice 
of a portfolio of restaurant segment participation occasions over a period of time.  

The study has implications for multiple fields, including transportation and urban planning, 
public health, and food services, as discussed in the previous section. From a transportation and 
urban planning perspective, in particular, there is little literature on travel-related behaviors for 
eat-out activity. Indeed, in all trip-based models as well as in all activity-based models that we are 
aware of, there is no specific eat-out activity purpose, with eat-out being aggregated within a 
broader social-recreational category or a non-work category. At the same time, in the aftermath of 
the onset of the pandemic, it is becoming increasingly important to consider eat-out as a category 
of its own. In particular, our results, as discussed earlier, suggest a strong relationship between 
employment/telework arrangements and eating-out choices, with individuals working from the 
office on all days of the week having a strong positive effect on the total number of eat-out 
episodes. The implication is that there is a good bit of activity chaining of eat-out activities during 
the evening commute of employed individuals, reinforcing the need for an activity-based modeling 
approach that considers eat-out as a stand-alone activity purpose. The model proposed in this study 
addresses this gap by forecasting monthly weekday dinner eat-outs (by restaurant segment type) 
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as a function of socio-demographics. Importantly, we diverge from traditional practice models by 
considering a suite of BE measures, identifying four such measures significantly impacting dine-
out activity generation. These BE measures can now be incorporated within the activity generation 
step of travel demand models, enhancing their accuracy and relevance. Although our model 
primarily focuses on monthly weekday dinner eat-outs, it can be modified for today’s travel 
demand models that rely on one-day “average” weekday forecasts. This modification includes 
transforming our monthly eat-out forecasts into the probability of participating in an eat-out 
activity on any given weekday. This probability can then be integrated into typical agent-based 
daily activity-based travel model frameworks. The results also emphasize the need for future 
activity-travel surveys to incorporate detailed questions related to eat-outs, as well as telework 
arrangements. Then, by predicting the frequency of eat-outs and the allocation to different 
restaurant segments, it becomes possible to estimate the number and characteristics of trips people 
will take to restaurants. This information can be used to identify areas with high transportation 
demand during peak dining hours, facilitating optimal route planning and resource allocation. In 
addition, integrating the models into activity-based travel demand models can help identify areas 
with high demand for parking near restaurants during peak dining hours. Moreover, the outputs of 
our models, in conjunction with activity-based travel models, can be used to predict the impact of 
changes in restaurant availability on travel patterns and to identify areas where new restaurants 
may have the most significant impact on travel demand. Additionally, incorporating information 
on the allocation of visits to different restaurant segments can help identify which types of 
restaurants are likely to generate the most traffic and at what times, leading to more effective 
transportation planning and resource allocation.  

The implications of our results from a public health perspective have already been 
discussed in the previous section. From a food service sector perspective, our findings emphasize 
the importance of understanding individual demographics, household characteristics, and 
employment status in shaping restaurant preferences. Restaurants can tailor their offerings and 
marketing strategies to cater to different age groups, income levels, and household structures more 
effectively. Age-related factors, for instance, reveal a higher consumption of meals at CSRs by 
older individuals. As a result, CSRs may consider offering early-bird specials, menus with larger 
font sizes, and easily accessible facilities to accommodate older adults. At the same time, our 
results reveal that the CH segment is not particularly appealing to older patrons. To broaden their 
appeal, CHs could diversify their offerings, incorporating a range of food and beverage options 
that cater to the unique preferences and dietary requirements of older individuals. Furthermore, it 
would be beneficial to cultivate an inviting atmosphere that resonates with an older demographic. 
This could entail providing ample and suitable seating options, integrating softer furniture for 
increased comfort, and ensuring good lighting. Additionally, our results unmask cultural barriers 
that appear to discourage racial minorities from eating out. To tackle these barriers, restaurant 
operators can regularly conduct anti-bias training for their employees. These measures can 
contribute to fostering a more inclusive and welcoming dining environment for individuals of all 
racial backgrounds. Household structure also plays an important role in shaping dining habits. For 
instance, the presence of children significantly increases the preference for QSRs and decreases 
the inclination to visit CSRs. To counteract this trend, CSRs could attract families by organizing 
family-friendly events, providing childcare services, or offering dedicated play areas. Finally, the 
restaurant industry must adapt to the shift in dining patterns with increased remote work. Remote 
workers eat out less frequently than those working from the physical workplace, showing a higher 
reliance on delivery and pick-up services (Haddad et al., 2023). This shifting landscape indicates 
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an urgent need for restaurants to be prepared to partner with reliable delivery services or develop 
and maintain their own ordering platforms. This will ensure that the restaurants can meet the 
evolving demand while maintaining accessible and convenient service for all consumers, 
irrespective of their work arrangements. 

Although the results of this study contribute to a richer understanding of dining choices, 
there are important avenues for further research. A more comprehensive consideration of 
additional factors and dimensions affecting/characterizing eat-out episodes, including the mode of 
transport used to reach restaurants, travel distance and location, dining companions and occasion, 
duration spent, and expenditure, is essential for accurately identifying and addressing changing 
travel patterns. Unfortunately, our dataset did not provide this level of detail. In addition, data 
concerning preferences for delivery and pickup services across different restaurant segments were 
unavailable. As delivery and pickup services are growing trends in the food service industry, a 
comprehensive understanding of these aspects could enhance our understanding of changing 
consumer behaviors. Further, our analysis was focused only on weekday dinner meals, not 
considering lunch and weekend meals. Eat-out behavior and choices during these other meal 
periods may differ substantially and warrant further investigation. Finally, eat-out decisions are 
likely a combination of individual-level preferences and the preferences of other individuals in the 
household. Thus, a hybrid individual-household level analysis would be a good direction for 
further exploration.  
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Figure 1. Illustration of analysis paths in restaurant selection literature 
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Table 1. Restaurant segments and their attributes and the utilitarian/hedonic motives they 
satisfy  

Restaurant Segment Restaurant Attributes Utilitarian/Hedonic Motives 

Quick Service (QSR) 

Fast service Utilitarian 
Low prices Utilitarian 
Convenience Utilitarian 
Limited menu options Utilitarian 

Casual Service (CSR) 

Good value Utilitarian/Hedonic 
Variety of menu items Utilitarian/Hedonic 
Relaxed atmosphere Hedonic 
Good service Utilitarian/Hedonic 

Full Service (FSR) 

High-end cuisine Hedonic 
Luxurious atmosphere Hedonic 
High-quality service Hedonic/Utilitarian 
Extensive wine list Hedonic 

 

 

Table 2. The relationship between the frequency of monthly weekday dinner eat-outs and 
the distribution to different restaurant segments 

Number of 
Eat-outs 

Observed 
Number of 
Individuals 

Distribution Across Segments 

QSR CH CSR FSR 

0 284 0.0% 0.0% 0.0% 0.0% 
1 140 13.6% 4.3% 70.0% 12.1% 
2 160 16.6% 5.3% 66.9% 11.3% 
3 79 19.4% 9.7% 63.3% 7.6% 
4 117 15.8% 7.3% 66.9% 10.0% 
5 96 16.3% 6.0% 64.4% 13.3% 
6 39 15.4% 8.1% 68.8% 7.7% 
7 12 26.2% 4.8% 60.7% 8.3% 
8 to 9 46 20.4% 8.0% 60.6% 11.0% 
10 67 26.0% 9.6% 55.5% 9.0% 
11 to 15 29 28.6% 4.2% 63.1% 4.2% 
16+ 23 12.5% 6.7% 70.6% 10.2% 
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Table 3. Distribution of eat-out trips across multiple restaurant segments 

Number of 
Eat-outs 

Number of 
Individuals 

Percentage of Individuals Visiting (X) 
Restaurant Segments 

(1) (2) (3) (4) 
1 140 100.00% 0.00% 0.00% 0.00% 
2 160 58.13% 41.88% 0.00% 0.00% 
3 79 37.97% 45.57% 16.46% 0.00% 
4 117 41.03% 40.17% 17.09% 1.71% 
5 96 39.58% 40.63% 14.58% 5.21% 
6 39 35.90% 35.90% 17.95% 10.26% 
7 12 41.67% 25.00% 33.33% 0.00% 
8 to 9 46 25.85% 41.95% 30.98% 1.22% 
10 67 14.93% 52.24% 25.37% 7.46% 
11 to 15 29 16.67% 25.69% 54.86% 2.78% 
16+ 23 15.61% 28.18% 44.77% 11.44% 
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Table 4. Descriptive statistics for individual/household-level and employment status/job variables  

Variable 
Sample Texas 

Variable 
Sample Texas 

Count % % Count % % 
Individual-Level Demographics Motorized vehicle ownership level       
Gender       0 18 1.6 5.2 
   Male 466 42.7 49.7 1 244 22.4 32.3 
   Female 626 57.3 50.3 2 501 45.9 40.1 
Age       3 or more 329 30.1 22.4 

18 to 29 64 5.9 29.9 Household structure       
30 to 49 353 32.3 36.3 Single male 84 7.7 13.3 
50 to 64 408 37.4 15.8 Single female 147 13.4 19.6 
65 or more 267 24.4 18.0 Couples without children  549 50.3 31.2 

Race       Couples with children 196 17.9 23.2 
White 944 86.4 68.6 Multiple related adults 80 7.4  6.9 
Not White 148 13.6 31.4 Multiple unrelated adults  36 3.3 5.8 

Education level       Presence of children  415 38.0 36.2 
No degree 11 1.0 15.7 Employment Status/Job Characteristics  
High school 87 8.0 46.2 Employment status       
Technical degree 104 9.5 7.4 Not employed 229 21.0 24.0 
Undergraduate  377 34.5 19.9 Part-time employee (≤30 hours per week) 50 4.6 14.9 
Graduate  513 47.0 10.8 Full-time employee (>30 hours per week) 813 74.4 61.1 

Household Characteristics Self-employment       
Annual income       Self-employed 104 9.5 6.7 

Under $24,999 38 3.4 17.1 Variable Mean SD Texas 
$25,000-$49,999 81 7.4 20.2 Commute duration       
$50,000-$74,999 148 13.6 17.3 Commute (minutes) 22.8 14.3  26.6 
$75,000-$99,999 176 16.1 12.7 Number of work days per month       
$100,000-$149,999 313 28.7 16.2 Number of days 21.5 9.2 22 
$150,000-$249,999 231 21.2 9.2 Workplace location       
$250,000 or more 105 9.6 7.3 Percentage of workdays from home in the past month  44.8 38.3 -- 
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Table 5. Descriptive statistics for built-environment variables 

Variable Mean or Proportion 
or Frequency 

Standard Deviation 
(Relative Frequency) Minimum Maximum 

Residential area type – frequency     
Rural 208 19.1% -- -- 
Suburban  628 57.5% -- -- 
Urban  256 23.4% -- -- 

Employment density (jobs per acre) 2.277 4.948 0.000 109.052 
Population density (people per acre)   4.440 4.006 21.289 8.890 
Walkability index (/100)  0.093 0.031 0.018 0.180 
Proportion of employment by type:     

Retail 0.141 0.086 0.000 0.548 
Office 0.110 0.084 0.000 0.946 
Industrial 0.227 0.167 0.000 0.915 
Service 0.386 0.152 0.003 0.940 
Entertainment 0.136 0.073 0.000 0.643 

Land-use diversity index  0.622 0.142 0.067 0.909 
Restaurant density (number of 
restaurants/100 square acres) 0.017 0.046 0.000 0.395 

Proportion of restaurants by type:     
QSR 0.136 0.122 0.000 0.600 
CH 0.029 0.034 0.000 0.333 
FSR 0.015 0.028 0.000 0.250 

Livability score 75.406 8.305 53.000 93.000 
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Table 6. Model estimation results  

Variables 

Baseline Marginal Utility Component of MDC Model Satiation Component of MDC Model Count Model 
QSR CH CSR FSR QSR CH CSR FSR Eat out 
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Exogenous Variables 
Individual Demographics 
Age (base: 18 to 29 years old) 

30 to 49 years old — — -0.163 -1.77 — — na na — — — — — — na na — — 
49 to 64 years old -0.085 -2.00 -0.163 -1.77 — — na na — — — — 0.635 4.47 na na — — 
65 and older -0.090 -1.75 -0.247 -2.22 -0.171 -2.09 na na — — — — 1.244 4.97 na na — — 

Race (base: White)  
Not White — — — — -0.253 -1.71 na na — — — — — — — — -0.064 -1.79 
Not White × (Walkability Index/100) — — — — 0.203 1.52 na na — — — — — — na na — — 

Educational level (base: below graduate degree) 
Graduate — — — — — — na na — — — — — — na na -0.061 -2.51 

Household Characteristics 
Income (base: <$25,000) 

$25,000 - $49,999 — — — — — — na na — — — — — — na na 0.184 2.12 
$50,000 - $99,999 — — — — — — na na — — — — — — na na 0.214 2.53 
$100,000 - $149,999 -0.148 -2.63 -0.139 -2.39 — — na na — — — — — — na na 0.306 3.10 
>$150,000 -0.320 -3.17 -0.229 -2.83 -0.117 -2.38 na na 1.082 3.07 — — — — na na 0.306 3.10 

Vehicle ownership (base: zero or one vehicle) 
Two vehicles 0.095 1.95 0.104 1.83 — — na na — — — — — — na na — — 
Three or more vehicles 0.138 2.30 0.118 1.90 — — na na — — — — — — na na — — 

Household structure (base: single male) 
Single female — — — — — — na na — — — — 0.500 2.61 na na -0.098 -1.99 
Multiple related adults — — — — — — na na 0.423 1.18 — — — — na na -0.064 -1.52 
Multiple unrelated adults 0.212 1.84 — — — — na na -1.573 -3.16 — — — — na na 0.202 2.59 
Presence of children 0.049 1.28 — — — — na na — — — — — — na na -0.060 -1.98 

Employment Status/Job Characteristics 
Number of workdays per month 

Number of workdays — — — — — — na na — — — — — — na na 0.573 2.85 
Workplace location 

Fraction of work days from home in the past month  — — — — — — na na — — — — — — na na -0.124 -2.97 
Employment status (base: not employed) 

Part-time — — 0.134 2.14 — — na na 1.179 2.35 — — — — na na — — 
Full-time — — 0.134 2.14 — — na na 0.601 1.57 — — — — na na — — 

Residential Location BE Factors 
Land-use 

Walkability (/100) (range 0-0.2) -0.764 -1.37 — — — — na na — — — — — — na na — — 
Land-use Diversity Index (range 0-1) — — — — 0.271 1.49 na na — — — — -1.173 -2.33 na na — — 

Restaurant density 
Fraction of QSR restaurants (range 0-0.6) 0.265 1.83 — — — — na na — — — — — — na na — — 
Restaurant density (number of restaurants/100 square acres) (range 0-0.4) — — — — — — na na — — — — — — na na 0.620 2.12 
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Table 6. Model estimation results (contd.) 

Variables 

Baseline Marginal Utility Component of MDC Model Satiation Component of MDC Model Count Model 
QSR CH CSR FSR QSR CH CSR FSR Eat out 
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Exogenous Variables 
COVID-19 Perspectives 

I or someone I live with or frequently visit is immunocompromised — — -0.103 -2.28 — — na na — — — — — — na na -0.062 -2.27 
My personal well-being was or still is at risk during the pandemic — — — — — — na na -0.443 -1.52 — — 0.258 3.203 na na -0.104 -2.37 
My personal well-being was or still is at risk during the pandemic × Age 
50 and older — — — — — — na na — — — — — — na na 0.042 1.23 

Constant na na 0.107 -0.94 0.337 2.12 -0.174 -1.89 1.293 2.68 0.916 2.75 0.350 0.70 1.382 4.45 3.425 9.71 
Threshold Shifters 

0 | 1 — — — — — — — — — — — — — — — — 4.213 17.55 
1 | 2 — — — — — — — — — — — — — — — — 0.022 1.43 
2 | 3 — — — — — — — — — — — — — — — — 0.050 2.45 
4 | 5 — — — — — — — — — — — — — — — — 0.051 2.46 
10 | 11 — — — — — — — — — — — — — — — — 0.370 3.22 
12 | 13 — — — — — — — — — — — — — — — — 0.685 2.07 
14 | 15 — — — — — — — — — — — — — — — — -2.351 -3.34 
20 | 21 — — — — — — — — — — — — — — — — 0.299 2.29 

Linking — — — — — — — — — — — — — — — — 2.718 — 
Scale (𝜅𝜅)  0.270 (t-statistic of 3.680) — — 
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Table 7. Likelihood-based data fit measures 

Summary Statistics Linked Model Unlinked Model 
Log-likelihood at convergence -3704.91 -3728.09 
Number of parameters 66 66 
Bayesian Information Criterion (BIC) 3935.77 3958.95 
Constants and threshold-shifters (CT) only 
log-likelihood* -3876.63 

2ρ  0.031 0.025 
Nested likelihood ratio test: Linked/Unlinked 
model versus constant-only model 

LR=325.08> 
𝜒𝜒(50,0.05)
2 =67.505 

LR=297.08> 
𝜒𝜒(50,0.05)
2 =67.505 

Non-nested likelihood ratio test: Linked model 
versus Unlinked model ( )6.22 0.0001Φ − <<<  

* The value refers to the (CT) only log-likelihood of the unlinked model.  
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Table 8. Aggregate fit measures 

Aggregate Goodness of Fit 
Measure 

Restaurant 
Segment Observed Linked Model Predictions Unlinked Model Predictions 

Predicted APE (%) WAPE (%) Predicted APE (%) WAPE (%) 

Number of individuals with 
zero consumption for each 
restaurant segment 

QSR 810 910 12.35 

8.34 

959 18.39 

12.71 CH 936 1005 7.37 1008 7.65 
CSR 378 424 12.17 474 25.42 
FSR 887 923 4.06 953 7.45 

Number of individuals with 
positive consumption for each 
restaurant segment 

QSR 282 181 35.82 

18.79 

133 52.82 

28.21 CH 156 86 44.87 84 45.91 
CSR 714 667 6.58 618 13.46 
FSR 205 168 18.05 139 32.24 

Number of visits to each 
restaurant segment 

QSR 744 540 27.42 

10.94 

446 40.03 

10.60 CH 272 192 29.41 268 1.34 
CSR 2454 2353 4.12 2432 0.89 
FSR 370 405 9.46 453 22.53 
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Table 9. Average Treatment Effect (ATE) for all exogenous variables 

Variables Base Level Treatment Level 

Base level Treatment level  ATE (% shift) 
Total 
eat-
outs 
per 

capita 

Allocation to restaurant 
segment (%) 

Total 
eat-
outs 
per 

capita 

Allocation to restaurant 
segment (%) 

Total 
eat-
outs 
per 

capita 

Number of visits to restaurant 
segment 

QSR CH CSR FSR QSR CH CSR FSR QSR CH CSR FSR 

Individual Demographics 
Age Less than 30 years More than 65 years 2.96 22.2 15.8 48.7 13.3 2.99 15.3 3.7 67.8 13.2 0.9 -30.4 -76.4 40.5 0.1 

Race 

White and low 
walkability (10th 
percentile=0.05) 

Not White and low 
walkability 3.36 17.1 5.2 66.7 11.0 2.27 27.4 9.2 45.0 18.4 -32.3 8.3 18.4 -54.3 13.4 

White high 
walkability (90th 
percentile=0.14) 

Not White high 
walkability 3.19 13.0 5.7 69.2 12.1 2.13 20.9 9.8 49.6 19.7 -33.3 7.1 13.2 -52.2 9.1 

Educational level Below graduate 
degree Graduate degree 3.46 15.4 5.5 67.5 11.6 2.90 15.2 5.5 67.6 11.7 -16.2 -17.3 -16.5 -16.0 -15.7 

Household Characteristics 

Income Less than $25,000 More than 
$150,000 1.57 20.1 7.5 64.7 7.7 3.36 11.3 4.4 66.7 17.6 114.5 20.9 26.1 120.8 391.7 

Vehicle ownership 0 or 1 vehicles 3+ vehicles 2.94 11.1 4.0 71.2 13.7 3.33 18.1 6.1 65.2 10.6 13.4 85.3 73.4 3.9 -12.9 

Household 
composition 

Single man Single woman 3.58 13.8 5.8 68.2 12.2 3.16 10.5 4.1 76.2 9.2 -11.6 -32.1 -37.1 -1.3 -33.9 

Multiple unrelated 
adults 

Multiple related 
adults without 
children 

5.53 15.8 6.1 67.2 10.9 3.25 15.0 5.5 67.4 12.1 -41.2 -44.1 -46.8 -41.1 -35.0 

Multiple related 
adults without 
children 

Multiple related 
adults with 
children 

3.25 14.9 5.5 67.5 12.1 2.85 17.9 5.1 65.6 11.4 -12.3 4.8 -18.7 -14.6 -17.5 

Employment Status/Job Characteristics 

Employment status 
and workplace 
location 

Unemployed 
Full-time 
employees with no 
work from home 

2.29 13.6 3.1 70.1 13.2 3.83 15.6 6.1 66.9 11.4 67.4 93.3 225.1 59.8 44.0 

Unemployed 

Full-time 
employees with 
60% workdays 
from home 

2.29 13.6 3.1 70.1 13.2 3.10 15.3 6.1 67.1 11.5 35.7 53.6 161.4 29.9 18.3 

Unemployed 

Full-time 
employees with 
100% workdays 
from home 

2.29 13.6 3.1 70.1 13.2 2.67 15.2 6.0 67.2 11.6 17.0 31.1 124.5 12.1 2.7 
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Table 9. Average Treatment Effect (ATE) for all exogenous variables (contd.) 

Variables Base Level Treatment Level 

Base level Treatment level  ATE (% shift) 
Total 
eat-
outs 
per 

capita 

Allocation to restaurant 
segment (%) 

Total 
eat-
outs 
per 

capita 

Allocation to restaurant 
segment (%) 

Total 
eat-
outs 
per 

capita 

Number of visits to restaurant 
segment 

QSR CH CSR FSR QSR CH CSR FSR QSR CH CSR FSR 

Residential Location BE Factors 

Land-use mix index 0.40 (10th 
percentile) 

0.80 (90th 
percentile) 4.88 15.7 5.5 67.3 11.5 3.17 15.4 5.6 67.3 11.8 -1.7 -4.0 2.6 -2.0 0.9 

Fraction of QSR 
restaurants 

0.00 (10th 
percentile) 

0.30 (90th 
percentile) 3.10 12.9 5.8 69.0 12.3 3.31 17.9 5.2 66.0 10.9 6.5 46.7 -4.8 2.0 -5.0 

Restaurant density 
(number of 
restaurants/100 square 
acres) 

0.00 (10th 
percentile) 

0.03 (90th 
percentile) 3.09 15.5 5.4 67.5 11.6 3.26 15.5 5.4 67.5.5 11.6 5.5 6.0 5.5 5.5 5.2 

COVID-19 Perspectives 
I or someone I live 
with or frequently 
visit is 
immunocompromised 

No Yes 3.41 15.2 6.4 67.1 11.2 2.80 15.9 3.6 68.3 12.2 -17.8 -14.0 -53.5 -16.3 -10.9 

My personal well-
being was or still is at 
risk during the 
pandemic 

No and age is less 
than 50 years 

Yes and age is less 
than 50 years 3.50 24.2 16.8 44.8 14.2 2.50 19.6 14.6 53.3 12.5 -28.3 -42.2 -37.6 -14.8 -36.4 

No and age is more 
than 50 years 

Yes and age is 
more than 50 years 3.23 11.4 4.3 689 15.4 2.78 9.5 4.0 72.7 13.8 -13.8 -28.3 -22.2 -8.9 -22.3 
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Appendix A. 

Table A.1. Unlinked model estimation results 

Variables 

Baseline Marginal Utility Component of MDC Model Satiation Component of MDC Model Count Model 
QSR CH CSR FSR QSR CH CSR FSR Eat out 
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f. 

t-
st

at
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oe
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st

at
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oe
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st

at
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oe

f. 

t-
st

at
 

Exogenous Variables 
Individual Demographics 
Age (base: 18 to 29 years old) 

30 to 49 years old — — -0.888 -4.50 — — na na — — — — — — na na — — 
49 to 64 years old -0.780 -7.56 -0.888 -4.50 — — na na — — — — 0.692 2.62 na na — — 
65 and older -0.467 -3.10 -1.568 -7.25 -0.202 1.59 na na — — — — 1.046 2.63 na na — — 

Race (base: White)  
Not White — — — — -0.623 -1.09 na na — — — — — — — — -0.199 -2.52 
Not White × (Walkability Index/100) — — — — — — na na — — — — — — na na — — 

Educational level (base: below graduate degree) 
Graduate — — — — — — na na — — — — — — na na -0.114 -2.47 

Household Characteristics 
Income (base: <$25,000) 

$25,000 - $49,999 — — — — — — na na — — — — — — na na 0.447 2.91 
$50,000 - $99,999 — — — — — — na na — — — — — — na na 0.527 3.84 
$100,000 - $149,999 -0.805 -6.49 -0.722 -6.36 — — na na — — — — — — na na 0.579 4.15 
>$150,000 -2.357 -11.80 -1.358 -10.53 -1.050 -7.57 na na 0.846 2.06 — — — — na na 0.579 4.15 

Vehicle ownership (base: zero or one vehicle) 
Two vehicles 0.322 2.13 0.172 1.52 — — na na — — — — — — na na — — 
Three or more vehicles 0.436 2.67 0.156 1.45 — — na na — — — — — — na na — — 

Household structure (base: single male) 
Single female — — — — — — na na — — — — 0.845 2.87 na na -0.170 -1.94 
Multiple related adults — — — — — — na na -0.244 -1.12 — — — — na na -0.117 -2.40 
Multiple unrelated adults 0.741 1.74 — — — — na na -1.669 -2.95 — — — — na na 0.360 2.38 
Presence of children 1.019 9.71 — — — — na na — — — — — — na na -0.081 -1.50 

Employment Status/Job Characteristics 
Number of workdays per month 

Number of workdays — — — — — — na na — — — — — — na na 1.295 4.51 
Workplace location 

Fraction of work days from home in the past month  — — — — — — na na — — — — — — na na -0.325 -4.11 
Employment status (base: not employed) 

Part-time — — 0.778 5.62 — — na na -0.550 -1.94 — — — — na na — — 
Full-time — — 0.778 5.62 — — na na -0.550 -1.94 — — — — na na — — 

Residential Location BE Factors 
Land-use 

Walkability (/100) (range 0-0.2) -1.720 -1.03 — — — — na na — — — — — — na na — — 
Land-use Diversity Index (range 0-1) — — — — 1.742 2.51 na na — — — — -2.710 -3.08 na na — — 

Restaurant density 
Fraction of QSR restaurants (range 0-0.6) 0.716 1.81 — — — — na na — — — — — — na na — — 
Restaurant density (number of restaurants/100 square acres) (range 0-0.4) — — — — — — na na — — — — — — na na 0.969 1.63 
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Table A.1. Unlinked model estimation results (contd.) 

Variables 

Baseline Marginal Utility Component of MDC Model Satiation Component of MDC Model Count Model 
QSR CH CSR FSR QSR CH CSR FSR Eat out 
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Exogenous Variables 
COVID-19 Perspectives 

I or someone I live with or frequently visit is immunocompromised — — -0.942 -9.89 — — na na — — — — — — na na -0.214 -2.87 
My personal well-being was or still is at risk during the pandemic — — — — — — na na 0.460 2.55 — — 0.536 3.91 na na -0.086 -1.92 
My personal well-being was or still is at risk during the pandemic × Age 
50 and older — — — — — — na na — — — — — — na na 0.119 1.66 

Constants na na -0.944 -2.64 2.482 4.94 -1.377 -4.87 -0.873 -2.48 -1.714 -8.30 -1.986 -3.20 -1.827 -10.98 2.003 14.32 
Threshold Shifters 

0 | 1 — — — — — — — — — — — — — — — — 2.118 32.43 
1 | 2 — — — — — — — — — — — — — — — — 0.117 3.38 
2 | 3 — — — — — — — — — — — — — — — — 0.196 5.42 
4 | 5 — — — — — — — — — — — — — — — — 0.208 5.01 
10 | 11 — — — — — — — — — — — — — — — — 1.364 5.85 
12 | 13 — — — — — — — — — — — — — — — — 2.525 2.45 
14 | 15 — — — — — — — — — — — — — — — — -8.208 -7.32 
20 | 21 — — — — — — — — — — — — — — — — 0.717 1.87 

Goodness of Fit 
Log-likelihood at convergence -3728.09 
Bayesian Information Criterion (BIC) 3958.95 
 �̅�𝜌2 -3876.63 
Constants and threshold-shifters (CT) only log-likelihood* 0.025 
Nested likelihood ratio test: Unlinked model versus constants and 
threshold-shifters only model 

LR=297.08> 𝜒𝜒(50,0.05)
2 =67.505 

* The value refers to the (CT) only log-likelihood of the unlinked model. 
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