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ABSTRACT 

Traditional multiple discrete-continuous (MDC) choice models impose tight linkages between 

consumers’ discrete choice and the continuous consumption decisions due to the use of a single 

utility parameter driving both the decision to choose and the extent of choice. Recently, Bhat 

(2018) proposed a flexible MDCEV model that employs a utility function with separate 

parameters to determine the discrete choice and continuous consumption values. However, the 

flexible MDCEV model assumes an independent and identically distributed (IID) error structure 

across the discrete and continuous baseline utilities. In this paper, we formulate a flexible non-

IID multiple discrete-continuous probit (MDCP) model that employs a multivariate normal 

stochastic distribution to allow for a more general variance-covariance structure. In doing so, we 

revisit Bhat’s (2018) flexible utility functional form and highlight that the stochastic conditions 

he used to derive the likelihood function are not always consistent with utility maximization. We 

offer an alternate interpretation of the model as representing a two-step decision-making process, 

where the consumers first decide which goods to choose and then decide the extent of allocation 

to each good. We demonstrate an application of the proposed flexible MDCP model to analyze 

households’ expenditure patterns on their domestic tourism trips in India. Our results indicate 

that, if the analyst is willing to compromise on the strict utility-maximizing aspect of behavior, 

while also enriching the behavioral dimension through the relaxation of the tie between the 

discrete and continuous consumption decisions, the preferred model would be the flexible non-

IID MDCP model. On the other hand, if the analyst wants the model to be strictly grounded on 

utility-maximizing behavior (which may also have benefits by way of welfare measure 

computations), and is willing to assume a very tight tie between the discrete and continuous 

consumption decision processes, the preferred model would be the non-IID traditional MDCP 

model.  

 

 

Keywords: multiple discrete-continuous choice models, flexible utility functions, probit kernel, 

domestic tourism in India, tourists’ expenditures



1 
 

1. INTRODUCTION 

Choice situations characterized by the choice of multiple alternatives at the same time (as 

opposed to the choice of a single alternative) are ubiquitous in consumer decision behavior. 

Hendel (1999) coined the term “multiple discreteness” (MD) to refer to such consumer choice 

situations, while Bhat (2005, 2008) proposed the term “multiple discrete-continuous” (MDC) to 

refer to situations where the consumer also decides on a continuous dimension (or quantity) of 

consumption. The consideration of MDC models to analyze consumer choice situations has 

exploded in recent years, with studies in environmental economics, regional science, 

transportation, marketing, and many other fields using a utility-maximizing approach to analyze 

such situations (see, for example, von Haefen and Phaneuf, 2005, Wafa et al., 2015, Satomura et 

al., 2011, Yonezawa and Richards, 2017, Sobhani et al., 2013, Khan and Machemehl, 2017, 

Calastri et al., 2017, and Enam et al., 2018). 

The basic approach in a utility-maximizing framework for MDC choices utilizes a non-

linear (but quasi-concave, increasing and continuously differentiable) utility structure with 

decreasing marginal utility (or satiation). The approach, originally proposed by Wales and 

Woodland (1983) (see also Hanemann, 1984, Kim et al., 2002; von Haefen and Phaneuf, 2003; 

Bhat, 2005), assumes that consumers maximize the utility obtained from the MDC consumption, 

subject to a budget constraint. The optimal consumption quantities (including possibly zero 

consumptions of some alternatives, creating the discrete choice dimension) are obtained by 

writing the first-order optimality conditions for the utility function. To simplify the analysis, it is 

common practice to consider an additively separable utility structure in which the rate of 

substitution between any pair of goods is dependent only on the quantities of the two goods in 

the pair, and independent of the quantity of other goods (see Pollak and Wales, 1992).  

Among the many general additively separable utility structures, the Box-Cox utility 

function form proposed by Bhat (2008) subsumes several other non-linear forms as special cases 

and allows a clear interpretation of model parameters. But, in Bhat’s (2008) formulation, as in all 

other MDC formulations until recently, the discrete and continuous choice decisions are tied very 

tightly together because the same baseline utility preference parameter influences both the choice 

of making a positive consumption of a good (the discrete choice) as well as the starting point for 

satiation effects (that impact the continuous choice). 1 Recently, Bhat (2018) provides at least a 

                                                 
1 The baseline preference parameter of a good is the marginal utility at zero consumption of that good. 
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couple of reasons why this is generally not likely to be the case, either due to (a) simply a need 

for variety-seeking that implies the consumption of certain goods, but at very low continuous 

quantities, or (b) a branding effect (that is, a prestige/image effect) that operates at the pure 

discrete level but does not necessarily carry over with the same intensity to the continuous 

consumption decision. Besides, to the extent that these variety-seeking and branding effects may 

vary across demographic groups, this immediately implies that demographic factors may have 

differential effects on the underlying preferences for the discrete and continuous choices. Bhat 

(2018) then proceeds to formulate a new MDC model that introduces separate baseline 

preference parameters for discrete and continuous dimensions of choice – called the discrete 

preference parameters and continuous preference parameters – to break the tight linkage 

between the discrete and continuous choice dimensions. In terms of the stochastic structures for 

the baseline preference parameters, he uses extreme-value error distributions. More importantly, 

he assumes independence and identical distribution (IID) across the error terms of different 

alternatives in both the discrete and continuous dimensions, as well as across the error terms of 

the discrete and continuous dimensions of the same alternative. However, there are several 

reasons why the IID assumption may not hold. It is likely that the error terms of different choice 

alternatives are correlated due to the influence of common unobserved factors. Also, in the 

flexible utility structure, the discrete and continuous dimensions of a choice alternative may be 

influenced by common unobserved factors that cause correlation between the discrete and 

continuous preference parameters. For example, the decision to consume in an activity category, 

say shopping, can be correlated with how much to consume in that category because of 

unobserved factors that make a person more or less likely to enjoy that activity. However, the 

IID assumption misses out on capturing such correlations. Although multivariate extreme value 

(MEV) distributions have been used in the past for allowing a general covariance structure in 

Bhat’s (2008) Box-Cox utility function form (Pinjari and Bhat, 2010, and Pinjari, 2011), it 

becomes difficult to do so in the flexible utility form. This is because it is not easy to derive the 

likelihood function for a model with MEV distributed error terms in both the discrete preference 

parameters and continuous preference parameters.   

In this paper, we apply a probit-based error kernel (rather than the extreme-value kernel) 

that allows non-IID stochastic structure to the flexible utility functional form proposed by Bhat 

(2018). Such a “flexible MDCP” model proposed in this paper relaxes the assumptions of 
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independence among the utility parameters using a multivariate normal (MVN) error kernel. In 

this process, we revisit Bhat’s (2018) flexible utility form and discuss a few nuances regarding 

the role of the discrete preference parameters in the optimality conditions associated with the 

utility profile. Specifically, we highlight the point that the discrete preference parameters in his 

formulation do not appear in the conditions for optimal utility. That is, although the introduction 

of separate parameters for the discrete and continuous dimensions helps break the tight linkage 

between the discrete and continuous preferences, the conditions he uses on the discrete 

preference parameters are not always consistent with utility maximization. As a result, Bhat’s 

(2018) approach can be interpreted as an externally imposed set of conditions (external to utility 

maximization) on the discrete preference parameters that determine whether an alternative is 

chosen. Doing so helps in separating the effects of exogenous variables on the discrete decision 

to consume a good from the decision of how much to consume that good. 

We apply the flexible MDCP model developed in this paper (and its simpler versions), as 

well as the traditional MDCP model that does not include a separate set of discrete preference 

parameters, to an empirical analysis of tourist’s expenditure allocations on domestic recreational 

travel in India. The model fit statistics of the various formulations are compared (in both 

estimation and holdout datasets) to highlight the value of: (a) separate parameters for discrete 

and continuous preferences (even if the formulation does not always conform to utility 

maximization), and (b) relaxing the IID assumption in the error kernel of the model with flexible 

utility functions. Further, the empirical analysis sheds light on the determinants of Indian 

households’ expenditure patterns on their recreational/tourism trips. 

The rest of the paper is structured as follows. Section 2 discusses the nuances in the 

formulation of the flexible MDC choice model and why the model is not necessarily consistent 

with utility maximization. Further, an alternate interpretation of the flexible MDC model is 

presented. Subsequently, the section presents the formulation of the flexible MDCP model with 

MVN stochastic distribution. Section 3 illustrates an application of the flexible MDCP model 

and its variants for analyzing Indian households’ expenditures on their domestic tourism trips. 

The final section offers concluding thoughts and directions for further research. 
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2. MODEL FORMULATION 

2.1. Revisiting Bhat’s (2018) Flexible MDC Model Structure 

Consider the case of an incomplete demand with an essential, numeraire Hicksian outside good 

with a linear utility profile and multiple non-essential, inside goods. To model such a system, 

Bhat (2018) proposes the following utility form (here, we suppress the index for individuals) 2: 

    1[ 0] 1[ 0]

1 1
2

( ) ln 1
k k

K x x
k

k k d k c
k k

x
U x   


 



 
    

 
x            (1) 

subject to a linear budget constraint and non-negativity constraints on consumptions, as below: 

1

, 0 2,3,....,
K

k k k
k

p x E x k K


                  (2) 

)(xU  in Equation (1) is quasi-concave, increasing and continuously differentiable utility 

function, where x  is a )1( K  dimension vector of consumption quantities), 1  is the baseline 

marginal utility for the essential outside good, and k d  , k c , and k  are parameters associated 

with inside goods (k =2,3,…K). The expression for )(xU  is a valid utility function if  1 0  , 

0kc  , and 0k , for all k. The equality constraint in Equation (2) is the linear budget 

constraint, where E is the total expenditure across all goods k (k = 1, 2,…, K) and 0kp  is the 

unit price of good k (with 11 p  to represent the numeraire nature of the essential outside good). 

The total expenditure across all goods (i.e., E) is assumed to be large relative to the total 

allocation to all inside goods. This assumption is due to the linear outside-good utility profile 

employed in the flexible utility form of Equation (1). Specifically, as discussed in Saxena et al. 

(2022), the use of a linear utility profile for the outside good results in a likelihood function that 

does not include the outside good value or the total budget value (E). Such models can be 

interpreted as if the overall budget is very large relative to the total expenditure allocation to all 

inside goods. In the current empirical context, it is safe to make this assumption because 

                                                 
2 The discussion here pertains to the profile   utility form since it has been generally the case that the profile   

comes out to be superior to the profile   function (see Bhat, 2018; Jian et al., 2017). However, the discussion in 

the rest of the paper, including the model formulation, is applicable for the profile   utility function as well. 
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households/individuals allocate only a small portion of their overall incomes (i.e., budget) to a 

single vacation trip (i.e., total allocation to all inside goods). 

As can be observed, the utility function is linear with respect to consumption of the 

outside good, implying no satiation in the consumption of the outside good. Thus, multiple 

discreteness occurs because of satiation effects on the consumption of inside goods (k = 

2,3,…,K). For inside goods, the kd  parameter corresponds to the baseline preference that 

determines whether good k is consumed (this is the discrete preference baseline utility 

component, or simply the D-preference parameter). The kc  parameter, on the other hand, 

corresponds to the baseline preference if good k is consumed; this is, the continuous preference 

baseline utility component, or simply the C-preference parameter. The exponents in the utility 

function 1[ 0]kx   and 1[ 0]kx   are indicators representing situations when 0kx   and 0kx  , 

respectively. Note, however, that the utility function is continuously differentiable at zero 

consumption as well as all other positive consumption values. Specifically, the derivative of the 

utility function (marginal utility) with respect to consumption is kc  at 0 as well as at 0+ (i.e., at 

an infinitesimally small consumption value above zero).3 Finally, k  is the vehicle to introduce 

corner solutions (aka, zero consumptions) for inside goods (k = 2,3,…,K), and also serves the 

role of a satiation parameter (higher values of k  imply less satiation). There is no 1  term for 

the first good because it is always consumed, and there is no satiation for this good.  

Bhat proposes the following as optimality conditions for the utility form in Equation (1): 

                                                 
3 

0 0 0 0

0 0 0
00

1 2
0 0

( ) ( ) ( ) ( )( ) ( ) ( )
At 0,  lim lim lim

ln 1 0 ln 1

lim lim .  Note: ( ) ( , ,..., ( ),

x x x xk k k k

kk

k
h h h

xk x

kc k kc k
k k

kc k
h h

U h U U h UU U h U
x

x h h h

h h
h

U h U x x x h
h h

h

   
 



   

  

 

  


 

     
   



   
             




x x x xx x x

x

1

0
0

..., ).

( )
At 0,   lim 1 .

k

K

k
k kc kc

x
k kx

x

xU
x

x
 









 
      

x

Given the above, the k d  parameters do not enter the marginal utility functions of Bhat’s (2018) utility form, which 

as we discuss later, has implications for whether the formulation is always consistent with utility maximization. 
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1*
*

*

1

0 and ( ) 1  if 0, 2,3,...

0 if 0,  2,3,...,

k
kd k kc k k

k

kd k k

x
p p x k K

p x k K

   


 
 


 

      
 

   


 

One can observe from the inequalities ( *( 0, if 0)kd k kp x     and *( 0, if 0)kd k kp x    ) 

in the above conditions that only the D-preference parameter of an inside good is used to 

determine whether that good is chosen or not (the C-preference parameters do not play a role in 

the discrete choice). The C-preference parameters come into the picture to determine the 

consumed quantity of the chosen goods.4 The inequality conditions based on D-preference 

parameters to determine whether a good is chosen or not, combined with the equality conditions 

based on C-preference parameters to determine the extent of consumption of chosen goods, help 

in estimating the D-preference parameters separately from the C-preference parameters.  

It is important to note here that the conditions in Equation (3) proposed by Bhat (2018) 

do not always ensure optimality of the utility function in Equation (1). This is because, as 

discussed in Footnote 3, the D-preference parameters ( kd ) do not have any role to play in the 

marginal utility functions, even at zero consumptions. As a result, the D-preference parameters 

are not relevant to maximization of the utility function in Equation (1). Therefore, the conditions 

in Equation (3) based on the D-preference parameters are not necessarily consistent with 

maximization of the utility function. For example, according to Equation (3), kd kp   implies 

that good k is not chosen. However, if kc kp  , choosing good k  will lead to greater utility 

(for the utility function in Equation (1)) than not choosing it; regardless of the value of kd . 

Similarly, when kd kp   but kc kp   the conditions in Equation (3) can lead to suboptimal 

consumptions. On the other hand, if the analyst were to work with only the conditions of optimal 

utility, the resulting model would not have the D-preference parameters. Instead, it would be 

similar that of a traditional MDC choice model, except with a linear utility for the outside good.  

                                                 
4  Note also that the equality condition for the chosen goods, which is based on the C-preference parameters, 

automatically implies an inequality that 0kc kp   . Such an inequality based on the C-preference parameters 

is not explicitly stated in the above conditions since it would be redundant. 



  

7 
 

To be sure, Bhat’s (2018) flexible formulation, while valuable in loosening the tight tie 

between the discrete and continuous consumption decisions, is not always going to be optimal 

from a strict utility-maximizing perspective. In this context, one can interpret the conditions in 

Equation (3) involving kd  as a set of heuristics that are assumed to be followed by individuals 

in making their decisions of which goods to choose and how much to consume of the chosen 

goods. That is, the model in Equation (3) can be interpreted as a two-step decision-making 

process somewhat akin to a Tobit model for each inside good. Specifically, for a given inside 

good k, in the first step, the discrete choice decision is made based on its kd  value. In the 

second step, the continuous consumption amount is determined based on the kc  and k  values 

of that good. While the continuous consumption decision is still based on an intuitive and 

behavioral utility satiation concept, the flexible MDC formulation extends the traditional utility-

maximizing MDC formulation in ways that allow the statistical stitching of the discrete and 

continuous consumption decisions, as we discuss in the rest of this paper.   

2.2 The Flexible MDCP Model 

2.2.1. Model Structure 

The conditions of Equation (3) may be rewritten, after substituting 1  , as: 

1*
*

1 1

*
1

for  2, 00 and ( ) 1

0,

, when 

 for  ,if  2 ,0

k
kd k kc k k

k

kd k k

k K

k K

x
p p x

p x

   


 


 

      


 

  

  (4) 

Re-arranging and taking logarithms, the conditions may be rewritten as follows: 

 

*
*

1 1

*
1

ln( ) ln( ) ln 0 and ln( ) ln 1 ln( ) ln 0 0,

ln( ) ln( ) ln 0  0

when 

when

k
kd k kc k k

k

kd k k

x
p p x

p x

   


 

 
         

 
   

(5) 

Next, we specify 1  as 1 1 1exp( + )  β z , where 1z  is a D-dimensional vector of attributes that 

characterizes good 1, without the inclusion of a constant. Similarly, the D-preference and the C-

preference terms are specified as follows: 

exp( + ) and exp( ) ,  = 2,3,...,kd k k kc k k k K.      β z θw    (6) 
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In the expression for kd , kz  is a D-dimensional vector of observed attributes that influence the 

choice of good k (including a dummy variable for each inside good), β  is a corresponding 

vector of coefficients, and k  captures the idiosyncratic (unobserved) characteristics influencing 

the choice of good k. We assume that the error terms k  are multivariate normally distributed 

across goods k: 1 2( , ,..., ) ~ ( , )K K KMVN    Λ  0 , where ( , )K KMVN Λ0  indicates a K-variate 

normal distribution with a mean vector of zeros denoted by K0  and a covariance matrix Λ . In 

the expression for  kc , kw  is a vector of observed attributes that influence the consumption 

amount of inside good (  2, , )k k K  , with θ  being the corresponding vector of coefficients. 

Note that some variables may appear exclusively in kz  or in kw , indicating that the variable 

affects one but not the other baseline preference. We assume that the error terms 2( ,..., )K   

are also multivariate ((K-1)-variate to be precise) normally distributed across goods k: 

1 1~ ( , )K KMVN  0  . Next, define the following for the inside goods (  2, , )k k K  : 

 

 

1 1

,1 1

*

,1 1

and ,

ln ,  and,

ln ln 1  

k k k k

k k k

k
k k k

k

V p

x
V p

     



   

   

 
      

 




β z β z

β z θw

 (7) 

Then, the conditions in Equation (5) may be rewritten as: 

 
 

*
,1 ,1

*
,1

 2, and if 0,  

if 0

 3, ,

 2,  3, ,,

k k k k k

k k k

k K

k K

V V x

V x

 

 

  

 

 






       (8) 

For identification, we set 1( ) 0.5Var   , 2( ) 0.5Var   , and 1 2cov( , ) 0   . This normalizes the 

first element of the covariance matrix of k  terms to 1, which constitutes a scale normalization 

for the error terms in the D-preference parameters. In addition, for a straightforward 

interpretation of the covariance matrices Λ  and  , as well as the covariances between the k  

and k  terms, we will assume that the stochastic term influencing the baseline utility for the 

outside good 1  is independent of all inside good error terms ( 2,3,.... )k k K   in the D-
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preference parameters as well as the inside good error terms ( 2,3,...., )k k K   in the C-

preference parameters. As such, the assumption is innocuous because the full covariance matrix 

of the k  terms and k  terms is unidentifiable. Using the assumption of error independence 

between the outside good utility and the inside good utility parameters, and using the notation 

M1  to refer to a square matrix of dimension M with all its elements equal to 1, the covariance 

matrix for k  and k  takes the following form, where 2 3( , ,..., )K     and 2 3( , ,..., )K    : 

2( 1)

23 24 2 22 23 24 2

23 33 34 3 32 33 34 3

24 34 44 4 42 43 44 4

2 3 4 2 3 4

22 32 42 2 22 23 24

( 0.5 ,

0.5

where

K

K K

K K

K K

K K K KK K K K KK

K

Cov

      
       
       

       
       

    

 
   

Ξ 1 Ξ

Ξ



   
    
    
         

     
 



 
  2

23 33 43 3 23 33 34 3

24 34 44 4 24 34 44 4

2 3 4 2 3 4

K

K K

K K

K K K KK K K K KK

       
       

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

         
 

  (9) 

In the above matrix, Ξ  is the variance-covariance matrix of all (but 1 ) error terms in the model 

and Ξ  is the variance-covariance matrix of error differences with respect to 1 . Note that 

  is 

the covariance matrix of the D-preference error terms for inside alternatives ( 2,3,.... )k k K  , 

with the elements ( 2,3,.... )kk k K   denoting the variances of these error terms and the elements 

( , 2,3,.... ; )jk j k K j k    denoting the covariances between j and ( , 2,3,... ; )k j k K j k   . 

 , as already defined, is the covariance matrix of the C-preference error terms for the inside 

goods ( 2,3,.... )k k K  , with the elements ( 2,3,.... )kk k K   denoting the variances of these 

error terms and the elements ( , 2,3,.... ; )jk j k K j k    denoting the covariances. Finally, Σ  

captures the covariances between the D-preference and C-preference error terms, with 

( 2,3,... )kk k K   denoting the covariances between k  and ( 2,3,... )k k K   and 

( , 2,3,.... ; )jk j k K j k    denoting the covariances between j and ( , 2,3,... ; )k j k K j k   . 
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The reader will note that Ξ is positive definite as long as the covariance matrix Ξ  is positive 

definite, because the addition of a non-negative constant to all entries of a positive definite 

matrix also results in a positive definite matrix. The positive definiteness of  Ξ   is ensured by 

applying a Cholesky decomposition of this matrix and estimating the corresponding Cholesky 

parameters. Once the Cholesky parameters are estimated, the actual covariance parameters can 

be easily obtained. For later use, we will also write the following equation: 

11 12( 1) ( 1)
2( 1)

12 22( 1) ( 1)

0.5 0.5
( 0.5

0.5 0.5
K K

K
K K

Cov  


 

    
                

Ξ Ξ1 1
Ξ 1 Ξ

Ξ Ξ1 1




   
 

  (10) 

An important implication of the conditions in Equation (8) on the identification of the covariance 

elements is worth discussing. Specifically, the conditions in Equation (8) imply that the discrete 

choice probability of consumption of each inside good is essentially a binary probit. That is, for 

each inside good, the condition for choosing a good for consumption is given by the univariate 

probit model condition of 
1,

~
kk V  if 0* kx  and ,1k kV    if * 0kx  . Since in such binary choice 

situations, it is not possible to estimate scale parameters of the error terms, the variance elements 

(i.e., ( 2,3,.... )kk k K  ) are all set to 0.5 in the covariance matrix in Equation (9).  

2.2.2. Model Estimation 

Consider an individual who chooses a total of M inside goods to consume (M can take the value 

of zero, indicating that no inside goods are consumed, and all the budget is invested in the 

outside good). Define a selection matrix R of size ( 1 ) [2( 1)]K M K    . Consider the first (K-

1) rows. If  0M  , in the first of these rows, place a value of ‘1’ in the column corresponding to 

the first of the inside goods consumed. Place values of zeros everywhere else in this row. Next, 

in the second of these rows, place a value of ‘1’ in the column corresponding to the second of the 

inside goods consumed and zeros everywhere else. Continue until the thM  row. Next, start with 

the ( 1)thM   row, place a value of ‘1’ in the column corresponding to the first non-consumed 

inside good, and values of ‘0’ everywhere else. Continue this until the first (K-1) rows are 

completely populated. Next, in the thK  through ( 1 )thK M   rows and the thK  through 

2( 1)thK   columns, reproduce the sub-matrix in the first M rows and (K-1) columns of R . All 

other columns of the thK  through ( 1 )thK M   rows receive a value of zero.  Thus, if there are 
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three inside goods (that is, (K-1) = 3), and assuming that the first and the third of those goods are 

consumed by an individual, the R matrix takes the following form: 

1

2

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

D
D

D
C

C

 
   
    
      
    
   
  

R 0
R 0

R R 0
0 R

0 R

.    (11) 

If none of the inside goods are consumed, the R matrix takes the following form: 

   2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
D D

 
    
  

R R 0 R 0      (12) 

Next, also define a set of dummy variables k  (  2,3 )k K   that take the value of ‘1’ if inside 

good k is consumed, and zero otherwise. Let 2 3( , ..., ),K   2,1 3,1 ,1( , ,... ),KV V V   V

1 1 2 2, ,D D D D R R   V V V V 2 3( , ,..., ) ,KV V V 
   
V  ,C C R

 
V V ,CR    1 1 2 2,D D D D R Rη η η η , 

and Θ RΞR . Also, let the actual observed consumption vector be * * * *
2 3( , ,..., ),Kx x xx where 

some or all of the inside good-specific consumption values *( ; 2,3,... )kx k K  may be zero (the 

outside good consumption value is relevant only in situations with finite budgets, where it can be 

determined immediately from the consumption values of the inside goods, and so is not included 

explicitly in the consumption vector *x ). Then, based on the KKT conditions in Equation (8), we 

may write the following: 

 
1 2 2

21 1

*
1 1 2 1 2 1 | |  ( , , ; , ) ,

D D D

DD D

K M D D C K M D DP J d d

 

   



   0 Θ










η η V

ηη V

x f η η V η η   (13) 

where  
2

| |  ,k
K

k
k

J f




 
  
 
 *

1
( 2,3,.... )k

k k

f k K
x 

 
   

,   
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and 1 1(.,.,...; , )K M K M   0 Θf  represents the (K-1+M)-variate multivariate normal density function 

(pdf) with a mean vector of 1K M 0 and covariance matrix Θ .5 Due to the symmetric nature of 

the mean-centered multivariate normal density function, the expression in Equation (13) may be 

simplified by constructing a (K-1+M) column vector   with entries of ‘1’ in the first M rows and 

entries of ‘0’ in the remaining rows.6 Then, define 1 2(-1) ( , )D D.*    η = η η . Next, define a 

( 1 ) ( 1 )K M K M      matrix ( 1) .* Ψ Θ  , where the ( 1)    refers to a matrix whose 

elements correspond to the value of ‘-1’ raised to the elements of the matrix δ δ , and ‘.*’ 

refers to the element by element multiplication of two matrices. Then, by construction and 

symmetry, (Cov Ψ   . Let 1 2( , )D D     S V V . Then, we may write Equation (13) compactly 

as: 

 *
1 1 | |  Prob[ , ] | | ( , ; , ) .C K M C K MP J J d



   



   0 Ψ





 
         



η S

η

x S V f η V η  (14) 

To further simplify the expression above, partition Ψ  as follows: 

11 12

12 22

( ,Cov
 

     

Ψ Ψ
Ψ

Ψ Ψ
          (15) 

where 11Ψ  is a  ( 1) ( 1)K K   sub-matrix comprising the first (K-1) rows and (K-1) columns of 

Ψ  (corresponding to the covariance matrix of )  , 22Ψ  is a M M  sub-matrix comprising the 

last M rows and M columns of Ψ  (corresponding to the covariance matrix of  ), and 12Ψ  is  a  

                                                 
5 In the special case that M=0 (that is, none of the inside goods is consumed), Equation (13) collapses to the 
following: 

 
2 2

2

*
1 2 1 2 (0,0,0,...0) ( ; , ) ,

D D

D

K M D K M DP P d



   



   0 Θ





η V

η

x f η η  

which takes the form of a simple multivariate cumulative normal distribution function.  
6The symmetric nature of the multivariate normal density function is a distinct advantage over the asymmetric 
multivariate logistic density function used in Bhat (2018). While the multivariate logistic has a closed form 
expression for the cumulative distribution function, computing the integral of the multivariate logistic density 
function with a combination of upper and lower limits cannot be collapsed to the evaluation of a single cumulative 
distribution function. However, while the multivariate normal cumulative distribution (MVNCD) function is not 
available in closed-form, the integral of the multivariate normal density function with a combination of upper and 
lower limits can be collapsed to the evaluation of a single MVNCD function. This is a particularly useful result for 
the proposed flexible MDCP model.  
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( 1)K M  sub-matrix comprising the first (K-1) rows and last M columns of Ψ  (corresponding 

to the covariance between the  and   vectors). Define the following: 

1
12 22 [( ) 1 vector]C K - 1 Ψ Ψ


W V , 1

11 12 22 12= [( ) ( )] matrixK -1 K -1  Δ Ψ Ψ Ψ Ψ and let 
22Ψω  be 

the diagonal matrix of standard errors corresponding to matrix 22Ψ  and Δω  be another diagonal 

matrix of standard errors of Δ . Finally, let   represent the product of the diagonal entries of the 

matrix 
22Ψω . Using the marginal and conditional distribution properties of the multivariate 

normal distribution, the likelihood function in Equation (14) for the individual can be written as: 

 
22 22 22

*

1 1 1 1 1 1 1
22 1

 | |  Prob[ ] Pr [ ]

| |  ( , ) ( ) ,

C C

M C K

P J ob

J ,       


  

        Ψ Ψ Ψω ω Ψ ω ω ω Δω

 
  


     

  

x V S | V

V S -W
  (16) 

where ( , )M Σa  represents the multivariate standard normal density function of dimension M  

with a correlation matrix Σ  and evaluated at the abscissae value vector a , and 1( , )K Σb  

represents the multivariate normal standard cumulative distribution (MVNCD) function with a 

correlation matrix Σ  and evaluated at vector b . 

 The likelihood function, which is the same as the expression of Equation (16) written as a 

function of the parameter vector (  , , , 


   Ξβ θ γ ) can be maximized in the usual fashion to 

estimate the parameters ( γ  is a column vector collecting all the satiation parameters for the 

inside goods, and Ξ  is a column vector collecting all the upper/lower triangular covariance 

elements of the matrix Ξ ). However, one has to compute the multivariate normal cumulative 

distribution (MVNCD) function of (K-1) dimensions. For this, we use the analytic 

approximations proposed by Bhat (2018), which have been shown to be more accurate than 

traditional frequentist and Bayesian simulators.  

2.3. Restricted Versions of the Flexible MDCP Model 

Several restricted versions of the proposed model are possible. A few restricted versions are 

discussed here. 
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2.3.1. Flexible MDCP with IID D-preferences and non-IID C-preferences 

To estimate the parameters of the general covariance structure of the model proposed above, the 

analyst can work with a Cholesky decomposition of the error covariance matrix (Ξ ). Note that 

the covariance matrix of the error differences (Ξ ) (which is an input to the likelihood function) 

can be easily obtained using the following relationship while ensuring its positive definiteness: 

2( 1)( 0.5 KCov     Ξ 1 Ξ        (17) 

Attempts to directly estimate the parameters of the covariance matrix might lead to estimation 

breakdowns when it is not ensured that the covariance matrix is positive definite. To work with 

the Cholesky decomposition, however, it is not straightforward to fix only the diagonal elements 

kk  ( 2,3,.... )k K  and estimate the off-diagonal elements ( , 2,3,.... ; )jk j k K j k   of the 

matrix of D-preference error terms. This is because it is not easy to identify restrictions on the 

Cholesky matrix that results in such a covariance matrix. Therefore, it is convenient to assume 

the D-preference error terms to be IID (i.e., fix 0.5 2, 3, ....kk k K    and fix 

0 , 2,3,.... ;jk j k K j k     ), while allowing for correlations between the error terms of the 

D-preference and C-preference terms and those among the C-preference error terms (i.e., allow 

, 2,3,....jk j k K    and , 2,3,....jk j k K    to be non-zero). This is the approach we take in the 

empirical analysis later in this paper. It is important to note, however, that the above discussed 

restriction is imposed to avoid any estimation issues. Behaviorally, this restriction translates to 

an assumption of independence across goods at the discrete level of preference but allows 

correlations between their continuous preferences. There are practical instances where such 

correlation patterns are likely to exist. For example, the discrete decision to eat out may be 

purely need driven, and therefore may not involve significant correlation with participation in 

other activities, say socialization. However, the extent of time spent in eating is likely to be 

influenced if it is undertaken together with a social activity, which may result in positive 

correlations between the continuous preference functions of eating out and social activities. 

2.3.2. Flexible MDCP with IID and uncorrelated D- preferences and C-preferences 

If we assume the following: (a) the error terms ( 2,3,..., )k k K   on the D-preference terms for 

all the inside goods are IID (i.e., 0.5 2,3,....,kk k K     and 0 , 2,3,.... ;jk j k K j k     ), 



  

15 
 

(b) the error terms ( 2,3,..., )k k K   on the C-preference terms for all the inside goods are IID 

(i.e., 20.5 2,3,...,kk k K     and 0 , 2,3,...., ;jk j k K j k     ), and (c) ( 2,3,..., )k k K   

and ( 2,3,..., )k k K   are all pairwise uncorrelated (i.e., 0 , 2,3,... )jk j k K    , the resulting 

model is IID across all D-preferences and C-preferences. With all these restrictions, 

(Cov Ξ   has values of ‘1’ in the first (K-1) diagonal entries, values of 20.5(1 )  in the 

last (K-1) diagonal entries, and all other entries take the value of 0.5. This covariance structure is 

similar to that in Bhat’s (2018) flexible MDCEV model7. While one can use the likelihood 

function of Equation (15) with the restrictions on the covariance matrix, there is an easier way to 

estimate this model. Specifically, using the IID assumption across all the error terms, one can 

develop the likelihood of the observed consumption pattern conditional on 1  and then integrate 

over the distribution of 1 . Doing so results in the following likelihood expression for the 

flexible MDCP model with IID and uncorrelated D- and C-preferences: 

 

 
 

 
1

1

* * * *
1 2 3 1

1
1 1 1 1

1
2 2

 , ,  ,  ...,  ,  0,  0,  ...,  0

1 1
| |  

0.50.5

0.5 0.5 0.50.5

M

M

M K
k k k

k k M

P x x x x

J

V V V
d







     




 

  

 
    
 
 

                                    
 

 

   (18) 

Note that the scale   in the above expression is equivalent to 20.5(1 ) . The above likelihood 

function entails only a single dimensional integral, regardless of the number of alternatives, and 

considerably simplifies the estimation. 

  

                                                 
7 A small nuance is in order here. Bhat’s (2018) flexible MDCEV uses the same variance for kk  and  kk , which 

leads to a closed-form likelihood expression. However, other than the distribution form, the IID D-C MDCP model 
is similar to the MDCEV in Bhat’s paper, because the scale does not matter in the discrete part of the IID D-C 

MDCP, and we can as well normalize kk to 
20.5  (k=1,2,…K). However, just to be consistent with the model 

development in Section 2.1, we will keep to the assumption that 0.5kk  , because it more clearly shows that the 

IID D-C MDCP model is a restricted version of the full flexible MDCP model proposed in Section 2.1.  
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3. EMPIRICAL APPLICATION 

3.1. Sample Data 

To demonstrate an application of the proposed flexible MDCP model, we consider the case of 

tourism expenditures of domestic tourists in India. The empirical data for this analysis comes 

from the domestic tourism expenditure survey carried out by the National Sample Survey Office 

(NSSO) under the Ministry of Statistics and Program Implementation (MOSPI) of the 

Government of India (NSS 72nd round survey carried out from July 2014 to June 2015). The data 

contains information on domestic trips (undertaken by Indian households) that involved at least 

one overnight stay away from the households’ usual place of residence (UPR) for any of the 

following purposes: leisure and recreation, shopping, or health and medicine. For each surveyed 

household, all such trips made by the household members over a period of 365 days before the 

survey day were recorded. For each domestic trip, the survey recorded expenditures across six 

expenditure classes: (a) transportation, (b) accommodation, (c) food and beverages, (d) shopping, 

(e) recreation and leisure, and (f) health and medicine. Among these trips, the most recent trip of 

the household with the primary purpose of leisure and recreation was considered. Only those 

trips that were not reimbursed by an employer or other sources were considered; package-deal 

trips were removed from consideration since these trips did not contain information on 

expenditure by category. The final sample had information on the expenditure patterns of 4981 

households, of which 3500 were used in model estimation, and the other 1481 were kept aside as 

a holdout sample.  

Table 1 reports the aggregate expenditure patterns of the above-described sample of trips. 

Note that all trips involve some expenditure on transportation, and therefore, in this analysis, we 

consider transportation expenditures as part of the essential Hicksian outside good. Since the 

model framework employs a linear-utility structure on the outside good (Bhat, 2018), the 

information on the total budget and the allocation to the outside good does not become a part of 

the analysis (and hence, its expenditure details are not provided in Table 1). As discussed in Bhat 

(2018) and Saxena et al. (2021), the linear outside good utility form is helpful for analyzing 

empirical situations when the total budget is not known or clearly defined but can be assumed to 

be large compared to the allocations to inside goods. In the current empirical context, since the 

allocation to the expenditure classes of interest is likely to be small relative to the total budget 

(which can be, for instance, the total annual household expenditure) of the household, a linear 



  

17 
 

outside good utility profile is suitable. However, if the information on the budget is available, 

one can use the information for forecasting with the model. 

In addition to the information on household expenditures across different categories 

during their trip, the sample has information on socio-demographic factors, such as household 

location type (urban or rural), household income level, and composition of the group of members 

making the trip (gender and age composition). In addition, trip level information such as travel 

mode and duration of the trip was collected. All these variables were explored as exogenous 

variables in the empirical model. It is worth noting here that this empirical data has been used 

earlier by Saxena et al. (2021) to analyze households’ tourism expenditures using MDC choice 

models that do not employ the flexible utility form nor the non-IID error distributions. The focus 

of the current study, however, is to assess the benefits of the flexible utility form along with the 

non-IID error structure.  

3.2. Estimation Results 

The empirical specification was carefully built by systematically adding exogenous variables and 

dropping the statistically insignificant parameters from the specification. In the final 

specification, parameters that provided an intuitive interpretation were retained if their t-statistic 

value was greater than 1. However, constants in the baseline preferences (both D- and C-

preferences) and the satiation parameters were retained in the final specification irrespective of 

their statistical significance.  

The estimation results of the proposed flexible MDCP model are reported in Table 2. The 

parameter estimates under the heading “Discrete preferences” are for the effects of exogenous 

variables on the D-preference baseline utility components. The parameter estimates under the 

column heading “Continuous preferences” report the effects of exogenous variables on the C-

preference baseline utility components. Finally, the parameter estimates in the satiation functions 

are reported in the set of rows labeled “Satiation function”. These results are discussed below. 

3.2.1. Effects of exogenous variables on the D-preference baseline utilities 

In the context of household characteristics, the negative coefficient of the “urban household” 

dummy variable in the D-preference parameter for shopping suggests that households residing in 

urban areas are less likely (than those in rural areas) to spend on shopping during their travel 

outside their usual place of residence (UPR). This may be because urban households tend to have 

better access to shopping facilities at their UPR than rural households (Venugopal, 2012; Mulky, 
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2013). Urban households, on the other hand, are more likely to spend on accommodation as 

compared to their rural counterparts.  

 Next, income effects were explored using a surrogate variable associated with the 

household’s usual monthly consumer expenditure (UMCE) by categorizing the households into 

low-income (UMCE < INR 10,000), medium-income (INR 10,000 to 20,000), and high-income 

(UMCE > INR 20,000) classes. The corresponding parameter estimates in the D-preferences 

suggest that low- and medium-income households are less likely (than high-income households) 

to spend in most of the expenditure categories considered in this study.    

In the context of the variables describing the composition of the travel group, as the 

group size increases, people are less likely to spend on accommodation, as implied by the 

negative sign on its coefficient in the corresponding D-preference function for accommodation. 

This may be because large travel groups prefer to stay with friends or relatives to save on 

accommodation costs. In addition to the size of the group, the effects of group composition were 

considered through three variables – the proportion of women in the group, the proportion of 

elderly (> 60 years of age), and the proportion of children in the group. While the proportion of 

children in the group did not show a significant influence on the expenditure patterns of 

travelers, the proportion of women in the group had an interesting influence. Travel groups with 

a higher proportion of women are less likely to opt for paid accommodation, possibly because 

such groups may prefer staying with friends or relatives for safety reasons. Such groups are also 

less likely to spend on food and beverages since they might prefer hygienic, home-cooked meals 

than eating out at unfamiliar locations. On the other hand, groups constituting more women are 

more likely to spend on shopping, possibly because women derive greater satisfaction from 

shopping than men (Herter et al., 2014). Interestingly, female travelers are associated with 

greater spending than male travelers (Brida and Scuderi, 2013; Wang and Davidson, 2010). 

However, our finding indicates such spending patterns are not consistent across different 

expenditure categories. Another intuitive finding was that travel groups with a higher proportion 

of elderly individuals are more likely to spend in the health and medicine category. 

 Next, two trip specific variables were considered in the model: (a) duration of the trip 

(i.e., the number of nights spent outside the UPR) and (b) the type of trip destination (i.e., within 

the same district as the UPR, outside the district of the UPR but within the same state, and 

outside the state of the UPR). Trip duration shows a positive association with the likelihood of 
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spending on health and medicine. This result is unlikely due to a causal effect of the trip duration 

on health and medical needs. Instead, this result is likely due to an endogenous effect where trips 

involving health and medical activities tend to be longer than other trips. Interestingly, the trip 

duration did not affect the discrete choice to spend in other expense categories, except 

accommodation. The effect of trip duration on a household’s likelihood of spending on 

accommodation was captured through a non-linear (category variable) specification. 

Specifically, travelers are more inclined to opt for paid accommodation for short- and medium-

duration trips (i.e., trips of a duration of 10 days or shorter) than trips longer than ten days. This 

is not surprising, since shorter duration trips are associated with higher daily expenditures (Yang 

et al., 2021). Also, on long-duration trips, travelers are likely to stay with friends or relatives to 

save on high accommodation costs (see Pellegrini et al., 2014 for a similar finding). Finally, the 

trip destination had an expected impact on the decision of spending in all expenditure classes. 

Specifically, trips farther from the household’s UPR (i.e., those with a destination outside the 

district of the household’s UPR or outside the state of the UPR) are associated with a greater 

likelihood of expenditure in all expenditure categories as compared to trips to a destination 

within the same district of the UPR. 

3.2.2. Effects of exogenous variables on the C-preference and satiation parameters 

Note that both the C-preference parameters and the satiation parameters influence the extent of 

expenditure allocation to each of the inside alternatives. This is a reason why the satiation 

parameters are estimated with a lower statistical significance as compared to those in the 

traditional MDC models. For the same reason, not many covariates have a significant influence 

on the satiation functions (as they already influence the C-preference functions). In this context, 

although the results of a traditional MDCP model are not reported in the paper, the satiation 

parameter estimates of such a model had higher t-statistic values than those in the flexible 

MDCP model reported in Table 2.  

 In the context of C-preferences, households from urban areas show higher expenditures 

on accommodation and shopping than those from rural areas. Recall from the earlier discussion 

that households from urban areas were found to be less likely to spend on shopping. However, if 

they spend on shopping or accommodation, urban households are likely to spend more than rural 

households. The flexible MDCP model, due to separating the influence of covariates on discrete 
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and continuous choices, makes it easier than the traditional MDC choice models to estimate such 

opposite effects on discrete and continuous choices.  

The negative coefficients on the income dummy variables in the C-preference 

specification suggest that low- and medium-income households tend to spend less than high-

income households on their recreational and leisure trips. This is presumably because high-

income households tend to possess a greater spending capability owing to a larger disposable 

income than lower-income households. These findings are consistent with the findings from 

other countries. For instance, a study by Asgary et al. (1997) revealed that high incomes in 

Mexican travelers boosted their tourism expenditures. In a similar study in Spain, Nicolau and 

Mas (2005) reported that higher income were associated with greater tourism expenditures. 

 Next, recall from the discussion on D-preferences that the travel group size variable was 

found to be negatively associated with the likelihood of spending in the accommodation 

category. In the context of C-preferences, however, this variable has a positive coefficient in the 

shopping and recreation categories. Further, this variable has a positive coefficient in the 

satiation function for accommodation and food & beverage categories. These results suggest that 

larger travel groups are likely to spend more on accommodation, food & beverages, shopping, 

and recreation categories – if they choose to spend in those categories.  

Variables describing the composition of the travel group (such as the proportion of 

women and the proportion of elderly) do not show statistically significant effects in C-

preferences. However, a larger proportion of women in the travel group is associated with a 

positive effect on the satiation function for the accommodation category. This result implies that 

travel groups with more women are likely to spend more on accommodation than those with 

fewer women. This again supports our conjecture that travel groups with more women tend to 

prioritize safety and therefore prefer accommodations that are considered safer (and are possibly 

more expensive) (see Zemke et al., 2015 for similar findings). Finally, as can be observed from 

the positive coefficient in the corresponding satiation function, travel groups with a larger 

proportion of elderly show a greater extent of expenditures in the health and medicine category. 

3.2.3. Structure on the variance-covariance matrix 

In theory, the covariance structure as implied in Equation (9) is identifiable with restrictions on 

the covariance elements specific to the D-preference utilities. As discussed in Section 2.3.1, we 

estimated the flexible MDCP model with IID D-preferences and non-IID C-preferences, where 
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( ) 0.5 ( 1,2,..., )k kkVar k K     and 0 ( , 2,..., & )jk j k K j k     . All other covariance 

elements were freely estimated using a Cholesky decomposition of the covariance matrix of error 

terms (i.e., Ξ  ). Since we estimated the Cholesky parameters that correspond to the covariance 

matrix of the error terms (as opposed to the covariance matrix of error differences), the elements 

of the resulting covariance matrix are interpretable. The resulting covariance elements, after 

appropriate conversion from the estimated parameters in the Cholesky matrix, are reported in 

Table 3. 

 A few points are worth discussing regarding the error covariance matrix reported in 

Table 3. First, the model estimated with a general covariance structure (i.e., with IID D-

preferences and non-IID C-preferences) provided a significantly better fit than models with 

restricted covariance structures (more on this later). Second, all covariance elements 

corresponding to the C-preference utility parameters (i.e., , 2,3,.... &jk j k K j k    ) were 

insignificant across all expenditure classes, except between accommodation and food & beverage 

categories, where the correlation between the two categories is positive. This highlights that 

those travelers who prefer staying at expensive accommodations are also likely to patronize 

expensive eat-out options. Third, most of the covariances between the D-preference of an 

expenditure class j and C-preference of an expenditure class k ( , 2,3,.... &jk j k K j k    ) 

were close to zero. While it may be useful to fix such covariances to zero, as discussed in section 

2.3.1, it is not easy to do so with Cholesky decomposition. Therefore, we retained them in the 

empirical model. Fourth, the covariances between the D- and C-preferences of an expenditure 

class (i.e., kk ) were positive across all expenditure classes, except for the food and beverage 

category. The positive covariances are intuitive, as one would expect a positive correlation 

between the D- and C-preferences of an expenditure class. The negative covariance between the 

D- and C-preferences of the food and beverages category is only marginally significant. 

3.2.4. Likelihood-based goodness-of-fit measures 

Table 4 reports the likelihood-based data fit measures for the following models estimated in this 

study: (a) flexible MDCP model with IID D-preferences and non-IID C-preferences (as 

discussed in Section 2.3.1), (b) flexible MDCP model with IID and uncorrelated D-preferences 

and C-preferences (i.e., IID uncorrelated D-C MDCP model), (c) a traditional MDCP model with 
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a full covariance matrix (or non-IID MDCP model), (d) a traditional MDCP model with IID error 

terms in the stochastic specification (or IID MDCP model), and (e) a flexible MDCEV model as 

in Bhat (2018) with IID type I extreme value error terms. The traditional MDCP model was 

estimated to assess the benefits of the additional D-preference parameters in the flexible MDCP 

model. The flexible MDCEV model was estimated for comparison with its IID probit counterpart 

(i.e., the flexible MDCP with IID and uncorrelated D-preferences and C-preferences) to assess 

which error distribution provides a better fit in the current empirical context.  

 The likelihood-based goodness-of-fit measures for all the above models were computed 

on an estimation sample of 3,500 households and a holdout sample of 1,481 households. These 

measures are reported in Table 4. Note that the three models with the label “flexible” in Table 4 

relax the tight tie between the discrete and continuous consumption decisions, but are not always 

consistent with utility-maximizing behavior. On the other hand, the two models with the label 

“traditional” tie the discrete and continuous consumptions very tightly, but are strictly consistent 

with utility-maximizing behavior. Several observations can be observed from the table. First, the 

flexible MDCP model with IID D-preferences and non-IID C-preferences (see second column of 

Table 4) provides a superior goodness-of-fit than all other models estimated in the study. This 

result highlights the benefits of relaxing the IID assumptions in flexible MDCP models. Second, 

note that both the IID uncorrelated D-C MDCP (third column of Table 4) and the flexible 

MDCEV model from Bhat (2018) (last column of Table 4) impose a similar structure on the 

covariance matrix. However, the probit version of the flexible MDC model provides a better fit 

in the current empirical context. Further, the advantage of the flexible MDCP model structure 

lies in its ability to easily relax the IID structure imposed in the flexible MDCEV model. Third, 

between the flexible model with an IID MDCP structure (in the third column) and the traditional 

IID MDCP (in the fifth column), the former provides a better fit in both the estimation sample 

and the validation sample (albeit, in the validation sample, the BIC value for the IID D-C MDCP 

model was higher than that for the IID MDCP model, possibly because BIC over-penalizes the 

flexible MDCP model due to more number of parameters). Similarly, between the flexible 

MDCP with a non-IID structure (second column) and the corresponding traditional MDCP with 

a non-IID structure (fourth column), once again, the flexible structure provides a better fit both in 

estimation and holdout samples. Finally, it is interesting to focus on the comparison of the IID 
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flexible MDCP (second column) and the non-IID but traditional MDCP (fourth column). Here, 

the non-IID traditional MDCP comes out to be the clear winner. 

3.2.5. Comparison of predictive accuracy 

The likelihood-based goodness-of-fit measures indicate better performance of the flexible MDCP 

model with IID D-preferences and non-IID C-preferences than other models evaluated in this 

study. However, better performance based on likelihood based fit measures does not always 

translate to improved accuracy in predictions on outside samples. Therefore, we evaluate the 

predictive performance of these models on the holdout sample (i.e., the sample of 1481 data 

points not used for estimation). Specifically, we compare the predictions from the proposed non-

IID flexible MDCP model with those obtained from (a) the IID D-C flexible MDCP model – to 

highlight the importance of relaxing the IID assumption in the prior formulation of flexible MDC 

model, and (b) the non-IID traditional MDC model – to highlight the importance of separating 

the discrete and continuous preferences in MDC model systems. The results of the predictive 

assessments are presented in Table 5, where the predictions from the respective models are 

aggregated over 100 sets of simulation draws. 

As is evident from the table, all three models do a decent job in predicting the discrete 

shares of whether to spend in an expense category, with the IID D-C flexible MDCP model 

predicting closest to the observed shares, as indicated by the weighted Mean Absolute 

Percentage Error (MAPE) values corresponding to the discrete shares (see the fourth, sixth and 

eight columns in Table 5). However, when it comes to the extent of expenditure in these 

categories, the flexible MDCP model with IID D- and non-IID C-preferences provides more 

accurate predictions, with the weighted MAPE value of around 16% (as compared to the 

weighted MAPE of 27.8% corresponding to the IID D-C flexible MDCP model, and 17% for the 

non-IID traditional MDCP model. At the level of expenditure class, it is evident from the results 

that all the models predict fairly well across all categories, except accommodation. Interestingly, 

the non-IID traditional MDCP model is quite off from the observed expenditure in 

accommodation. A possible reason for this error could be the fact that accommodation category 

has a relatively lower discrete share but a significantly high expenditure. Since the same baseline 

preference parameter controls both the discrete as well as continuous outcomes in the traditional 

MDCP model, the errors are reflected in the continuous predictions. However, in all other 

categories, both the flexible MDCP model (with IID D- and non-IID C-preferences) and the 
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traditional MDCP model predict with fair accuracy. This is also reflected in the comparable 

overall weighted MAPE values for the two models, with the flexible model structure predicting 

slightly better than the traditional model structure. 

Overall, in our empirical context, the predictive assessment indicates similar trends as those 

observed form the likelihood-based goodness-of-fit measures, where the flexible (but not always 

consistent with utility-maximizing-behavior) model structure is the preferred structure relative to 

the traditional MDC model that is strictly consistent with utility-maximizing behavior. We 

expect this to be the case in general too, because of the relaxing of the tight tie between the 

discrete and continuous consumptions. The caveat though is that the IID flexible structure need 

not always be better than the non-IID traditional structure, as is also observed from our result 

presented above. The takeaway is that if strictly utility-maximizing behavior is not necessarily 

desired, the preferred model would, in general, be the flexible non-IID MDCP model proposed 

and implemented in this paper. However, a potential downside to the flexible MDC model 

structure is that it cannot be used to calculate welfare measures. In such situations, where 

consistency with the utility-maximizing behavior is important, the traditional non-IID MDCP 

with a full covariance matrix would be a good model to consider. This traditional non-IID 

MDCP will, in general, provide a much superior fit to IID (MDCP or MDCEV) traditional 

models and, as in our empirical case, may even provide a better data fit and accurate predictions 

than the flexible IID MDCP model.  

 

4. CONCLUSIONS 

In this paper, we formulate a flexible multiple discrete-continuous probit (MDCP) model with a 

multivariate normal distributed error kernel that allows non-IID error structure in the utility 

functions. In doing so, we revisit the formulation of Bhat’s (2018) flexible utility form and 

highlight that the discrete preference parameters used in the flexible utility form do not have a 

role in the optimality conditions associated with the utility function. As a result, the stochastic 

conditions used by Bhat (2018) to derive the model likelihood function are not always consistent 

with utility maximization (hence the flexible MDCEV model is not necessarily consistent with 

utility maximization). Therefore, we provide an alternate interpretation of Bhat’s (2018) model 

as a representation of a two-step decision-making heuristic. Specifically, for a given inside good 

k, in the first step, the discrete choice decision is made based on its discrete choice preference 
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function. In the second step, the continuous consumption amount is determined based on the 

continuous choice preference function and the satiation function of that good.  

The proposed flexible MDCP model is applied to analyze monetary expenditures 

incurred on recreational trips undertaken by Indian households that involved staying at a 

destination outside the household's usual place of residence (UPR) for at least one night. The 

sample data comes from a domestic tourism survey by the National Sample Survey Office of the 

Ministry of Statistics and Program Implementation (Domestic Tourism survey, NSS 72nd Round 

survey conducted from July 2014 to June 15). The expenditures incurred on these trips in five 

expenditure classes – namely (a) accommodation, (b) food and beverages, (c) shopping, (d) 

recreation and leisure, and (e) health and medicine – were analyzed. The empirical model sheds 

light on the determinants of Indian households’ expenditure patterns on their recreational/tourism 

trips. 

Likelihood-based goodness-of-fit measures of the proposed flexible MDCP model were 

compared with a simpler version of it (with IID error terms) and the traditional MDCP, both in 

the estimation and holdout samples. For completeness, Bhat’s (2018) flexible MDCEV model 

was also estimated. Our results indicate that, if the analyst is willing to compromise on the strict 

utility-maximizing aspect of behavior, while also enriching the behavioral dimension through the 

relaxation of the tie between the discrete and continuous consumption decisions, the preferred 

model would be the flexible non-IID MDCP model. On the other hand, if the analyst wants the 

model to be strictly grounded on utility-maximizing behavior (which may also have benefits by 

way of welfare measure computations), but is willing to assume a tight (and oftentimes difficult 

to justify) tie between the discrete and continuous consumption decision processes, the preferred 

model would be the non-IID traditional MDCP model.   

Future research should consider flexible utility formulations that are also consistent with 

utility maximization. One approach to do so would be to truncate the space of the D-preference 

and C-preference parameters such that the model becomes utility optimal for all possible values 

of the truncated parameter space, a direction of research that the authors are currently pursuing. 

Equally useful would be to derive a method to estimate welfare measures from such models.       
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Table 1. Summary of the sample data (Sample size = 4,981 households) 

Expenditure 
category 

Percentage of households 
spending in the category 

Details of expenditure in the row 
category 

Avergae 
expenditure 

(across household 
who spend in the 

category) 
(Indian Rupess) 

Standard 
deviation of the 

expenditure 
(across household 
who spend in the 

category) 
(Indian Rupess) 

Transportation 100.0 3,252 7,078 

Accommodation 46.0 2,983 3,395 

Food and beverages 93.0 1,508 2,401 

Shopping 85.3 2,626 3,387 

Recreation and leisure 35.4    613 594 

Health and medicine 16.6    485 1,827 
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Table 2. Estimation results of the flexible MDCP model with full covariance matrix 

-: Coefficient was dropped from the specification as it was not statistically significant.  
*: Number of nights was specified as a categorical variable in the accommodation utility function and continuous variable in other utility functions. 
t-statistics are reported in parentheses next to the parameter estimates.

 Discrete preferences Continuous preferences 

Accommo-
dation 

Food & 
beverages 

Shopping 
Recreation 
& leisure 

Health & 
medicine 

Accommo
dation 

Food & 
beverages 

Shopping 
Recreation 
& leisure 

Health & 
medicine 

Baseline preference function   

  Constants -1.35 (-10.7) 1.42 (8.9) 0.63 (7.4) -0.98 (-13.0) -1.37 (-18.3) 1.61 (5.6) 3.46 (11.0) 3.89 (5.7) 2.78 (2.8) 3.00 (0.5) 
  Household specific variables   

  Urban household (Base category: Rural) 0.08 (1.7) - -0.22 (-4.1) - - 0.23 (4.3) 0.17 (4.0) - - - 
  Income (Base category: UMCE > ₹20K)   

 Low-income (UMCE < ₹10K) -0.68 (-10.9) -0.43 (-3.1) -0.07 (-1.4) -0.18 (-4.2) - -0.89 (-12.6) -0.86 (-14.4) -0.51 (-7.1) -0.57 (-7.2) -0.12 (-1.1) 
 Medium-income (UMCE: ₹10K-₹20K) -0.32 (-5.8) -0.24 (-1.7) - - - -0.51 (-8.9) -0.47 (-8.6) -0.25 (-3.6) -0.18 (-2.5) - 

  Travel group and trip specific variables   
  Size of the travel group -0.04 (-2.5) - - - - - - 0.14 (8.4) 0.11 (5.2) - 
  Proportion of women in the group -0.22 (-3.4) -0.50 (-5.4) 0.19 (2.7)   - - - - - 
  Proportion of elderly in the group - - - - 0.42 (7.0) - - - - - 
  Number of nights  - - - - 0.02 (9.7) - 0.02 (11.0) 0.02 (8.9) 0.01 (2.2) 0.04 (7.6) 
  Trip duration (Base: duration > 10 nights)   

 Trip duration is 1-3 nights 1.07 (13.3) * * * * -0.31 (-3.3) * * * * 
 Trip duration is 4-10 nights 0.57 (7.2) * * * * -0.15 (-2.0) * * * * 

  Trip destination (Base: Same as UPR)   
 Same state of UPR (not same district) 0.81 (10.2) 0.57 (6.9) 0.37 (5.0) 0.64 (8.1) 0.28 (3.4) 0.74 (6,1) 0.77 (11.0) 0.51 (6.0) 0.64 (4.8) 0.07 (1.0) 
 Outside the state of UPR 1.43 (17.5) 1.09 (10.5) 0.68 (8.5) 1.0 (13.1) 0.43 (5.4) 1.45 (10.5) 1.50 (19.7) 1.26 (14.6) 1.23 (9.2) 0.57 (3.1) 

Satiation function   
  Constants 

 

0.0 (0.0) -2.53 (-8.1) -2.94 (-4.3) -3.24 (-3.2) -5.6 (-1.0) 
  Size of the travel group 0.07 (4.3) 0.12 (9.4) - - - 
  Proportion of women in the group 0.21 (2.8) - - - - 
  Proportion of elderly in the group - - - - 1.26 (6.3) 

Goodness of fit measures  

  Number of cases 3500 
  Number of parameters 102 

  Log-likelihood for constant only model -43,106.10  

  Log-likelihood of the final specification -40,161.80 

  Akaike information criterion (AIC) 80,527.60 

  Bayesian information criterion (BIC) 81,155.97 
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Table 3. Covariance matrix of error terms in the model 

 Discrete preferences Continuous preferences 
Acc. F&B Shop R&L H&M Acc. F&B Shop R&L H&M 

D
is

cr
et

e 
pr

ef
er

en
ce

s 

Acc. 0.5 
(fixed) 

    
     

F&B 0 
(fixed) 

0.5 
(fixed) 

   
     

Shop 0 
(fixed) 

0 
(fixed) 

0.5 
(fixed) 

  
     

R&L 0 
(fixed) 

0 
(fixed) 

0 
(fixed) 

0.5 
(fixed) 

 
     

H&M 0 
(fixed) 

0 
(fixed) 

0 
(fixed) 

0 
(fixed) 

0.5 
(fixed)      

C
on

tin
uo

us
 p

re
fe

re
nc

es
 Acc. 0.191 

(3.35) 
-0.266 
(-2.94) 

-0.203 
(-6.50) 

-0.125 
(-5.48) 

-0.205 
(-7.76) 

0.621 
(25.48) 

    

F&B 0.320 
(11.49) 

-0.248 
(-1.10) 

-0.149 
(-5.80) 

0.000# 
(0.00) 

-0.110 
(-4.54) 

0.451 
(2.76) 

0.822 
(29.61) 

   

Shop -0.077 
(-6.27) 

0.000# 

(0.00) 
0.090# 
(0.54) 

0.000# 
(0.00) 

-0.138 
(-3.61) 

0.142# 
(0.13) 

0.200# 
(0.51) 

1.39 
(19.99) 

  

R&L 0.000# 
(0.00) 

0.000# 
(0.00) 

-0.44 
(-8.40) 

0.208 
(2.15) 

-0.176 
(-4.04) 

0.126# 
(0.09) 

0.262 
(0.29) 

0.289# 
(0.334) 

1.023 
(14.99) 

 

H&M 0.152 
(2.10) 

0.000# 
(0.00) 

0.37 
(3.92) 

0.000# 
(0.00) 

0.904 
(5.60) 

0.039# 
(0.002) 

0.208# 
(0.09) 

0.055# 
(0.01) 

0.226# 
(0.11) 

2.705 
(9.31) 

# t-statistic < 1 
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Table 4. Goodness-of-fit measures in estimation and holdout samples 
 

$Likelihood ratio test was performed between the Flexible MDCP model (with IID D-preferences and non-IID C-preferences) 
and the IID D-C MDCP version of the Flexible MDCP model. 
#Both Flexible MDCP and Flexible MDCEV models impose similar structure on the covariance matrix. 

 

 

 

 

 

 

 

Goodness of fit measures in the estimation sample (N = 3,500)  

 

Flexible MDCP 
(with IID D-preferences 

and non-IID C-
preferences) 

Flexible MDCP# 
(IID D-C MDCP) 

Traditional MDCP 
(non-IID covariance 

structure) 

Traditional MDCP 
(IID MDCP) 

Flexible MDCEV# 

Log-likelihood 
at convergence 

-40,161.80 -41,071.45 -40,432.60 -41,198.50 -41,431.60 

Number of 
parameters 

102 75 71 58 75 

Akaike 
information 
criterion (AIC) 

80,527.60 82,292.90 81,007.20 82,513.00 83,013.20 

Bayesian 
information 
criterion (BIC) 

81,155.97 82,754.94 81,444.60 82,870.31 83,475.24 

$ Likelihood 
ratio test 

Test statistic: 2( ) 1819.30IID D C Flex MDCP Flex MDCP (IID D- and non IID C-preferences)LL LL    Chi-squared statistic for 27 

degrees of freedom at any reasonable degree of freedom, thus implying that the flexible MDCP model (with IID D-
preferences and non-IID C-preferences is the preferred model. 

Goodness of fit measures in the holdout sample (N = 1,481)  

 

Flexible MDCP 
(with IID D-preferences 

and non-IID C-
preferences) 

Flexible MDCP# 
(IID D-C MDCP) 

Traditional MDCP 
(non-IID covariance 

structure) 

Traditional MDCP 
(IID MDCP) 

Flexible MDCEV# 

Predictive log-
likelihood 

-17,404.12 -17,812.54 -17,520.77 -17,839.42 -17,884.93 

Akaike 
information 
criterion (AIC) 

35,012.24 35,775.08 35,163.54 35,794.84 35,919.86 

Bayesian 
information 
criterion (BIC) 

35,552.89 36,172.61 35,620.94 36,102.27 36,381.90 

$ Likelihood 
ratio test 

Test statistic: 2( ) 816.84IID D C Flex MDCP Flex MDCP (IID D- and non IID C-preferences)LL LL   Chi-squared statistic for 27 

degrees of freedom at any reasonable degree of freedom, thus implying that the flexible MDCP model (with IID D-
preferences and non-IID C-preferences is the preferred model. 
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Table 5. Weighted MAPE in predictions from (a) Flexible MDCP model with IID D- and non-IID C-preferences, (b) IID D-C 
Flexible MDCP model, and (c) non-IID traditional MDCP model 

Expenditure classes 

  

Observed patterns in 
Holdout sample 

(N =1481) 

Predictions from flexible 
MDCP (with IID D-

preferences and non-IID C-
preferences) 

Predictions from flexible 
MDCP (with IID D- and 

IID C-preferences)  

Predictions from traditional 
MDCP (with non-IID 
covariance structure) 

Discrete 
shares 

Aggregate 
Expenses 

(100s of ₹) 

Discrete 
shares 

Aggregate 
Expenses 

(100s of ₹) 

Discrete 
shares 

Aggregate 
Expenses 

(100s of ₹) 

Discrete 
shares 

Aggregate 
Expenses 

(100s of ₹) 

Accommodation 49.8 32.8 45.3 42.3 46.3 49.8 46.2 52.1 

Food and beverages 93.7 18.5 91.0 17.0 93 26.0 93.8 17.4 

Shopping 84.2 21.8 80.8 22.7 82.4 26.6 83.7 23.9 

Recreation and leisure 37.9 6.4 38.6 6.6 38.1 9.6 42.2 9.0 

Health and medicine 16.5 5.0 19.4 3.5 18.4 3.6 10.3 2.8 

Weighted MAPE (percentage) -- -- 5.03 16.09 2.16 27.80 5.10 17.04 

Overall weighted MAPE 
(percentage) 

-- 7.58 8.10 8.00 

 

 

 

 


