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ABSTRACT 

The last six years since the Austin IATBR conference has been a very fertile period for 

the germination of new conceptual, theoretical, and computational developments in the field of 

econometric choice models. There is a sense today of absolute control over the kind of choice 

behavior structures one wants to specify in empirical contexts and a renewed excitement in the 

field. This paper reviews these recent developments and assembles a list of recent applications of 

advanced discrete choice models. 

 

 

 



1. INTRODUCTION 

Econometric models of choice have witnessed a literal revolution in recent years, as the 

ability of the analyst to incorporate and estimate realistic behavioral structures has been 

enhanced considerably. There are two reasons for this revolution. One is that, after a long hiatus, 

new model structures are being discovered and introduced within the framework of Generalized 

Extreme Value (GEV) models. The flexibility that such new GEV constructs offer are very 

valuable, especially since the resulting choice probability and likelihood functions still retain a 

desirable analytic closed-form structure. Second, there has been substantial progress in 

simulation methods to estimate likelihood functions involving analytically intractable 

multidimensional integrals. This has allowed analysts to estimate practically any choice model 

structure, without limiting the specification to mathematically convenient, and behaviorally less 

desirable model forms. In regard to both the points above, it is true that there have been some 

slow and steady advances in choice modeling techniques over the past three decades since 

McFadden’s pioneering work in the early 1970s. But it is by no means an exaggeration to state 

that the last 6 years (since the Austin IATBR conference) has been one of the most fertile periods 

in sowing the seeds for a new way of thinking, and applying, choice models. Specifically, these 

past few years has seen a surge in progress, a feeling of liberation from the “bondage” of 

restrictive model forms, a sense of absolute control over the kind of behavioral structures one 

wants to specify in empirical contexts, renewed excitement in the field, and clasped anticipation 

of new developments on the horizon.  

The purpose of this paper is to review these recent methodological advances in 

econometric models of choice, and identify the challenges ahead. Several points are in order 

before proceeding to the remainder of the paper. First, this paper assumes a reasonably high level 

 1



of familiarity with discrete choice models, and so does not belabor over the basic structures of 

model forms such as the multinomial logit, nested logit, probit, heteroscedastic extreme value, 

and mixed logit models. Readers interested in the basics of these forms are encouraged to consult 

a number of recent references, including Bhat (2003a; 2002), Koppelman and Sethi (2000), 

Silliano and Ortúzar (2005), Greene and Hensher (2003), and Train (2003). The last reference, 

which is a book on simulation methods for discrete choice is, in particular, a comprehensive 

resource for readers. Second, this paper does not address data collection, survey methodology, 

and data imputation issues. While good econometric modelers always realize the importance of 

data quality, pay attention to data-related issues, and assemble the data with great care, there is 

only so much that can be covered here. For interested readers, several topics regarding data 

collection, survey methodology, and imputation considerations have been addressed in papers 

presented at a recent conference in South Africa (see Jones and Stopher, 2003). Additionally, 

Brownstone et al. (2003) and Steinmetz and Brownstone (2005) are good reading sources for 

survey nonresponse and imputation approaches. Third, we focus on econometric discrete choice 

models or model forms that are very similar to econometric discrete choice models. Limited 

dependent variable models that combine discrete choices with continuous and/or grouped 

decisions (including sample selection models) are not examined here.  Lewbel and Linton (2002) 

and the references therein provide an overview of recent developments in the area of semi-

parametric and non-parametric specifications in the context of limited dependent variables, and 

Bhat (2002) provides an overview in the context of applications in activity and travel behavior 

analysis.  

The rest of the paper is structured as follows. The next section discusses four classes of 

advanced discrete choice model structures. Section 3 presents recent advances in the area of 
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simulation techniques to estimate econometric models with analytically intractable probability 

expressions. Section 3 identifies a few emerging methodological directions in discrete choice 

modeling. Finally, Section 4 concludes the paper with a presentation of recent applications of 

advanced discrete choice models. 

 

2. ADVANCED DISCRETE CHOICE MODEL STRUCTURES 

This section discusses four types of advanced discrete choice model structures: (1) The 

GEV class of models, (2) The mixed multinomial logit (MMNL) class of models, (3) The mixed 

GEV (MGEV) class of models, and (4) Other mixed discrete choice models. 

 

2.1 The GEV Class of Models 

The GEV-class of models relaxes the independence from irrelevant alternatives (IIA) 

property of the multinomial logit model by relaxing the independence assumption between the 

error terms of alternatives. In other words, a generalized extreme value error structure is used to 

characterize the unobserved components of utility as opposed to the univariate and independent 

extreme value error structure used in the multinomial logit model. There are three important 

characteristics of all GEV models: (1) The overall variances of the alternatives (i.e., the scale of 

the utilities of alternatives) are assumed to be identical across alternatives, (2) The choice 

probability structure takes a closed-form expression, and (3) all GEV models collapse to the 

MNL model when the parameters generating correlation take values that reduce the correlations 

between each pair of alternatives to zero. With respect to the last point, it has to be noted that the 

MNL model is also a member of the GEV class, though we will reserve the use of the term 

“GEV class” to models that constitute generalizations of the MNL model. 
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 The general structure of the GEV class of models was derived by McFadden (1978) from 

the random utility maximization hypothesis, and generalized by Ben-Akiva and Francois (1983). 

Several specific GEV structures have been formulated and applied within the GEV class, including 

the Nested Logit (NL) model (Williams, 1977; McFadden, 1978; Daly and Zachary, 1978), the 

Paired Combinatorial Logit (PCL) model (Chu, 1989; Koppelman and Wen, 2000), the Cross-

Nested Logit (CNL) model (Vovsha, 1997), the Ordered GEV (OGEV) model (Small, 1987), the 

Multinomial Logit-Ordered GEV (MNL-OGEV) model (Bhat, 1998a), the ordered GEV-nested 

logit (OGEV-NL) model (Whelan et al., 2002) and the Product Differentiation Logit (PDL) model 

(Breshanan et al., 1997). More recently, Wen and Koppelman (2001) proposed a general GEV 

model structure, which they referred to as the Generalized Nested Logit (GNL) model. Swait 

(2001), independently, proposed a similar structure, which he refers to as the choice set Generation 

Logit (GenL) model; Swait’s derivation of the GenL model is motivated from the concept of latent 

choice sets of individuals, while Wen and Koppelman’s derivation of the GNL model is motivated 

from the perspective of flexible substitution patterns across alternatives.  Wen and Koppelman 

(2001) illustrate the general nature of the GNL model formulation by deriving the other GEV model 

structures mentioned earlier as special restrictive cases of the GNL model or as approximations to 

restricted versions of the GNL model. Swait (2001) presents a network representation for the GenL 

model, which also applies to the GNL model.  

Researchers, of course, are not restricted to the GEV structures identified above, and can 

generate new GEV model structures customized to their specific empirical situation. In fact, only 

a handful of possible GEV model structures appear to have been implemented, and there are 

likely to be several, yet undiscovered, model structures within the GEV class. For example, 
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Karlstrom (2001) has proposed a GEV model that is quite different in form from all other GEV 

models derived in the past.  

One impediment to the generation of new GEV models, however, is that the conditions 

developed by McFadden for qualification as a GEV structure are based on a generating function 

G, which may not map easily into a desired correlation structure. Recent work by Bierlaire 

(2002) and Daly and Bierlaire (2003) have the potential to remove this impediment. These two 

researchers propose a network-based structure to characterize the underlying correlation structure 

in any choice situation, and show how this network-based representation, if it satisfies some 

simple conditions (non-emptiness, finiteness, and being circuit-free), can immediately be 

translated to a model consistent with the GEV structure (this work constitutes a formal and 

rigorous extension of Swait’s network representation for the GenL model). The value of Daly 

and Bierlaire’s contribution is in facilitating the translation of intuitive correlation patterns into a 

GEV structure without the need to start from McFadden’s mathematical conditions. In summary, 

the work of Daly and Bierlaire should allow the realization and exploitation of the true potential 

of the GEV structure to capture correlation patterns.  

Of course, GEV models based on complex network representations, while allowing 

flexibility in substitution patterns, also entail the estimation of a substantial number of 

dissimilarity and allocation parameters. The net result is that the analyst will have to impose 

informed restrictions on these GEV models, customized to the application context under 

investigation.  

An important point to note here is that GEV models are consistent with utility 

maximization only under rather strict (and often empirically violated) restrictions on the 

dissimilarity and allocation parameters (specifically, the dissimilarity and allocation parameters 
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should be bounded between 0 and 1 for global consistency with utility maximization, and the 

allocation parameters for any alternative should add to 1). The origin of these restrictions can be 

traced back to the requirement that the variance of the joint alternatives be identical in the GEV 

models. Also, GEV models do not relax assumptions related to taste homogeneity in response to 

an attribute (such as travel time or cost in a mode choice model) due to unobserved decision-

maker characteristics, and cannot be applied to panel data with temporal correlation in 

unobserved factors within the choices of the same decision-making agent. However, it is indeed 

refreshing to note the renewed interest and focus on GEV models today, since such models do 

offer computational tractability, provide a theoretically sound measure for benefit valuation, and 

can form the basis for formulating mixed models that accommodate random taste variations and 

temporal correlations in panel data (see Section 2.3). 

 

2.2 The MMNL Class of Models 

 The MMNL class of models, like the GEV class of models, generalizes the MNL model. 

However, unlike the closed form of the GEV class, the MNL class involves the analytically 

intractable integration of the multinomial logit formula over the distribution of unobserved 

random parameters. It takes the structure shown below: 
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from a density function f(.), and  is a vector of underlying moment parameters characterizing 

f(.). 

θ
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qsπ  in the equation above can be further parameterized as a function of observable individual 

attributes using any function that satisfies ∑ =
s

qs 1π  (usually a multinomial logit form is used). 

In this first form of a discrete distribution for the vector β , the MMNL model becomes 

equivalent to the latent-class model that has been used in marketing and in transportation (see 

Kamakura and Russell, 1989; Greene and Hensher, 2003; Bhat, 1997; Gupta and Chintagunta, 

1994). A second possible discrete distribution approach is to use a non-parametric form 

separately for each coefficient in the model. This approach does not impose any prior continuous 

distribution function, and allows the data to identify the mass points and the associated mixing 

weights for each coefficient separately. Of course, such a non-parametric distribution 

specification can lead to convergence problems unless the number of mass points for each 

coefficient is limited to a small number. 

Andrews et al. (2002) compare the continuous distribution assumption with the first of 

the two forms of discrete distributions discussed above for a mixed logit model estimated using 
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repeated choice data. They find that the continuous distribution performs poorly in terms of 

parameter recovery and performance on a validation sample when the number of choice 

occasions from the same decision-making agent is small (3 or less). However, with a higher 

number of choices per household, there are no differences in parameter recovery and predictive 

validity between the discrete and continuous heterogeneity representations, though the 

continuous representation has an advantage in data fit in the estimation sample. Their results 

show that both the continuous and discrete distributions are very robust to violations of the 

assumed distributional assumptions, and they conclude that the selection between continuous and 

discrete distributions for consumer heterogeneity “is a matter of opinion and personal 

preference”. Greene and Hensher (2003) also compare the continuous distribution assumption 

with a discrete distribution using a 2000 stated preference survey of long distance travelers in 

New Zealand. They reach the same conclusions as Andrews et al. (2002), and emphasize the 

need for additional empirical investigation comparing the continuous and discrete forms. 

In the rest of this section, we focus on a continuous distribution assumption for f(β ), 

since this has been the more dominant assumption under the label of mixed logit. 

The first applications of the mixed logit structure of Equation (1) appear to have been by 

Boyd and Mellman (1980) and Cardell and Dunbar (1980). However, these were not individual-

level models and, consequently, the integration inherent in the mixed logit formulation had to be 

evaluated only once for the entire market. Train (1986) and Ben-Akiva et al. (1993) applied the 

mixed logit to customer-level data, but considered only one or two random coefficients in their 

specifications. Thus, they were able to use quadrature techniques for estimation. The first 

applications to realize the full potential of mixed logit by allowing several random coefficients 
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simultaneously include Revelt and Train (1998) and Bhat (1998b), both of which were originally 

completed in the early 1996 and exploited the advances in simulation methods. 

 The MMNL model structure of Equation (1) can be motivated from two very different 

(but formally equivalent) perspectives (see Bhat, 2000a). Specifically, a MMNL structure may 

be generated from an intrinsic motivation to allow flexible substitution patterns across 

alternatives (error-components structure) or from a need to accommodate unobserved 

heterogeneity across individuals in their sensitivity to observed exogenous variables (random-

coefficients structure) or a combination of the two. Examples of the error-components 

motivation in the literature include Brownstone and Train (1999), Bhat (1998c), Jong et al. 

(2002a,b), Whelan et al. (2002), and Batley et al. (2001a,b). The reader is also referred to the 

work of Walker and her colleagues (Ben-Akiva et al., 2001; Walker, 2002) and Munizaga and 

Alvarez-Daziano (2002) for important identification issues in the context of the error 

components MMNL model. Examples of the random-coefficients structure include Revelt and 

Train (1998), Bhat, (2000b), Hensher (2001), and Rizzi and Ortúzar (2003). 

 A normal distribution is assumed for the density function f(.) in Equation (1) when an 

error-components structure forms the basis for the MMNL model. However, while a normal 

distribution remains the most common assumption for the density function f(.) for a random-

coefficients structure, other density functions may be more appropriate. For example, a log-

normal distribution may be used if, from a theoretical perspective, an element of β has to take the 

same sign for every individual (such as a negative coefficient on the travel cost parameter in a 

travel mode choice model). Other distributions that have been used in the literature include 

triangular and uniform distributions (see Revelt and Train, 2000; Train, 2001; Hensher and 

Greene, 2003) and the Rayleigh distribution (Siikamaki and Layton, 2001). The triangular and 
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uniform distributions have the nice property that they are bounded on both sides, thus precluding 

the possibility of very high positive or negative coefficients for some decision-makers as would 

be the case if normal or log-normal distributions are used. By constraining the mean and spread 

to be the same, the triangular and uniform distributions can also be customized to cases where all 

decision-makers should have the same sign for one or more coefficients. The Rayleigh 

distribution, like the lognormal distribution, assures the same sign of coefficients for all decision-

makers.1  

The MMNL class of models can approximate any discrete choice model derived from 

random utility maximization (including the multinomial probit) as closely as one pleases (see 

McFadden and Train, 2000). The MMNL model structure is also conceptually appealing and 

easy to understand since it is the familiar MNL model mixed with the multivariate distribution 

(generally multivariate normal) of the random parameters (see Hensher and Greene, 2003). In the 

context of relaxing the IID error structure of the MNL, the MMNL model represents a 

computationally efficient structure when the number of error components (or factors) needed to 

generate the desired error covariance structure across alternatives is much smaller than the 

number of alternatives (see Bhat, 2003b). The MMNL model structure also serves as a 

comprehensive framework for relaxing both the IID error structure as well as the response 

homogeneity assumption.  

A few notes are in order here about the MMNL model vis-à-vis the MNP model. First, 

both these models are very flexible in the sense of being able to capture random taste variations 

and flexible substitution patterns. Second, both these models are able to capture temporal 

correlation over time, as would normally be the case with panel data. Third, the MMNL model is 

                                                 
1 The reader is referred to Hess and Axhausen (2005) for a review of alternative distribution forms and the ability of 
these distributed forms to approximate several different types of true distributional forms. 
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able to accommodate non-normal distributions for random coefficients, while the MNP model 

can handle only normal distributions. Fourth, researchers and practitioners familiar with the 

traditional MNL model might find it conceptually easier to understand the structure of the 

MMNL model compared to the MNP. Fifth, both the MMNL and MNP model, in general, 

require the use of simulators to estimate the multidimensional integrals in the likelihood 

function. Sixth, the MMNL model can be viewed as arising from the use of a logit-smoothed 

Accept-Reject (AR) simulator for an MNP model (see Bhat 2000c, and Train 2003; page 124). 

Seventh, the simulation techniques for the MMNL model are conceptually simple, and 

straightforward to code. They involve simultaneous draws from the appropriate density function 

with unrestricted ranges for all alternatives. Overall, the MMNL model is very appealing and 

broad in scope, and there appears to be little reason to prefer the MNP model over the MMNL 

model. However, there is at least one exception to this general rule, corresponding to the case of 

normally distributed random taste coefficients. Specifically, if the number of normally 

distributed random coefficients is substantially more than the number of alternatives, the MNP 

model offers advantages because the dimensionality is of the order of the number of alternatives 

(in the MMNL, the dimensionality is of the order of the number of random coefficients)2. 

 

2.3 The Mixed GEV Class of Models 

 The MMNL class of models is very general in structure and can accommodate both 

relaxations of the IID assumption as well as unobserved response homogeneity within a simple 

unifying framework. Consequently, the need to consider a mixed GEV class may appear 

unnecessary. However, there are instances when substantial computational efficiency gains may 

                                                 
2 The reader is also referred to Munizaga and Alvarez-Daziano (2002) for a detailed discussion comparing the 
MMNL model with the nested logit and MNP models. 
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be achieved using a MGEV structure. Consider, for instance, Bhat and Guo’s (2004) model for 

household residential location choice. It is possible, if not very likely, that the utility of spatial 

units that are close to each other will be correlated due to common unobserved spatial elements. 

A common specification in the spatial analysis literature for capturing such spatial correlation is 

to allow contiguous alternatives to be correlated. In the MMNL structure, such a correlation 

structure may be imposed through the specification of a multivariate MNP-like error structure, 

which will then require multidimensional integration of the order of the number of spatial units 

(see Bolduc et al., 1996).  On the other hand, a carefully specified GEV model can accommodate 

the spatial correlation structure within a closed-form formulation.3 However, the GEV model 

structure of Bhat and Guo cannot accommodate unobserved random heterogeneity across 

individuals. One could superimpose a mixing distribution over the GEV model structure to 

accommodate such random coefficients, leading to a parsimonious and powerful MGEV 

structure. Thus, in a case with 1000 spatial units (or zones), the MMNL model would entail a 

multidimensional integration of the order of 1000 plus the number of random coefficients, while 

the MGEV model involves multidimensional integration only of the order of the number of 

random coefficients (a reduction of dimensionality of the order of 1000!). 

 In addition to computational efficiency gains, there is another more basic reason to prefer 

the MGEV class of models when possible over the MMNL class of models. This is related to the 

fact that closed-form analytic structures should be used whenever feasible, because they are 

always more accurate than the simulation evaluation of analytically intractable structures (see 

Train, 2003; pg. 191). In this regard, superimposing a mixing structure to accommodate random 

coefficients over a closed form analytic structure that accommodates a particular desired inter-

                                                 
3 The GEV structure used by Bhat and Guo is a restricted version of the GNL model proposed by Wen and 
Koppelman. Specifically, the GEV structure takes the form of a paired GNL (PGNL) model with equal dissimilarity 
parameters across all paired nests (each paired nest includes a spatial unit and one of its adjacent spatial units). 
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alternative error correlation structure represents a powerful approach to capture random taste 

variations and complex substitution patterns. 

 Clearly, there are valuable gains to be achieved by combining the state-of-the-art 

developments in closed-form GEV models with the state-of-the-art developments in open-form 

mixed distribution models. With the recent advances in simulation techniques, there appears to 

be a feeling among some discrete choice modelers that there is no need for any further 

consideration of closed-form structures for capturing correlation patterns. But, as Bhat and Guo 

(2004) have demonstrated in their paper, the developments in GEV-based structures and open-

form mixed models are not as mutually exclusive as may be the impression in the field; rather 

these developments can, and are, synergistic, enabling the estimation of model structures that 

cannot be estimated using GEV structures alone or cannot be efficiently estimated (from a 

computational standpoint) using a mixed multinomial logit structure. 

 

2.4 Other Mixed Discrete Choice Models 

The mixing of a distribution with a closed form analytic expression has application far 

beyond the MMNL and MGEV structures discussed above. For example, random coefficients 

can be imposed in an ordered-response multinomial model or a count model. For instance, Bhat 

(1999) uses a mixed ordered-response model to analyze stop-making of workers during the 

evening commute home. He accommodates unobserved heterogeneity across individuals in the 

propensity to participate in evening commute stops due to variation in sensitivity to commute 

travel time, work duration, and work departure times.  
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3. SIMULATION ESTIMATION TECHNIQUES  

The mixed models discussed in the previous section require the evaluation of analytically 

intractable multidimensional integrals in the classical estimation approach. The approximation of 

these integrals is undertaken using simulation techniques that entail the evaluation of the 

integrand at a number of draws taken from the domain of integration (usually the multivariate 

normal distribution) and computing the average of the resulting integrand values across the 

different draws. The draws can be taken by generating standard univariate draws for each 

dimension, and developing the necessary multivariate draws through a simple cholesky 

decomposition of the target multivariate covariance matrix applied to the standard univariate 

draws. Thus, the focus of simulation techniques is on generating N sets of S univariate draws for 

each individual, where N is the number of draws and S is the dimensionality of integration. To 

maintain independence over the simulated likelihood functions of decision-makers, different 

draws are used for each individual. 

Three broad simulation methods are available for generating the draws needed for mixed 

model estimations: (a) Monte Carlo methods, (b) Quasi-Monte Carlo methods, and (c) 

Randomized Quasi-Monte Carlo methods. Each of these is discussed descriptively below. 

Mathematical details are available in Bhat (2001; 2003b) and Train (2003; Chapter 9). 

 

3.1 The Monte-Carlo Method 

 The Monte-Carlo simulation method (or “the method of statistical trials”) to evaluating 

multidimensional integrals entails computing the integrand at a sequence of “random” points and 

computing the average of the integrand values. The basic principle is to replace a continuous 

average by a discrete average over randomly chosen points. Of course, in actual implementation, 
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truly random sequences are not available; instead, deterministic pseudo-random sequences which 

appear random when subjected to simple statistical tests are used (see Niederreiter, 1995 for a 

discussion of pseudo-random sequence generation). This pseudo-Monte Carlo (or PMC) method 

has a slow asymptotic convergence rate with the expected integration error of the order of N -0.5 

in probability (N being the number of pseudo-random points drawn from the s-dimensional 

integration space). Thus, to obtain an added decimal digit of accuracy, the number of draws 

needs to be increased hundred fold. However, the PMC method's convergence rate is remarkable 

in that it is applicable for a wide class of integrands (the only requirement is that the integrand 

have a finite variance; see Spanier and Maize, 1991). Further, the integration error can be easily 

estimated using the sample values and invoking the central limit theorem, or by replicating the 

evaluation of the integral several times using independent sets of PMC draws and computing the 

variance in the different estimates of the integrand. 

 

3.2 The Quasi-Monte Carlo Method 

 The quasi-Monte Carlo method is similar to the Monte Carlo method in that it evaluates a 

multidimensional integral by replacing it with an average of values of the integrand computed at 

discrete points. However, rather than using pseudo-random sequences for the discrete points, the 

quasi-Monte Carlo approach uses “cleverly” crafted non-random and more uniformly distributed 

sequences (labeled as quasi-Monte Carlo or QMC sequences) within the domain of integration. 

The underlying idea of the method is that it is really inconsequential whether the discrete points 

are truly random; of primary importance is the even distribution (or maximal spread) of the 

points in the integration space. The convergence rate for quasi-random sequences is, in general, 

faster than for pseudo-random sequences. In particular, the theoretical upper bound of the 
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integration error for reasonably well-behaved smooth functions is of the order of N -1 in the QMC 

method, where N is the number of quasi-random integration points.  

 The QMC sequences have been well known for a long time in the number theory 

literature. However, the focus in number theory is on the use of QMC sequences for accurate 

evaluation of a single multidimensional integral. In contrast, the focus of the maximum 

simulated likelihood estimation of econometric models is on accurately estimating underlying 

model parameters through the evaluation of multiple multidimensional integrals, each of which 

involves a parameterization of the model parameters and the data. The intent in the latter case is 

to estimate the model parameters accurately, and not expressly on evaluating each integral itself 

accurately. 

Bhat (2001) proposed and introduced, in 1999, a simulation approach using QMC 

sequences for estimating discrete choice models with analytically intractable likelihood 

functions. There are several quasi-random sequences that may be employed in the QMC 

simulation method. Among these sequences are those that belong to the family of r-adic 

expansion of integers: the Halton, Faure, and Sobol sequences (see Bratley et al., 1992 for a 

good review). Bhat used the Halton sequence in the QMC simulation because of its conceptual 

simplicity. In his approach, Bhat generates a multidimensional QMC sequence of length N*Q, 

then uses the first N points to compute the contribution of the first observation to the criterion 

function, the second N points to compute the contribution of the second observation, and so on. 

This technique is based on averaging out of simulation errors across observations. But rather 

than being random sets of points across observations, each set of N points fills in the gaps left by 

the sets of N points used for previous observations. Consequently, the averaging effect across 

observations is stronger when using QMC sequences than when using the PMC sequence. In 
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addition to the stronger averaging out effect across observations, the QMC sequence also 

provides more uniform coverage over the domain of the integration space for each observation 

compared to the PMC sequence. This enables more accurate computations of the probabilities for 

each observation with fewer points (i.e., smaller N) when QMC sequences are used. 

Bhat compared the Halton and PMC sequences in their ability to accurately and reliably 

recover model parameters in a mixed logit model. His experimental and computational results 

indicated that the Halton sequence outperformed the PMC sequence by a substantial margin. 

Specifically, he found that 125 Halton draws produced more accurate parameters than 2000 PMC 

draws in estimation, and noted that this substantial reduction in computational burden can 

dramatically influence the use of mixed models in practice. Subsequent studies by Train (2000), 

Hensher (2001), Munizaga and Alvarez-Daziano (2001), and Jong et al. (2002a,b) have 

confirmed this dramatic improvement using the Halton sequence. For example, Hensher (2001) 

found that the data fit and parameter values of the mixed logit model in his study remained about 

the same beyond 50 Halton draws and concludes that the QMC approach is “a phenomenal 

development in the estimation of complex choice models”.  

Sandor and Train (2004) have found that there is some room for further improvement in 

accuracy and efficiency using more complex digital QMC sequences proposed by Niederreiter 

and his colleagues relative to the Halton sequence. Bhat (2003b) suggests a scrambled Halton 

approach in high dimensions to reduce the correlation along high dimensions of a standard 

Halton sequence (see also Braaten and Weller, 1979), and shows that the scrambling improves 

the performance of the standard Halton sequence. However, at least thus far, the most important 

benefit appears to be in using QMC sequences compared to PMC sequences.  
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A limitation of the QMC method for simulation estimation, however, is that there is no 

straightforward practical way of statistically estimating the error in integration, because of the 

deterministic nature of the QMC sequences. Theoretical results are available to compute the 

upper bound of the error using a well-known theorem in number theory referred to as the 

Koksma-Hlawka inequality (Zaremba, 1968). But, computing this theoretical error bound is not 

practical and, in fact, is much more complicated than evaluating the integral itself (Owen, 1997; 

Tuffin, 1996). Besides, the upper bound of the integration error from the theoretical result can be 

very conservative (Owen, 1998). 

 

3.3 The Hybrid Method   

The discussion in the previous two sections indicates that QMC sequences provide better 

accuracy than PMC sequences, while PMC sequences provide the ability to estimate the 

integration error easily. To take advantage of the strengths of each of these two methods, it is 

desirable to develop hybrid or randomized QMC sequences (see Owen, 1995 for a history of 

such hybrid sequences). The essential idea is to introduce some randomness into a QMC 

sequence, while preserving the equidistribution property of the underlying QMC sequence. Then, 

by using several independent randomized QMC sequences, one can use standard statistical 

methods to estimate integration error.  

 Bhat (2003b) describes a process to randomize QMC sequences for use in simulation 

estimation. This process, based on Tuffin’s (1996) randomization procedures, is described 

intuitively and mathematically by Bhat in the context of a single multidimensional integral. We 

discuss the intuitive perspective here, which is illustrated in Figure 1 in two dimensions. The first 

diagram in Figure 1 plots 100 points of the standard Halton sequence in the first two dimensions. 
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The second diagram plots 100 points of the standard Halton sequence shifted by 0.5 in the first 

dimension and 0 in the second dimension. The result of the shifting is as follows. For any point 

below 0.5 in the first dimension in the first diagram (for example, the point marked 1), the point 

gets moved by 0.5 toward the right in the second diagram. For any point above 0.5 in the first 

dimension in the first diagram (such as the point marked 2), the point gets moved to the right, 

hits the right edge, bounces off this edge to the left edge, and is carried forward so that the total 

distance of the shift is 0.5 (another way to visualize this shift is to transform the unit square into 

a cylinder with the left and right edges “sewn” together; then the shifting entails moving points 

along the surface of the cylinder and perpendicular to the cylinder axis). Clearly, the two-

dimensional plot in the second diagram of Figure 1 is also well-distributed because the relative 

positions of the points do not change from that in the first diagram; there is simply a shift of the 

overall pattern of points. The last diagram in Figure 1 plots the case where there is a shift in both 

dimensions; 0.5 in the first and 0.25 in the second. For the same reasons discussed in the context 

of the shift in one dimension, the sequence obtained by shifting in both dimensions is also well-

distributed.  

 It should be clear from above that any vector  can be used to generate a new 

QMC sequence from an underlying QMC sequence. An obvious way of introducing randomness 

is then to randomly draw u from a multidimensional uniform distribution. 

Su }1,0{∈

 

3.4 Summary on Simulation Estimation of Mixed Models 

The discussion above shows the substantial progress in simulation methods, and the 

arrival of quasi-Monte Carlo (QMC) methods as an important breakthrough in the simulation 

estimation of advanced discrete choice models. The discovery and application of QMC 
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sequences for discrete choice model estimation is a watershed event and has fundamentally 

changed the way we think about, specify, and estimate discrete choice models. However, lest we 

should leave the impression that the use and application of QMC methods has matured to the 

point that little addition scientific enquiry is needed, it is also important to identify some quirks 

that have been noticed in QMC-based estimation. Specifically, it has been noticed that QMC-

based methods, on occasion, do provide results that are much worse than the norm for such 

methods. Similarly, using fewer QMC-draws in simulation, sometimes, tend to provide 

substantially better results than using a higher number of QMC draws. These results are 

perplexing; it is unclear if these unexpected results are due to certain properties of QMC 

sequences that we are yet to understand or whether it is due to the optimization algorithm used. 

In either case, a better understanding of the cause should provide insights to further improvement 

in QMC-based simulation methods for discrete choice modeling. 

Notwithstanding the issues raised above, it must be emphasized that QMC methods have 

always provided far superior results than PMC methods and with much fewer draws. There 

appears to be little doubt that QMC methods will become the “bread and butter” of simulation 

techniques in the field in the years to come.  

 

3.5 Bayesian Estimation of the Mixed Models 

Some recent papers (Brownstone, 2001; Train, 2001; Silliano and Ortúzar, 2005) have 

considered a Bayesian estimation approach for MMNL model estimation as opposed to the 

classical estimation approaches discussed above (see also Train, 2003, Chapter 12, for a 

complete discussion of Bayesian methods).  By considering the individual-specific parameters to 

be parameters themselves (in addition to the population mean and variance of the distribution of 
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these parameters) and drawing from the posterior distributions using Gibbs sampling, the 

Bayesian approach avoids the need for integration. However, convergence to draws from the 

posterior distribution requires adequate repeated iterations of draws of the various sets of 

parameters. The number of iterations required for this convergence is anything but 

straightforward to determine. The net result is that the problem of convergence in likelihood 

function in the classical approach is replaced with the problem of convergence to the posterior 

distribution in the Bayesian approach. 

The general results from comparisons of the classical and Bayesian studies appear to 

suggest that the classical approach is faster when mixing distributions with bounded support such 

as triangulars are considered, or when there is a mix of fixed and random coefficients in the 

model. On the other hand, the Bayesian estimation appears to be faster when considering the 

normal distribution and its transformations, and when all coefficients are random and are 

correlated with one another. In the overall, the results suggest that the choice between the two 

estimation approaches depends more on interpretational ease in the empirical context under study 

rather than computational efficiency considerations. 

 

4. OTHER EMERGING METHODOLOGICAL ISSUES IN DISCRETE CHOICE 
MODELING 
 
4.1 Endogeneity of Variables in Discrete Choice Model 

In several discrete choice contexts, there is the possibility that certain “independent” 

variables are not truly exogenous. Rather, the value of the variable is correlated with the 

unobserved factors that impact the utility/preference for an alternative. We discuss a few such 

examples below. 
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One example of endogeneity is the effect of cost on recreational site selection. Consider 

an individual choosing among several parks in an urban area. Park attributes of importance to the 

individual’s choice may include availability of biking and hiking paths, land-sports facilities 

(basketball court, sand volleyball, etc.), water-sports facilities, and clean/modern showering 

places. An analyst modeling choice of recreational park may have access to some, but not all of 

these park-related characteristics. Assume, for example, that the analyst does not have 

information on how clean/modern the showering places are at the alternative park sites. Perhaps, 

there are also other factors known to the consumer and to the park manager, but unobserved to 

the analyst, such as aspects of style and prestige associated with a park. In these instances, the 

park entrance fee is set by the park manager based on these unobserved (to the analyst) park 

characteristics. These same unobserved characteristics also enter into the utility function of the 

consumer, generating a “spurious” correlation in prices and preferences; a higher-priced park is 

preferred by a consumer due to unobserved common characteristics affecting park entrance 

prices and consumer preferences. If this correlation is not controlled for, the result is an 

undervaluation of the effect of price on recreational site choice.  

 A second example is a case of a household choosing between alternative television 

reception options, such as cable or dish. Some aspects of each of these options, such as the 

quality of programming, may not be available to the analyst. These aspects, however, influence 

the price set by cable and dish companies as well as the preferences of customers. Petrin and 

Train (2002) undertake such an analysis, and empirically show that the price coefficient is 

substantially underestimated if the endogeneity in price is not recognized. 

 A third example is the effect of Information and Communication Technologies (ICT) on 

activity-travel behavior. Consider the effect of internet shopping at home on participation in out-
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of-home shopping episodes. There may be common unobserved factors affecting both internet 

shopping at home and out-of-home participation in shopping episodes (see Bhat et al. 2003). For 

instance, it is possible that an individual who has a shopping-oriented lifestyle is more likely to 

internet-shop, as well as be more likely to participate in out-of-home shopping activities. If this 

association is ignored, the intrinsic complementarity in internet shopping and out-of-home 

shopping reduces the magnitude of the true substitution effect of internet shopping on out-of-

home shopping participation. 

 In all the cases discussed above, the endogeneity of an “independent” variable in the 

discrete choice model leads to biased parameters unless the endogeneity is recognized (see 

Villas-Boas and Winer, 1999). While the problem of endogeneity is by no means a new issue in 

econometrics, much earlier work has been focused on linear models and not on non-linear 

models. Berry et al. (1995), Goolsbee and Petrin (2002), Blundell and Powell (2001), Villas-

Boas and Winer (1999), Petrin and Train (2002), and Bhat et al. (2003) have recently provided 

methods to account for endogeneity in general non-linear models and discrete choice models. 

The most commonly used approach is to write the endogenous “independent” variable as a 

function of instrument variables (which can, of course, include other independent variables) and 

an error term. This error term is allowed to correlate with the error term in the discrete choice 

model, thus absorbing the part of unobserved utility that is correlated with the endogenous 

“independent” variable. Then, the remaining part of utility is not correlated with the endogenous 

“independent”, thus allowing consistent estimation of the effect of the endogenous variable. If 

there are multiple endogenous variables, the same technique is followed for each variable. 

Estimation will, in general, involve analytically intractable integration, which can be easily 

achieved using simulation techniques. 
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 We provide an example of the formulation and estimation of such a model with endogenous 

“independent” variables in the context of the effect of two ICT-use variables (mobile phone use and 

computer use) on number of shopping episodes. The equation comprises three equations: one 

equation each for the mobile phone and computer use choices, and a third ordered-response 

equation for the number of shopping episodes. The equation system is presented below: 

0 if 0 ,0 if 1, *** ≤=>=υ+ζ+θ′= qqqqqqqq mmmmhm  

0 if 0 ,0 if 1, *** ≤=>=ω+ξ+µ′= qqqqqqqq pppprp            (3) 

, ],[   , if    , *
1

* ′=ψ<<ψ=ε+ξ±ζ±β′+δ′= − qqqkqkqqqqqqqq pmxsksxws  

where q is an index for individuals,  and  are latent propensities to use mobile telephones 

and computers, respectively, and q  and q  are dummy variables representing whether or not 

an individual uses mobile phones and computers, respectively. q  and q  are column vectors of 

exogenous variables affecting mobile telephone use and computer use, and θ  and 

*
qm *

qp

m  p

h r

µ  are 

corresponding column vectors to be estimated. qυ  and qω  are standard normal variables with a 

correlation . This correlation term captures common unobserved factors that affect the 

propensity to use mobile telephones and a personal computer at home. 

ρ

qζ  is a normal random 

error term that captures common unobserved factors influencing mobile phone use propensity 

and the number of shopping episodes )],0(~[ 2
ζσζ Nq . This term causes “spurious” dependence 

in mobile phone use and the number of shopping episodes. The ‘±’ sign in front of qζ  in the 

shopping episode equation indicates that the correlation in unobserved factors between mobile 

phone use and shopping episodes may be positive or negative. If the sign is ‘+’, it implies that 

individuals who use mobile phones are also intrinsically more likely to participate in shopping 
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episodes. If the sign is ‘–’, it implies that individuals who use mobile phones are intrinsically less 

likely to undertake shopping episodes. Of course, if such correlations are ignored, they “corrupt” 

the “true” dependence of the intershopping hazard on mobile phone use. This issue is discussed 

in more detail in the empirical results section. qξ  is a normal random term that similarly captures 

common unobserved factors influe ing personal computer use propensity and the number of 

shopping episodes; ),0(~ 2
ξσξ Nq . *

qs  is the propensity to participate in shopping episodes. qw  

 a vector of individual-related attributes affecting shopping episode participation propensity 

and δ  is a corresponding coefficient vector. qx  is a vector of ICT-use variables and q

nc

is

β  is a 

corresponding vector of individual-specific ICT-use coefficients. One can allow qβ  to be a 

function of observed and unobserved individual characteristics by specifying the ICT use 

coefficient qlβ (l = 1,2) as a function an observed vector qly  of individual attributes and an 

unobserved individual-specific term 

of 

qlη  that is assumed t

y

 be a realization from a normal 

distribution ),0(~ 2
lql N ηση ; that is, lql

o 

qlqll η+γ′+ϑ=β . qε  is an idiosyncratic rando

assum

m term 

ed to be standard logistically distributed. 

The parameters to be estimated in the model include the θ  and µ  vectors, the δ , ϑ , an  d

γ  vectors in the duration model, the ψ  thresholds in the shopping episode model, the ρ  

correlation parameter capturing the effect of common unobserved factors that affe  the 

pensity to use mobile telephones and computers at home, the scalar variance terms 2
ζ

ct

pro σ  and 

2
ξσ , and the vector variance term 2

ησ .  Let Ω  represent a vector that includes all these parameters 

to be es  let Ω t a vector of all parameters except the variance ter  timated, and  re enσ− pres ms.
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Defi  and ne 12 −= qq mg 12 −= qq pn . Then the likelihood function for a given value of σ−Ω  

and the error terms qζ , qξ , and qη  may be written as: 

[ (,,|)( 2σ− ] ]1−−[ζ+θ′⋅Φ=ηξζΩ qqqqqq hgL ,  ),(), ×ρξ+µ′⋅ qtqtqqqqqq GGngrn         (4) 

where t is the actual numb shopping episodes of individual q,  is the b

⎫⎧ ⎤ξ±ζ±η+γ′+ϑ+−ψ= ∑ qqlqlqll xywLG            (5) 

L(.) in the above equation is the standard cumulative logistic distribution. Next, define the 

following standard normal variables: 

ivariate er of (.)2Φ

cumulative standard normal distribution, and  

⎭
⎬

⎩
⎨ ⎥⎦⎢⎣ l

qlqtqt
⎡δ′ . )(

ξ

ξ

ζ

ζ
σ

ξ
=

σ

ζ
= qq ff   ,  , and qq

l
lq

η
η σ

qlf
η

= (l = 1, 2; the range of 

l corresponds to the number of ICTs). Also, define ),( 21 ′= ηηη qqq fff . Then the likelihood 

function for a given value of the parameter vector Ω  and for an individual q can be wr

nal on , and the  random terms as: 

[ ]−−ξξ −⋅

itten 

conditio

2 ζζηξζ

 ζqf , ξqf ηqf

[ ]{ },   ),( ),(,,|)( 1)1(ρσ+µ′⋅σ+θ′⋅Φ=Ω qtqtqqqq GGngfrnfhgfffL   (6) 

where . The unconditional 

likelihood for individual q may finally be written as:  

=−∞=−∞=

ΦΦΦ⋅Ω=Ω ∫∫∫
ηζ

qqqqqqq
ff

q fdfdfdfffLL
qq

                (7) 

he log-likelihood function is

qqqqqqqq

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ σ±σ±σ+γ′+ϑ+δ′−ψ= ∑ ξξζζηη

l
qqqlllqqlllqtqt ffxfywLG )(

. )()()(],,|)([)( ηξζηξζ

∞

−∞

∞+∞

ξf q

T  ∑ Ω=Ω
q

qLL )(ln)( , which can be maximized using simulation 

techniques.          
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4.2 Mixed RP/SP Choice Models 

 Stated preference (SP) and revealed preference (RP) data each have their own advantages 

and limitations with respect to estimation of behavioral parameters of interest (Ben Akiva et al., 

1992; Hensher et al., 1999). This realization has led to the now long history of using both kinds 

of data simultaneously to analyze consumer behavior (e.g., Gunn et al., 1992; Ben-Akiva and 

Morikawa, 1990; Koppelman et al., 1993; Swait and Louviere, 1993; Hensher et al., 1999). 

However, until recently, the combination of RP and SP data has focused primarily on scaling 

effects, and less on other important econometric issues. Recent advances in simulation 

techniques have made it possible to consider several econometric issues jointly in RP/SP 

modeling. Specifically, four important issues need to be recognized in joint RP-SP estimation: 

(a) inter-alternative error structure, (b) scale difference between the RP and SP data generating 

processes, (c) unobserved heterogeneity effects, and (d) state dependence effects and 

heterog

y accommodates heteroscedasticity across alternatives within the 

framework of Generalized Extreme Value (GEV) models, and the third accommodates both 

eneity in the state dependence. Each of these is discussed in turn in the subsequent 

paragraphs, followed by the need to consider all of the issues simultaneously within a unified 

RP-SP modeling framework. 

The literature on joint RP-SP methods has, with few exceptions, assumed a MNL 

structure for the RP and SP choice processes. However, with recent methodological advances, 

RP-SP methods can be quite easily extended to accommodate flexible competitive patterns. 

Recent studies in the joint RP-SP literature that accommodate non-IID inter-alternative error 

structures include Cherchi and Ortúzar (2002), Hensher et al. (1999), and Brownstone et al. 

(2000). The first study uses a nested logit structure to accommodate correlation in public transit 

options. The second stud
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h cedasticity and correlation across alternatives within the framework of a mixed 

multinomial logit model.  

 The second econometric issue in joint RP/SP modeling is that RP and SP choices are 

made under different circumstances; RP choices are revealed choices in the real world, while SP 

choices are stated choices made in an experimental and hypothetical setting. In both the real 

world and experimental settings, the analyst does not have information on all the factors that 

influence an individual’s choice. Since the RP and SP choice settings are quite different, there is 

no reason to believe that the variance of the unobserved factors in the RP setting will be identical 

to that of the variance of unobserved factors in the SP setting (see Ben-Akiva and Morikawa, 

1990). There is also no a priori theoretical basis to suggest whether the RP error term or the SP 

error term will have the larger variance; this may be closely tied

eteros

 to the empirical context under 

aminex ation. The scale difference between the RP and SP choice contexts has been recognized 

and accommodated in almost all previous joint RP-SP analyses.  

 The third econometric issue is associated with unobserved heterogeneity effects or 

unobserved (to the analyst) differences across decision-makers in the intrinsic preference for a 

choice alternative (preference heterogeneity) and/or in the sensitivity to characteristics of the 

choice alternatives (response heterogeneity). Stated preference methods usually involve 

experimental settings in which each of a sample of individuals is exposed to different stimuli 

corresponding to different combinations of values for the set of explanatory variables under 

study.  It is at least possible (if not very likely) that the responses from the same individual to the 

different stimuli will be affected by common unobserved attributes of the individual. Of course, 

unobserved heterogeneity effects are not confined to the SP choice responses. The same 

unobserved individual-specific attributes influencing the SP choices made by an individual will 

 28



also affect the RP choice of the individual. These unobserved attributes generate a correlation in 

utility for an alternative across all choice occasions (RP and SP choices) of the individual.  The 

unobserved heterogeneity effects also lead (indirectly) to non-IID error structures across 

alternatives at each choice occasion, so that the IIA property does not hold at any choice 

occasion. Most RP-SP studies in the literature disregard unobserved heterogeneity. However, 

Morikawa (1994) accommodates unobserved preference heterogeneity in his analysis by 

considering an error-components structure for the RP and SP error terms. Hensher and Greene 

effects. Bhat and Castelar (2002) accommodate such unobserved heterogeneity in the state 

(2000) have accommodated unobserved response heterogeneity, along with inter-alternative 

correlation, in a study on vehicle type choice decisions. 

 The fourth econometric issue in joint RP-SP estimation is the state dependence effect, 

which refers to the influence of the actual (revealed) choice on the stated choices of the 

individual (the term “state dependence” is used more broadly here than its typical use in the 

econometrics field, where the term is reserved specifically for the effect of actual past choices on 

actual current choices). State dependence could manifest itself as a positive or negative effect of 

the choice of an alternative on the utility associated with that alternative in the stated responses. 

Further, in most choice situations, it is possible that the effect of state dependence is positive for 

some individuals and negative for others (see Ailawadi et al., 1999). Besides, even within the 

group of individuals for which the effect is positive (or negative), the extent of the inertial (or 

variety-seeking) impact on stated choices may vary. Thus, joint RP-SP estimations should not 

only recognize state dependence, but also accommodate heterogeneity in the state dependence 

effect. Most RP-SP studies in transportation disregard state dependence. Axhausen et al., (2004) 

consider the state dependence effects, but do not consider heterogeneity in the state dependence 
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dependence effect of the RP choice on SP choices. Brownstone et al., 1996, on the other hand, 

accommodate observed heterogeneity in the state dependence effect by interacting the RP choice 

mmy

unobserved heterogeneity and overstate the level of unobserved heterogeneity. In addition, 
                                                

du  variable with sociodemographic attributes of the individual and SP choice attributes). 

 The fundamental reason for considering all the four modeling issues discussed above 

simultaneously is that there is likely to be interactions among them. Thus, accommodating 

restrictive inter-alternative error structures rather than flexible error structures can lead to 

misleading behavioral conclusions about taste effects and scaling effects in joint RP-SP models. 

For example, Hensher et al. (1999) find in their empirical analysis of freight carrier choice of 

firms that failure to accommodate heteroscedasticity across alternatives within each data source 

can lead to misleading inferences about taste and scale differences across data sources. They 

emphasize the need to accommodate general patterns of the error variance-covariance structure 

across alternatives within each data source before estimating joint RP-SP models. Louviere et al. 

(1999) also highlight this point in their review of methods to combine sources of preference data. 

Similarly, adopting restrictive inter-alternative structures can overstate unobserved heterogeneity 

in a model, and ignoring unobserved heterogeneity can overstate inter-alternative error 

correlations. It is also imperative that unobserved heterogeneity be incorporated in a model with 

state dependence (see Heckman, 1981; Keane, 1997). In the context of joint RP-SP estimation, if 

unobserved heterogeneity exists and the analyst ignores it, the unobserved heterogeneity can 

manifest itself in the form of spurious state dependence; that is, the effect of the RP choice on SP 

choices may be artificially overstated.4 Similarly, if the RP choice affects SP choices and the 

analyst ignores this state dependence, the state dependence will manifest itself in the form of 

 
4 Econometrically speaking, the RP choice variable is correlated with the error term in the SP choice equation in the 
presence of unobserved heterogeneity.  This issue is similar to the initial conditions problem in the panel data 
literature (Chamberlain, 1980; Degeratu, 1999). 
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ignoring state dependence or unobserved heterogeneity can, and generally will, lead to a bias in 

the effect of other coefficients in the model (Heckman, 1981; Hsiao, 1986). 

The discussions above are not simply esoteric econometric considerations. For instance, 

unobserved heterogeneity and state dependence can have quite different policy implications, and 

disentangling these two effects can contribute to informed policy decisions. As an example, 

consider the introduction of a light rail transit service in an urban area. If RP-SP studies 

exploring the potential use of the light rail service suggest the presence of state dependence, but 

no heterogeneity, then a policy that promotes the use of light rail in the initial stages of the 

service might help in the long term. Policymakers might therefore want to consider a blanket 

subsidized fare for the first month to attract people to the new service. Then, because of state 

dependence effects, some of the switchers will continue to use light rail even after the period of 

subsidized fare expires. On the other hand, if the RP-SP study indicates no state dependence and 

only unobserved heterogeneity, then the blanket subsidized fare will attract riders only when the 

lower fare is in effect. In such a situation, it would be more useful to systematically analyze the 

heterogeneity effects to identify population groups that are pre-disposed to using light rail and to 

target them specifically for information/marketing campaigns. Of course, it is quite likely that 

both state dependence and unobserved heterogeneity effects will exist; the magnitude of these 

effects can then be used to inform the design a multi-pronged marketing strategy to attract and 

sustain ridership over a long-term horizon.  

Bhat and Castelar (2002) propose a unified RP-SP framework that adopts a mixed 

multinomial logit formulation to accommodate all of the four modeling considerations discussed 

above.   
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4.3 Hazard-Based Duration Models 

 Hazard-based duration models are based on the concept of conditional probability of 

termination of duration, which recognizes the dynamics of duration; that is, it recognizes that the 

likelihood of ending the duration depends on the length of elapsed time since start of the 

duration. Hazard models provide a methodologically appropriate, intuitive, and conceptual 

framework to analyze duration data. It so happens that a particularly appealing and flexible form 

of the hazard duration model takes a discrete choice form, an observation that can be exploited to 

estimate increasingly advanced duration models based on recent advances in mixed-logit 

simulators. We discuss this issue next.   

Let  represent the continuous duration time of the ith duration spell of individual q (the 

spell could be the duration of an episode of a particular activity purpose, the duration of the time 

between successive participations in a particular activity purpose, etc.). Let  represent some 

specified time on the continuous time scale. Let 

qiT

τ

)(τλ qi represent the hazard at continuous time τ  

for the ith duration spell of individual q; i.e., )(τλ qi  is the instantaneous conditional probability 

that individual q’s (i + 1)th spell will occur at continuous time τ  after her/his ith participation, 

given that the episode does not occur before time τ : 

∆
τ>∆+τ<<τ

=τλ
+→∆

)|(
lim)(

0

qiqi
qi

TTP
               (8) 

Next, we relate the hazard rate, )(τλ qi , to a baseline hazard rate, )(0 τλ , a scalar  capturing 

unobserved attributes of individual q, a vector of covariates,  (not including a constant), and a 

spell-specific unobserved component 

qα

qx

qiϖ  ( qiϖ  corresponds to random noise across different 

duration spells). We accomplish this by using a proportional hazard formulation as follows: 
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),exp()()( 0 qiqqq xqi ϖ+β′λ

th azard function without placing constraint

−α−τλ=τ               (9) 

where qβ  is a vector of individual specific coefficients. While there is no specific reason to 

assume any prior distribution for qiϖ , a gamma distribution is convenient for exp( qiϖ ) for the 

reasons that will become clear later (however, a non-parametric discrete distribution or some 

other continuous distribution may also be assumed). The exponential specification in Equation 

(9) guarantees the positivity of e h s on the sign of qα  

and the elements of the vector qβ . 

 The proportional hazard formulation of Equation (9) can be written in the following 

equivalent form: 

∫
=τ

ε+ϖ−β′qis*     

 random term with a standard extreme value distribution: Prob( < z) = = 1-

+α=ττλ= qiqiqqq xd
0

0 ,)(ln        (10) 

where qiε  is a

qiT

qiε )(zFε

exp[-exp(z)]. 

 The shape of the baseline hazard function, )(0 τλ  in Equation (10) has important 

implications for duration dynamics. One may adopt a parametric shape or a non-parametric 

shape for the baseline hazard. A problem with the parametric approach is that it will, in general, 

inconsistently estimate the hazard function when the assumed parametric form is incorrect 

(Meyer, 1990). The advantage of using a non-parametric form is that, even when a particular 

parametric form is appropriate, the resulting estimates are consistent and the loss of efficiency 

(resulting from disregarding information about the hazard's distribution) may not be substantial 

(Meyer, 1987). In the non-parametric approach, the duration scale is split into several smaller 

grouped discrete or intervals. Assuming a constant hazard (i.e., an exponential duration 
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distribution) within each discrete interval, one can estimate the continuous-time step-function 

hazard shape. The reader will note that this grouping of the time scale is not inconsistent with an 

underlying continuous process for the duration data. In fact, the grouping may be motivated from 

conside ns

th

intervals (th can take one of the values 1, 2, …, k, …, K). Defining  as the continuous 

time representing the upper bound of the kth discrete interval, we can write: 

− ττλ=ψψ<<ψ=ε+ϖ−β′+α=ττλ= dsktxds kkqikqiqiqiqqqqi 0
*

10
* )(ln ,  if    ,)(ln     (11) 

 

ratio  of “rounding off” in the reporting of underlying continuous duration times and the 

need for accounting for the resulting tied nature of departure time data.  

Let qit  represent the i  duration of individual q and let k be an index for the discrete 

us, qit kτ

∫∫
τ

=τ=τ

kqiT

00

A number of different specifications may be used for the coefficient vectors qα  and qβ in 

Equations (9) and (10). The simplest specification is qα = 0 and qβ = 0 for all individuals, and 

qiϖ = 0 for all intershopping duration spells. This, of course, corresponds to the Kaplan-Meier 

sample hazard. A second specification is to write qα = 0, but to allow heterogeneity across 

individuals in the effec n the hazard due to observed individual characteristics by 

specifying the coefficients qlβ  1, 2, …, L) as a function of an observed vector qly of 

individual attributes: .qlllql y

t of covariates o

 (l  =

γ′+ϑ=β  The spell-specific error term qiϖ  is included in this 

formulation. The variance of qiϖ  captures the level of heterogeneity in intershopping hazard 

across all spells and individuals. We will refer to this specification as the deterministic 

ird specification superimposes random (unobserved) 

individual heterogeneity over heterogeneity of the DCD mo el: 

qqq vw +δ′=α  and ,qlqlll y

coefficients duration (DCD) m  th

deterministic (ob ed) 

odel. A

the serv d

ql η+γ′+ϑ=  where qv  and qlβ η  are assumed to be normally 
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distributed across individuals; )],0(~);,0(~[ 22
lqlq NNv ην σησ . In addition, we assume that qv  is 

independent of each qlη  random term (l = 1, 2, …, L) and that the qlη  terms are independent of 

each other; qv  and qlη  represent individual-specific unobserved factors associated with overall 

preferences and effect of individual-associated attributes, respectively; the variance of  

third specif res within-  in the rd. We will refer to the 

 qiϖ  in this

ication captu individual heterogeneity  haza

random specification above as the random coefficients duration (RCD) model. 

 The parameters to be estimated in the RCD model structure include ϑ  and γ  vectors in 

the duration model, the ψ  thresholds in the duration model that provide information regarding 

the baseline intershopping hazard profile, the scalar term 2
vσ  and the vector variance term 2

ησ . 

Let Ω  represent a vector that includes all these par eters to be estimated, and let Ω  represent 

a vector of all par

am

a ters except the variance term lih

 and the  terms 

σ−

me s. Then the like ood function for a given 

value of σ−Ω  error qη , qν , and qiϖ  may be written for ind iduaan iv l q’s ith 

duration spell as: 

( ) ( )[ ], )}exp(exp{)}exp(exp{,,|)( )1( qitqitqiqqqi qiqi
BBL ϖϖϖνησ −−−=Ω −−       (12) 

where  is the actual duration of individual q in the ith spell, and 

⎧ ⎤⎡ ∑
l

= ted as a gamma random variable with a mean one (a 

normalization) and variance , the likelihood function for individual ith duratio

unconditional on , may be written as: 

qi

. )(exp
⎭
⎬

⎩
⎨ ⎥⎦⎢⎣

η+γ′+ϑ+ν−ψ= qlqlqlllqtt xyB
qiqi

                 (13) 

Assuming that )]exp( qiqic ϖ  is distribu

t

⎫

[

cσ q’s n spell, 

ϖ qi
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[ ]⋅ qiqi f }        (14) 
⎭
⎬
⎫

⎩
⎨
⎧

−−⋅−=νηΩ ∫
∞

σ− − qitqitqqqi dcccBcBL
qiqi

)(exp{}exp{ ,|)(
0

1

Using the moment-generating function properties of the gamma distribution (see Johnson and 

Kotz, 1970), the expression above reduces to: 

[ ] [ ]  11,|)
2

2
−σ−
−σ+=νη cB       (15) 

The gamma distribution for  is convenient because it results in a closed-form expression in 

Equation (14). Next, define the following standard normal variables: 

(
2

1

2
−

−

σ−
σ− σ+Ω c

qiqi tctcqqqi BL .           

qic

ξξ σξ= /qqf  and 

lqllqf ηη ση= /  (l =1, 2,…,L). Also, define ),...,,...,,,( 321 ′= ηηη qLqlqqqq ffffff . The the lik

function for a given value of the parameter vector 

n elihood 

Ω  and for an individual q with 

intershopping duration spells can be written conditional on , and the  random terms as: 

BBffL
1

-2-2  1  1 ,|)(
-2
c

-2
c

1
         (16) 

 and 

for individual q w

written as:  

                (17) 

The log-likelihood function is 

qI  

νqf ηqf

[ ] [ ]{ }∏
=

σσ
ην σ+−σ+=Ω

−

q

qiqi

I

i
tctcqqq

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ σ+γ′+ρ+σ−ψ= ∑ ηηνν

l
qlllqqlllqtt xfyfB

qiqi
 )(exp  

 The unconditional likelihood ith qI  intershopping durations may finally be 

. )()(],|)([)( ηνην

∞

−∞=

∞

−∞=

ΦΦ⋅Ω=Ω ∫∫
ην

qqqqq
ff

q fdfdffLL
qq

∑ Ω=Ω
q

qLL )(ln)( , which can be evaluated using the mixed logit 

 

class of simulators. 
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5.0 APPLICATIONS OF ADVANCED DISCRETE CHOICE MODELS AND 

 There have been several applications of advanced d
CONCLUSIONS 

iscrete choice models in the past few 

years. Table 1 presents various studies within the past five years, organized by model type. The 

model types are: Generalized Extreme Value (GEV) models, Mixed Multinomial Logit (MMNL) 

models, and mixed GEV models and other mixed models. 

 Several important observations may be made based on Table 1 and our earlier 

discussions. First, there have been more applications using the error-components formulation of 

the MMNL structure than the GEV structure. This is, at least in part, because the MMNL 

structure is conceptually easier to understand than the GEV structure. Further, the MMNL 

estimation code does not materially change because of differing covariance patterns. However, 

both these considerations that have favored the use of the MMNL structure are not likely to 

continue to be significant because of the introduction of an intuitive network based 

representation for GEV models and the ability to write general GEV code (restrictions on this 

general GEV code would provide a suite of restrictive GEV models). Second, in cases where 

both a GEV structure and an MMNL structure can closely capture a desired competition 

structure, it would seem preferable to use the GEV structure. This is because the estimation of 

closed form analytic structures is always more accurate than the simulation evaluation of 

analytically intractable structures. Third, the GEV structure cannot be applied with panel data to 

capture temporal correlations, or with random coefficients to accommodate unobserved taste 

variations. Further, the GEV structure that may closely represent a desired correlation pattern 

may fail empirically because of violations of the bounds of the dissimilarity and allocation 

parameters. Clearly, from these perspectives, the MMNL is more general than the GEV 

structure. Fourth, the analyst will face situations when the GEV structure alone is not adequate 
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(for example, differential sensitivities across alternatives and random taste variations across 

individuals). The analyst then may have a choice of using the MMNL structure or the MGEV 

structure. The choice of the choice structure here would depend on the situation at hand. In some 

situations, the number of error components in the MMNL structure to generate the basic 

correlation across alternatives may be very small, in which case it may be easier for the analyst 

to use a single overarching MMNL structure to accommodate both the basic competition 

structure across alternatives and factors such as random coefficients and temporal correlations. In 

other cases, however, the error-components to generate the basic correlation structure across 

alternatives may be extremely large. If an appropriate GEV structure is available to capture this 

correlation structure, it would be more than worth the effort to use that GEV structure and 

superimpose a mixing distribution to accommodate random coefficients or temporal correlations. 

Such a MGEV structure, in fact, may be the only practical solution in some situations (for 

example, see Bhat and Guo, 2004). Fifth, Table 1 indicates that, while the number of applications 

of advanced discrete choice models in the area of travel behavior modeling has risen 

considerably in the past few years, only a small group of researchers have been involved with 

such methods. Hopefully, the important progress in both conceptual and computational issues in 

the recent past will galvanize the adoption of these rich techniques in the years to come. 

 Two final points before concluding. One is that the field of discrete choice has seen a 

quantum jump in recent years. There is a sense today of absolute control over the behavioral 

structures one wants to estimate in empirical contexts and renewed excitement in the field, 

thanks to recent conceptual and simulation developments. Second, analysts need to be careful not 

to get carried away with these new developments in choice modeling and focus less attention on 

careful model specification. The fundamental idea of discrete choice models will always 
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continue to be the identification of systematic variations in the population. The advanced 

methods presented in this paper should be viewed as formulations that recognize the inevitable 

presence of unobserved heterogeneity across individuals and/or interactions among unobserved 

components affecting the utility of alternatives even after adopting the best systematic 

ecifications there can be. In fact, a valuable contribution of recent developments in the field is 

e confluence of careful structural specification with the ability to 

accomm
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precisely that they enable th

odate flexible substitution patterns and unobserved heterogeneity profiles. 
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Figure 1. Shifting the Standard Halton Sequence



Table 1. Recent (within the past 5 years) Travel Behavior Applications of Advanced Discrete Choice Models 
Model 
Type Authors Model Structure Application Focus Data Source Type of 

Simulation Draws 
Bhat (1998a) Multinomial Logit-Ordered 

Generalized Extreme Value 
(MNL-OGEV) 

Travel mode and time-of-day choice for 
urban shopping trips: Allowing 
correlations across adjacent time-of-day 
alternatives and across alternatives 
sharing the same mode. 

1990 RP urban travel survey 
data collected in the San 
Francisco metropolitan region. 

-- 

Koppelman and 
Wen (2000) 

Paired Combinational Logit 
(PCL) 

Intercity travel mode choice: Allowing 
correlation between each pair of 
alternatives. 

1989 RP intercity travel 
survey data collected in the 
Toronto-Montreal corridor. 

-- 

Swait (2001) Choice Set Generation Logit 
(GenL) 

Intercity travel mode choice: 
Accommodating choice set endogeneity 
through a customized GEV structure. 

1987 RP intercity survey 
collected for travel behavior in 
Sydney, Canberra, and 
Melbourne. 

-- 
GEV 

Wen and 
Koppelman (2001) 

Generalized Nested Logit 
(GNL) 

Intercity travel mode choice: Allowing 
general correlation patterns among four 
modes: car, air, train, and bus. 

1989 RP intercity travel 
survey data collected in the 
Toronto-Montreal corridor. 

-- 

Bhat (1998c) Error-components structure to 
accommodate correlation in 
multiple dimensions 
(heteroscedasticity across joint 
choice alternatives is an 
indirect consequence) 

Travel mode and time-of-day choice for 
social/recreational trips: Allowing 
unobserved correlation across both time 
and mode choice. 

1990 RP urban travel survey 
data collected in the San 
Francisco metropolitan region. 

Pseudo-random 
draws 

Brownstone and 
Train (1999) 

Error components structure to 
accommodate correlation in a 
unidimensional context 
(heteroscedasticity across 
choice alternatives is an 
indirect consequence) 

Alternative fuel vehicle type choice: 
Allowing unobserved correlation across 
non-electric vehicles and based on vehicle 
size. 

1999 SP data collected in 
California. 

Pseudo-random 
draws 

Brownstone et al. 
(2000) 

Error components structure as 
in Brownstone and Train 
(1999) and scale differences 
between revealed and state 
choice data 

Alternative fuel vehicle type choice: 
Allowing unobserved correlation across 
non-electric vehicles and based on vehicle 
size. 

1999 SP and RP data collected 
in California. 

Pseudo-random 
draws 

Bekhor et al. 
(2002) 

Error components structure Travel route choice: Accommodating 
unobserved correlation on paths with 
overlapping links. 

1997 transportation survey of 
MIT faculty and staff. 

Pseudo-random 
draws 

MMNL 

Jong et al. (2002a) Error components structure Travel mode and time-of-day choice: 
Allowing unobserved correlation across 
time and mode dimensions. 

2001 SP data collected from 
travelers during extended peak 
periods (6-11 a.m. and 3-7 
p.m.) on weekdays. 

Pseudo-random 
draws 
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Table 1. continued 

Bhat (1998b) Random coefficients structure Intercity travel mode choice: 
Accommodating unobserved and 
observed variations in sensitivity to level-
of-service variables. 

1989 RP intercity travel 
survey data collected in the 
Toronto-Montreal corridor. 

Pseudo-random 
draws 

Bhat (1999) Random spatial coefficients 
structure 

Urban travel mode choice: Allowing 
unobserved spatial clustering effects at 
home-end and work-end due to 
unobserved zone-specific determinants of 
mode choice. 

1990 RP urban travel survey 
from the San Francisco Bay 
area. 

Halton draws 

Bhat (2000b) Random coefficients structure Urban commute travel mode choice: 
Accommodating individual-specific 
unobserved mode preference and level-
of-service sensitivities. 

1996 RP multiday travel 
survey data collected in the 
San Francisco metropolitan 
region. 

Pseudo-random 
draws 

Han et al. (2001) Random coefficients structure Travel route choice: Incorporating 
unobserved individual-specific 
heterogeneity to route choice 
determinants (delay, heavy traffic, normal 
travel time, etc.). 

2000 SP survey and scenario 
data collected in Sweden. 

Pseudo-random 
draws 

Hensher (2001) Random coefficients structure Long distance travel route choice: 
Accommodating unobserved individual-
specific sensitivities to different 
components of travel time (free flow 
time, slowed-down time, and stop time). 

2000 SP survey data collected 
in New Zealand. 

Pseudo-random 
draws 

Brownstone and 
Small (2005) 

Random coefficients structure Choice of toll versus non-toll facility: 
Allowing random coefficients to account 
for individual-specific unobserved 
preferences, and responsiveness to travel 
time and unreliability of travel time. 

1996-2000 RP/SP survey from 
the SR-91 facility in Orange 
County, California. 

Pseudo-random 
draws 

Iragüen and 
Ortúzar (2004) 

Random coefficients structure Urban route choice: Recognizing 
unobserved individual heterogeneity in 
sensitivities to cost, number of accidents, 
travel time. 

2002 SP survey of car users of 
several private and public 
employment firms in Santiago. 

Information not 
provided 

MMNL 

Small et al. (2005) Random coefficients structure Use of toll facilities versus non-toll 
facilities. Allowing random coefficients 
to accommodate unobserved individual-
specific preferences and sensitivities to 
cost, travel time, and reliability. 

1996-2000 RP/SP survey from 
the SR-91 facility in Orange 
County, California. 

Pseudo-random 
draws 
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Table 1. continued 
Galilea and 
Ortúzar (2005) 

Random coefficients structure Residential location choice: 
Accommodating unobserved individual 
heterogeneity in sensitivities to travel 
time to work, monthly rent, and noise 
level. 

2002 SP survey of a sample of 
Santiago residents. 

Information not 
provided 

Hensher and 
Greene (2003) 

Random coefficients structure Urban commute travel route choice: 
Accommodating unobserved individual-
specific sensitivities to different 
components of travel time and cost. 

1999 SP survey data sets 
collected in seven cities in 
New Zealand. 

Halton draws 

Rizzi and Ortúzar 
(2003) 

Random coefficients structure Urban and interurban route choice: 
Accommodating unobserved individual 
heterogeneity in sensitivities to toll, travel 
time, and accidents. 

Stated choice surveys 
administered to commuters in 
Santiago in 2002 and to 
motorists traveling on 
highways connecting Santiago 
to Vina del Mar/ Valparaiso/ 
Rancagua in 1999/2000. 

Information not 
provided 

Silliano and 
Ortúzar (2005) 

Random coefficients structure Residential choice incorporating 
unobserved individual heterogeneity in 
sensitivities to travel time to work, travel 
time to school, and days of alert status 
associated with the air quality of the zone 
of dwelling unit. 

2001 SP survey conducted in 
Santiago. 

Information not 
provided 

Nielsen et al. 
(2000) /  
Paag et al. (2000) 

Error components structure, 
random coefficients 

Route choice (toll tunnel or untolled 
bridge) and time-of-day (peak and 
offpeak): Accommodating error 
components across time dimension, 
random coefficients for sensitivity to 
time, costs, and intrinsic preference.  

SP data collected for the 
harbor tunnel project in 
Copenhagen. 

Pseudo-random 
draws 

Jong et al. (2002b) Error components structure, 
random coefficients 

Travel mode and time-of-day choice: 
Allowing unobserved correlation across 
time and mode dimensions; individual 
specific random effects. 

2001 SP data collected from 
travelers during extended peak 
periods (6-11 a.m. and 3-7 
p.m.) on weekdays. 

Pseudo-random 
draws 

MMNL 

Hensher and 
Greene (2000) 

Error components and random 
coefficients structure 

Alternative fuel vehicle type choice: 
Allowing unobserved correlation across 
alternative vehicle types through error 
components and unobserved individual-
specific preferences through random 
effects. 

1989 RP/SP data collected in 
Australia. 

Pseudo-random 
draws 
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Table 1. continued 
Bhat and Castelar 
(2002) 

Error components and random 
coefficients structure 

Mode and time-of-day choice: Allowing 
unobserved correlation across alternatives 
through error components, preference 
heterogeneity and variations in 
responsiveness to level-of-service though 
random coefficients, and inertia effects of 
RP choice on SP choices through random 
coefficients. 

1996 RP/SP multiday urban 
travel survey from the San 
Francisco Bay area. 

Halton draws 

Bhat and Gossen 
(2004) 

Error components and random 
coefficients structure 

Weekend recreational episode type 
choice: Recognizing unobserved 
correlation in out-of-home episode type 
utilities and unobserved individual-
specific preferences to participate in in-
home, away-from-home, and recreational 
travel episodes. 

2000 RP multiday urban travel 
survey collected in the San 
Francisco Bay area. 

Halton draws 

MMNL 

Srinivasan and 
Mahmassani 
(2003) 

Error components and random 
coefficients structure 

Route switching behavior under 
Advanced Traveler Information System 
(ATIS): Accommodating error-
components associated with a particular 
decision location in space, unobserved 
individual-specific heterogeneity in 
preferences (intrinsic biases) and in 
age/gender effects. 

Simulator-based experiment 
with Austin area commuters in 
2000. 

Pseudo-random 
draws 

Bhat (1999) Random coefficients 
superimposed on an ordered 
response logit structure 

Evening commute stop-making behavior: 
Allowing individual-specific unobserved 
preferences and responsiveness to 
commute time. 

1990 RP urban travel survey 
from the San Francisco Bay 
area. 

Halton draws 

Bhat and Zhao 
(2002) 

Random spatial coefficients 
superimposed on an ordered 
response base structure 

Shopping activity participation: Allowing 
unobserved residence zone specific 
effects on number of shopping 
participations. 

1991 RP urban travel survey 
from the Boston area. 

Halton draws MGEV 
and 

other 
mixed 

discrete 
choice 
models 

Bhat and Guo 
(2004) 

Random coefficients with 
GEV base structure 

Residential location choice: Allowing 
spatial correlation in adjacent spatial units 
due to unobserved locational factors using 
a paired Generalized Nested Logit (GNL) 
structure, and unobserved individual-
specific heterogeneity in responsiveness 
to travel time and other factors. 

1996 RP urban travel survey 
from the Dallas-Fort Worth 
area. 

Halton draws 
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