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Abstract 

 Activity duration is an important component of the activity participation behavior of 

individuals, and therefore, an important determinant of individual travel behavior. In this paper, 

we examine the factors affecting shopping activity duration during the return home from work 

and develop a comprehensive methodological framework to estimate a stochastic hazard-based 

duration model from grouped (interval-level) failure data. The framework accommodates a 

nonparametric baseline hazard distribution and allows for nonparametric control of unobserved 

heterogeneity, while incorporating the effects of covariates. The framework also facilitates 

statistical testing of alternative parametric assumptions on the baseline hazard distribution and on 

the unobserved heterogeneity distribution. Our empirical results indicate significant effects of 

unobserved heterogeneity on shopping activity duration of individuals. Further, we find that 

parametric forms for the baseline hazard and unobserved heterogeneity distributions are 

inadequate, and are likely to lead to substantial biases in covariate effects and hazard dynamics. 

The empirical results also provide insights into the determinants of shopping activity duration 

during the commute trip. 
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1.  Introduction 

 The need to view travel within the context of participation in activities has led to a human 

activity representation of travel in which travel forms part of a continuous pattern of daily (or 

some other unit of time, such as weekly) individual activity behavior (Bhat and 

Koppelman, 1993). The basic concept of this activity-based approach to travel is that travel is the 

means by which people change locations to participate in activities distributed in space. 

 The operationalization of the human activity approach requires the modeling of daily (or 

weekly) activity patterns. Such a modeling task is complex because of the many dimensions 

comprising an individual's activity pattern. These dimensions include the timing of activity, 

duration of activity, location of activity, mode of travel activity, and activity sequencing (i.e., 

sequence of activity choices over time). Many research efforts have focused on one or more of 

these dimensions with the idea that a better understanding of the different individual dimensions 

will not only facilitate our efforts toward developing a comprehensive full-scale model of 

activity patterns, but will also provide useful insights into the nature of the impact of socio-

demographic variables and time-space constraints on individual dimensions of activity behavior. 

For example, Damm (1980) has examined the timing of non-work activity. Van der Hoorn 

(1983) and Dunn and Wrigley (1985) have developed models for the choice of location of non-

work activity participation. Uncles (1987) has examined the choice of travel mode for 

participation in shopping activity. The work of Kitamura and Kermanshah (1983), Golob (1986), 

and Nishii et al. (1988) has focused on understanding the mechanism by which individual non-

work activities are chosen for participation and sequenced. Mannering and his colleagues 

(Mannering et al., 1992; Kim and Mannering, 1992; Hamed and Mannering, 1993) have focused 
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on non-work activity type choice and non-work activity duration (including home-stay duration 

and activity duration). 

 This study attempts to contribute to the literature on activity-based analysis by modeling 

shopping activity duration during the return home from work. Recent studies have indicated the 

increasing trend in non-work activity stops during the work tour. Gordon et al. (1988) report, 

based on their analysis of the 1990 US National Personal Transportation Survey (NPTS), that 

non-work travel is the major cause of the evening peak-period congestion and accounts for more 

than two-thirds of all evening peak-period trips. In an analysis of nonwork trips in the northern 

Virginia suburbs of the Washington, D.C. metropolitan area, Lockwood and Demetsky (1994) 

find that a significant number of individuals make one or more nonwork activity stops during 

their commute. Among such individuals, they observe that most make a single shopping activity 

stop during the work-to-home commute. These studies emphasize the importance of focusing on 

the activity pattern during the work commute in general, and on the dimensions characterizing 

shopping activity participation during the work-to-home commute in particular. Our focus on 

shopping activity duration is a reflection of such a need to better understand the individual 

dimensions of shopping activity behavior during the work-to-home commute. Among other 

things, the duration of shopping activity during the commute trip is an important determinant of 

the timing of travel and, therefore, of peak-period congestion. 

 We examine shopping activity duration using a hazard-based duration model in this 

paper. Hazard-based duration models are ideally suited to modeling duration data. Such models 

focus on an end-of-duration occurrence (such as end of shopping activity participation) given 

that the duration has lasted to some specified time (Kiefer, 1988; Hensher and Mannering, 1994). 

This concept of conditional probability of "failure" or termination of activity duration recognizes 
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the dynamics of duration; that is, it recognizes that the likelihood of ending a shopping activity 

participation depends on the length of elapsed time since start of the activity. 

 In the next section, we provide an overview of duration models and highlight the 

important characteristics of the model developed in this paper. Section 3 develops the model 

structure and presents the estimation procedure. Section 4 discusses the data and the results of 

the empirical analysis. The final section provides a summary and identifies directions for future 

research.    

 

2.  Overview of Duration Models 

 Hazard-based duration models, which had their roots in biometrics and industrial 

engineering, are being increasingly used to model duration time in the fields of economics, 

transportation, and marketing (see Kiefer, 1988, Hensher and Mannering, 1994, and Jain and 

Vilcassim, 1991 for a review of the applications of duration models in economics, transportation, 

and marketing, respectively). To include an examination of covariates which affect duration 

time, most studies use a proportional hazard model which operates on the assumption that 

covariates act multiplicatively on some underlying or baseline hazard. 

 Two important specification issues in the proportional hazard model are a) the 

distributional assumptions regarding duration (equivalently, the distributional assumptions 

regarding the baseline hazard) and b) the assumptions about unobserved heterogeneity (i.e., 

unobserved differences in duration across people). We discuss each of these issues in the 

following two sections. 

 

 



 4

2.1.  Baseline hazard distribution  

 The distribution of the hazard may be assumed to be one of many parametric forms or 

may be assumed to be nonparametric. A serious problem with the parametric approach is that it 

inconsistently estimates the baseline hazard and the covariate effects when the assumed 

parametric form is incorrect (Meyer, 1990). In general, there is little theoretical support for any 

particular parametric shape. On the other hand, even if one uses a nonparametric baseline hazard 

when a particular parametric form is appropriate, the resulting estimates are consistent and the 

loss of efficiency (resulting from disregarding information about the hazard's distribution) may 

not be very substantial (Meyer, 1987). This strongly suggests the use (or at the least testing) of a 

nonparametric baseline in the estimation of duration models. However, most studies of duration 

to date have made an a priori assumption of a parametric hazard (some studies in the marketing 

literature have used general parametric forms which nest the more frequently used weibull, 

exponential and Gompertz distributions; see Jain and Vilcassim, 1991; Vilcassim and Jain, 

1991).  

 Within the nonparametric approach, one may use the partial likelihood framework 

suggested by Cox (1972) which estimates the covariate effects but not the baseline hazard, or the 

approach suggested by Han and Hausman (1990) which estimates both the covariate effects and 

the baseline hazard parameters (also sometimes referred to as the incidental or nuisance 

parameters) simultaneously (the Han and Hausman approach is an alternative formulation of the 

approach originally proposed by Prentice and Gloeckler, 1978 and extended by Meyer, 1987). 

Between these approaches, the Han and Hausman (HH) approach has many advantages. First, in 

many studies, the dynamics of duration is itself of direct interest; the Cox approach, however, 

conditions out the nuisance parameters. Second, the Cox approach becomes cumbersome in the 
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presence of many tied failure times (Kalbfleisch and Prentice, 198, page 101). Third, 

unobservable heterogeneity (which we discuss in the next section) cannot be accommodated 

within the Cox partial likelihood framework without the presence of multiple integrals of the 

same order as the number of observations in the risk set at each time period (see Han and 

Hausman, 1991 for a more detailed discussion). Estimation in the presence of such large orders 

of integration is impractical even with recent advances in the computation of multidimensional 

integrals.  

 It is clear that the nonparametric approaches may be more appropriate than the parametric 

approach in many situations and that within the nonparametric methods the HH approach is 

preferable to the Cox approach. In addition, the HH approach is the only appropriate method 

when duration models are to be estimated from interval-level data arising from the grouping of 

underlying continuous duration times. The parametric and Cox approaches use density function 

terms in their respective likelihood functions which are appropriate only for estimation from 

continuous duration data. If they are used to model grouped (or interval-level) duration data, the 

resulting estimates would generally be inconsistent (Prentice and Gloeckler, 1978). In the 

activity duration data used in this paper, most of the activity duration times are integral multiples 

of five minutes; almost 95% of all duration times end at a time which is an integral multiple of 

five minutes (e.g., 5,10,15,30,60 minutes, etc.), leading to substantial number of ties at these 

times. For example, 45 individuals report terminating their activity at 5 minutes, 53 report 

termination at 10 minutes, 37 at 15 minutes, and so on, with extremely few reporting termination 

in between. This indicates that respondents tend to report the timing of their activities by 

rounding-off to the nearest five minute interval. Therefore, the activity duration data should be 
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treated as interval-level data and we must use a discrete model (of the Han and Hausman type) 

that retains an interpretation as an incompletely observed continuous time hazard model. 

 The activity duration modeling efforts mentioned earlier (including another recent effort 

by Niemier and Morita, 1994) have ignored the interval-level nature of activity duration data and 

the resulting presence of many tied failure times. They have employed either the weibull 

parametric baseline hazard approach or the Cox nonparametric baseline hazard partial likelihood 

approach, both of which have conceptual deficiencies (as discussed above). More generally, all 

transportation-related applications of duration models have used either a parametric baseline 

hazard or the Cox nonparametric partial likelihood approach (Hensher and Mannering, 1994). No 

transportation or marketing-related study, at least to the author's knowledge, has estimated a non-

parametric baseline hazard along with the estimates of the covariate effects. Even in the 

economics field, there have been only a handful of applications which have estimated a 

nonparametric hazard along with covariate effects (Han and Hausman, 1990; Meyer, 1990). 

 

2.2.  Unobserved heterogeneity  

 Unobserved heterogeneity arises when unobserved factors (i.e., those not captured by the 

covariate effects) influence durations. It is well-established now that failure to control for 

unobserved heterogeneity can produce severe bias in the nature of duration dependence and the 

estimates of the covariate effects (Heckman and Singer, 1984; Lancaster, 1985). 

 The standard procedure used to control for unobserved heterogeneity is the random 

effects estimator (see Flinn and Heckman, 1982). This involves specification of a distribution for 

the unobserved heterogeneity (across individuals) in the population. Two general approaches 

may be used to specify the distribution of unobserved heterogeneity. One approach is to use a 
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parametric distribution such as a gamma distribution or a normal distribution (most earlier 

research has used a gamma distribution). The problem with this parametric approach is that there 

is seldom any justification for choosing a particular distribution; further, the consequence of a 

choice of an incorrect distribution on the consistency of the model estimates can be severe (see 

Heckman and Singer, 1984). A second approach to specifying the distribution of unobserved 

heterogeneity is to use a nonparametric representation for the distribution and to estimate the 

distribution empirically from the data. This is achieved by approximating the underlying 

unknown heterogeneity distribution by a finite number of support points and estimating the 

location and associated probability masses of these support points. The nonparametric approach 

enables consistent estimation since it does not impose a prior probability distribution. 

 Application of duration models in the transportation field have, in most part, ignored 

unobserved heterogeneity. Those which have attempted to control for it have used a parametric 

distribution (see Hensher and Mannering, 1994). Researchers in the marketing and economics 

fields have paid more attention to unobserved heterogeneity. However, even in these fields, most 

applications have employed a parametric heterogeneity specification (see Gupta, 1991, Manston 

et al., 1986, Meyer, 1990, Han and Hausman, 1990, all of whom use a gamma distribution). Very 

few studies have adopted a nonparametric heterogeneity distribution (see Jain and Vilcassim, 

1991 and Vilcassim and Jain, 1991). 

 

2.3.  Specification of baseline hazard and unobserved heterogeneity in current paper  

 In this paper, we use a nonparametric baseline hazard based on the Han and Hausman 

(1990) approach and a nonparametric unobserved heterogeneity specification based on the 

Heckman and Singer approach (1984). The author is not aware of any previous study which has 
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used such a nonparametric specification for both the baseline hazard as well as the heterogeneity 

distribution. Meyer (1990) and Han and Hausman (1990) use a nonparametric baseline hazard 

specification and indicate that one could use a nonparametric unobserved heterogeneity 

distribution, but use a gamma distribution during estimation since it provides a convenient 

closed-form expression for the likelihood. They also suggest that the choice of the heterogeneity 

distribution may be unimportant when the baseline hazard is nonparametrically estimated and 

speculate that the finding of Heckman and Singer (1984) that parametric heterogeneity 

approaches provide inconsistent covariate effects is due to their assumption of a parametric 

baseline hazard. Jain and Vilcassim (1991), Vilcassim and Jain (1991), Hensher (1994), and 

Heckman and Singer (1984), on the other hand, use a parametric baseline hazard with a 

nonparametric heterogeneity distribution. Their results indicate that the covariate effects are 

sensitive to the specification of the heterogeneity distribution and that a nonparametric 

heterogeneity distribution is the best in terms of overall fit and reasonableness of covariate 

effects.  

 By allowing a nonparametric distribution for both the baseline hazard and unobserved 

heterogeneity, our paper sheds light on the importance of allowing a nonparametric specification 

for the baseline hazard, for unobserved heterogeneity, and for both of these (as indicated by 

Hensher and Mannering, 1994, "There is considerable debate in the literature as to whether the 

baseline hazard or the mixture distribution should be nonparametric"; our paper attempts to 

investigate this important issue). The paper estimates and compares six different models with 

different specifications for the hazard and heterogeneity distributions. The first two models do 

not accommodate heterogeneity, the second two use a gamma distribution for heterogeneity, and 

the final two estimate nonparametric heterogeneity distributions. In each of these three classes of 
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models, the first model specifies a weibull baseline and the second uses a nonparametric baseline 

(we use a weibull form for the parametric baseline hazard and a gamma distribution for 

parametric heterogeneity, since these have been the most commonly used parametric 

specifications). 

 

3.  Model Structure and Estimation 

 Let Ti represent the continuous activity duration time for individual i (we consider the 

time unit of the continuous scale to be in minutes). This continuous duration is not observed; 

instead, we only observe discrete time intervals in which failure (i.e., end of participation in 

shopping activity) occurs. Let u represent some specified time on the continuous time scale and 

let the discrete time intervals be represented by an index k (k = 1,2,3,...,K) with k = 1 if u 0[0,u1], 

k = 2 if u0[u1,u2],..., k = K if u 0 [uK-1,4]. Let ti represent the discrete period of failure for 

individual i (thus, ti = k if the shopping duration of individual i ends in discrete period k). The 

objective of the duration model is to estimate the temporal dynamics in activity duration (that is, 

how the elapsed time since start of the shopping activity impacts the future termination of the 

activity) and the effect of covariates (or exogenous variables) on the continuous activity duration 

time. We assume that the covariates do not change with time (this is a reasonable assumption in 

the short-term context of examining shopping activity duration on the return home from work; 

see Sueyoshi, 1992 for an extension to the case of time-varying covariates).   

 The modeling methodology is discussed in the subsequent four sections. Section 3.1 

presents the models (with weibull and nonparametric baseline hazard distributions) assuming no 

heterogeneity. Section 3.2 focuses on the case when unobserved heterogeneity is incorporated, 

but is assumed to take a gamma parametric form. Section 3.3 considers the models with a 
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nonparametric form of heterogeneity. Finally, section 3.4 discusses the procedure to estimate the 

baseline hazard function from the model estimates.  

 

3.1.  Models with no heterogeneity  

 The hazard for individual i at some specified time u on the continuous-time scale, )(uiλ , 

is defined using the proportional hazard specification as (see Kiefer, 1988): 
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where )(0 uλ  is the baseline hazard (to be estimated) at time u, xi is a column vector of covariates 

for individual i, and $ is a column vector of parameters (to be estimated). It is easy to show that 

equation (1) can be written in the equivalent form,  
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The dependent variable in equation (2) is a continuous unobserved variable. However, we do 

observe the discrete time period, ti, in which individual i ends her/his shopping participation. 

Defining ku  as the continuous time value representing the upper bound of discrete time period k, 

we can write: 
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The parameters to be estimated in the nonparametric baseline model are the (K-1) * parameters 

) and ( 0 +∞=−∞= Kδδ and the vector $. Defining a set of dummy variables 
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the likelihood function for the estimation of these parameters takes the familiar ordered discrete 

choice form 
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Right censoring can be accommodated in the usual way by including a term which specifies the 

probability of not failing at the time the observation is censored. In the case of shopping activity 

duration, there is no right censoring because all individuals end their shopping participation. 

 The discrete model discussed above is the uniquely appropriate one for analysis using 

grouped (interval-level) data based on the continuous proportional hazard model of equation (1).  

 A weibull assumption about the baseline hazard essentially places restrictions on the * 

parameters in the nonparametric model. Specifically, the* parameters are now characterized by 

the two weibull parameters as follows: 

 0,);ln( >αα=δ pup k
k                (7) 

where ku  is as defined earlier. The likelihood function of equation (6) is then maximized in the 

usual way after imposing the constraints in equation (7) to obtain estimates of the weibull 

parameters and the $ vector. Standard likelihood ratio tests can be used to compare the weibull 

baseline hazard assumption against the nonparametric baseline hazard.  
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3.2.  Models with gamma heterogeneity  

 We introduce unobserved heterogeneity into the model specification by assuming a 

multiplicative form: 

)exp()()( 0 iii wxuu +β′−λ=λ               (8) 

where iw  represents the unobserved heterogeneity. Then, as in equation (4), 
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where )exp()(0 i
k

ik xuI β′−Λ= . Assuming that )]exp([ ii wv =  is distributed as a gamma random 

variable with a mean one (a normalization) and variance 2σ , the unconditional probability of 

failure in the discrete time period k can be expressed as: 
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Using the moment-generating function properties of the gamma distribution (see Johnson and 

Kotz, 1978), the expression above reduces to: 
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and the likelihood function for the estimation of the (K-1) integrated hazard elements su k )(0 ′Λ , 

the $  vector, and the variance 2σ  of the gamma mixing distribution is 
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 In the case of a weibull baseline hazard model with gamma heterogeneity, the likelihood 

function (12) is maximized after imposing the constraints in equation (7). 

 The models with and without gamma heterogeneity for the weibull and nonparametric 

baseline hazard models can be compared using standard likelihood ratio tests. This is because it 
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can be shown (the proof is available from the author) that as 02 →σ  in equation (12), the 

likelihood function collapses to that in equation (6). Alternatively, one can use the asymptotic t-

test to examine if the variance of the gamma distribution is significantly different from zero. 

 

3.3.  Models with nonparametric unobserved heterogeneity  

 To formulate the model with nonparametric unobserved heterogeneity, we start again 

with equation (4) where wi is now nonparametrically distributed. Then, as earlier, we can write 

)()(]|[prob 1 iikiikii wxβδGwxβδGwkt +′−−+′−== − .         (13) 

We now approximate the distribution of wi by a discrete distribution with a finite number of 

support points (say, S). Let the location of each support point (s = 1,2,...,S) be represented by ls 

and let the probability mass at ls be πs. Then, the unconditional probability of an individual i 

failing in period t is 
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The sample likelihood function for estimation of the location and probability masses associated 

with each of the S support points, and the parameters associated with the baseline hazard and 

covariate effects, can be derived in a straightforward manner as: 
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Since we already have a full set of (K-1) constants represented in the baseline hazard, we impose 

the normalization that 

∑
=

=π=
S

s
ssi lwE

1
0)( .              (16) 

Our estimation procedure ensures that the cumulative mass over all support points sum to one. 
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 One critical quantity in empirical estimation of the distribution of unobserved 

heterogeneity is the number of support points, S, required to approximate the underlying 

distribution. This number is determined by using a stopping-rule procedure based on the 

Bayesian information criterion (see Allenby, 1990), which is defined as follows: 

BIC = -ln(‹) + 0.5 · R · ln(N)             (17) 

where the first term on the right side is the log-likelihood value at convergence, R is the number 

of parameters estimated, and N is the number of observations. As support points are added, the 

BIC value keeps declining till a point is reached where addition of the next support point results 

in an increase in the BIC value. Estimation is terminated at this point and the number of support 

points corresponding to the lowest value of BIC is considered the appropriate number for S. 

 The weibull baseline model with nonparametric heterogeneity is estimated in the usual 

way by maximizing the likelihood function in (15) after imposing the constraints in equation (7). 

 The models with nonparametric heterogeneity and no heterogeneity for each type of 

baseline hazard (i.e., weibull and nonparametric) can be compared using a likelihood ratio test. 

The degrees of freedom for this test is equal to 2 (S-1) where S is the number of support points in 

the nonparametric heterogeneity model. The models with nonparametric and gamma 

heterogeneity are non-nested, but can be compared using a non-nested test. 

 

3.4.  Baseline hazard estimation  

 Two different time scales may be used for the estimation of the baseline hazard. The first 

time scale is the discrete time periods in which failure data is grouped. The second time scale is 

the continuous time scale. In either case, the baseline hazard estimation is consistent with the 

continuous-time proportional hazard model of equation 1 (and its counterparts for the gamma 
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and nonparametric unobserved heterogeneity distribution). Adopting the discrete time period 

does not require any additional assumptions other than the functional form of the continuous-

time proportional hazard model; on the other hand, one must make an additional assumption 

about the within-period dynamics of the shopping duration hazard for estimation of a 

continuous-time baseline hazard from the nonparametric baseline models (see Sueyoshi, 1992). 

In this paper, we specify a constant hazard rate within the discrete intervals (or periods) to 

estimate a continuous-time baseline hazard. We now discuss the baseline hazard estimation for 

both the discrete time period case and for the continuous-time case. 

 If interest centers around the prediction of duration times at the discrete-period level, then 

we can compute the discrete-period baseline hazard for period k, )(*
0 kλ , using 
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where the sk 'δ  are estimated directly for the models with no heterogeneity and nonparametric 

heterogeneity, and are estimated from the estimates of )(0
kuΛ  for the models with gamma 

heterogeneity. The continuous-time proportional hazard assumption of equation (1) for the 

(weibull and nonparametric baseline) models without heterogeneity and of equation (8) for the 

models with heterogeneity translate to the following relationships between the discrete-period 

baseline hazard and the discrete-period hazard at time k for individual i, )(*
1 kλ : 
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 The baseline hazard function for the case of a continuous-time scale is obtained directly 

from the estimates of α and P in the weibull baseline models as 1ˆ
0 )ˆ(ˆˆ)(ˆ −αα=λ PuPu . The 

continuous-time baseline hazard function in the nonparametric baseline models is estimated by 

assuming that the hazard remains constant within each time period k; that is, )()( 00 ku λ=λ  for 

all },{ 1 kk uuu −∈ . Then, we can write: 

 1,...,2 ,1  ,)](ˆ1ln[)ˆexp()ˆexp()(ˆ
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u
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u
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where ku∆  is the length of the time interval k and )(ˆ*
0 kλ  is the estimate of the discrete-period 

hazard in period k computed from equation (19). 

 

4.  Data and Empirical Results 

 The data source used in the present study is a household activity survey conducted in 

April of 1991 by the Central Transportation Planning Staff (CTPS) in the Boston Metropolitan 

region. The survey collected data on socio-demographic characteristics of the household and 

each individual in the household. The survey also included a one-day (mid-week working day) 

activity diary to be filled out by all members of the household above five years of age. Each 

activity was described by: (a) start time, (b) stop time, (c) location of activity participation, (d) 

travel time from previous activity, (e) travel mode to activity location, and (f) activity type. 

 The sample for the current analysis comprises 355 employed adult individuals who made 

a work-trip on the diary day and who made a single shopping activity stop during the return 

home from work. Table 1 provides descriptive information on shopping activity duration. The 

column labeled "Failures" indicates the number of individuals whose activity participations end 

in discrete time period k. The column titled "No. at Risk" provides information on the number of 
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individuals who are "at risk" of termination of their activity participation in period k; that is, it is 

the number of individuals whose activity durations have not ended at the beginning of period k. 

The discrete-period sample hazard rates associated with each period is computed using the 

Kaplan-Meier (KM) nonparametric estimator as the number of individuals who end their activity 

participations in period k divided by the risk set in period k. 

 The choice of variables for potential inclusion in the model was guided by previous 

theoretical and empirical work on activity modeling (see Chapin 1974, Steinberg et al. 1980, and 

other studies reviewed in the first section of the paper) and intuitive arguments regarding the 

effect of exogenous variables on shopping activity duration. Table 2 provides a list of exogenous 

variables used in the model and their definitions. An important specification improvement in the 

current paper over earlier activity duration modeling efforts (e.g., Niemeier and Morita, 1994; 

Hamed and Mannering, 1993; and Damm, 1980) is the consideration of interactions within 

individuals in a household. Specifically, we include variables which are likely to be important 

determinants of the allocation of responsibility for shopping activity between an individual and 

her/his spouse. These variables are spouse's employment status, spouse's work duration, spouse's 

travel time to work and spouse's mode of travel to work. 

 The summary statistics for the six different models discussed in section 2.3 are presented 

in Table 3. The value of the log-likelihood function with baseline parameters only corresponds to 

the case when no covariates are included and when unobserved heterogeneity is ignored (that is, 

when only sample information on temporal dynamics is used in the hazard model). The value of 

the log-likelihood function at zero is the same for all models and corresponds to the case when 

the hazard is constant over time (that is, when no sample information on temporal dynamics is 

used). The final row presents the adjusted likelihood ratio index defined as: 
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.
zeroat  likelihood log

model in the estimated parameters ofnumber  - econvergancat  likelihood log12 −=p   (21) 

 We now discuss the estimation results in detail by first focusing on the baseline hazard, 

next on unobserved heterogeneity, and finally on the covariate effects. 

 

4.1.  Baseline hazard 

 Our discussion of the baseline hazard will be based on the continuous-time scale. The 

substantive conclusions from the discrete-period baseline hazard estimates are similar to those 

from the continuous-time scale.  

 The weibull baseline hazard function is characterized by the parameters α and P. The 

baseline hazard functions corresponding to the weibull baseline models are plotted in the first 

column of Fig. 1. Ignoring unobserved heterogeneity leads to a hazard function that is near-

exponential with a constant hazard of about 0.0095. This implies that there is no duration 

dependence; in other words, the conditional probability of ending the shopping activity 

participation is the same regardless of how long an individual has been shopping. However, 

controlling for unobserved heterogeneity, the baseline hazard has a significant positive duration 

dependence. Thus, the longer an individual has been shopping, the more likely that the 

participation will terminate. Between the weibull models with gamma and nonparametric 

heterogeneity, the model with gamma heterogeneity has a steeper positive duration dependence. 

 A disadvantage of the weibull specification is that it specifies a monotonicity restriction 

on the hazard as well as a particular parametric form of duration dependence. Using a 

nonparametric approach to estimate the baseline hazard function avoids these problems. The 

nonparametric estimates of the baseline hazard are plotted in the second column of Fig. 1. As in 

the weibull baseline case, assumptions regarding heterogeneity have an effect on the 
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nonparametric baseline hazard estimates. The models with heterogeneity have substantially 

higher baseline estimates compared to the model with no heterogeneity (in fact, the baseline 

hazard when heterogeneity is ignored is relatively flat compared to the case when heterogeneity 

is incorporated). These results again conform to Kiefer's general result that ignoring 

heterogeneity leads to a downward biased estimate of duration dependence. Between the two 

models with heterogeneity, the nonparametric heterogeneity model tends to have slightly lower 

values of the hazard till about 110 minutes after which the hazard increases dramatically relative 

to the model with gamma heterogeneity (the hazard rate rises sharply to 9.79 for all T between 

132.5 minutes and 152.5 minutes and to 17.10 for all T between 152.5 minutes and 212.5 

minutes; these estimates are not shown on the plot because of their high values relative to the 

scale adopted). The results clearly show the serious biases in the baseline hazard shape that could 

result from ignoring heterogeneity or using an inappropriate parametric heterogeneity 

specification, even if a nonparametric baseline hazard is used (we test the different heterogeneity 

specifications using formal statistics in the next section).  

 We now turn to a comparison of the weibull baseline and nonparametric baseline shapes. 

The nonparametric baseline estimates indicate substantial variation in hazard rates over time. For 

all three heterogeneity specifications, there is clear evidence that the baseline hazard is non-

monotonic; in particular, there are periods of both increases and decreases. The spikes in the 

nonparametric baseline correspond approximately to durations of 30, 45, 60 and 90 minutes. 

Beyond a duration of about 2 hours, the nonparametric hazard increases considerably in the 

gamma and nonparametric heterogeneity cases. The weibull baseline underestimates the hazard 

rather substantially at almost all values of shopping activity duration for the gamma and 

nonparametric heterogeneity specifications. 
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 Likelihood ratio tests between the weibull and nonparametric baseline models for each of 

the unobserved heterogeneity specifications clearly reject the null hypothesis of a weibull 

baseline. The results also indicate that accommodating heterogeneity does not alleviate the 

problems caused by assumption of an incorrect hazard distribution. 

 

4.2.  Unobserved heterogeneity  

 In this section, we compare the models with different heterogeneity specifications within 

the weibull baseline specification and the nonparametric baseline specification. 

 The model with gamma heterogeneity can be compared with the model with no 

heterogeneity for each of the two baseline specifications by examining the significance of the 

variance parameter 2σ .This parameter is estimated to be 0.732 (with a standard error of 0.14) in 

the weibull baseline case and 0.950 (with a standard error of 0.29) in the nonparametric baseline 

case. Thus, for both the weibull and nonparametric baseline specifications, this parameter is 

significantly different from zero rejecting the null of no heterogeneity. 

In estimating a nonparametric form for heterogeneity, we found that two support points 

were sufficient to approximate the underlying distribution for the weibull baseline. For the 

nonparametric baseline, three support points were needed. The estimated support points for the 

weibull baseline case were -1.59 and 0.59 with associated probability masses of 0.34 and 0.66, 

respectively; likewise, the support points for the nonparametric baseline case were -7.46, -0.99, 

and 0.75 with associated probability masses of 0.04, 0.24, and 0.72, respectively. These 

distributions indicate asymmetry with respect to the expected value of zero. The variance of the 

nonparametric heterogeneity distribution in the weibull baseline case is 0.68; interestingly, this is 

close to the variance obtained (= 0.732) using a gamma distribution in the weibull baseline case. 
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The variance of the nonparametric heterogeneity distribution in the nonparametric baseline 

specification is 2.88, which is much larger than the corresponding gamma heterogeneity variance 

of 0.95. These findings suggest that the use of a parametric baseline hazard or a parametric 

heterogeneity distribution or both tends to underestimate unobserved heterogeneity. 

The nonparametric heterogeneity specification can be formally compared with the no- 

heterogeneity specification using likelihood ratio tests. These tests reject the model with no 

heterogeneity for both the weibull and nonparametric baseline specifications. The gamma 

heterogeneity and the nonparametric heterogeneity specifications cannot be compared using 

standard likelihood ratio tests since they are mutually non-nested. Ben-Akiva and Lerman (1985) 

suggest the use of a non-nested test for discrete-choice models based on the likelihood ratio 

index (since our formulation of the duration models takes a discrete-choice form, this test is 

appropriate here). The test statistic for this non-nested test is: 

τ−−Φ≤τ>− 2[{)(prob 2
1

2
2 pp ln‹(0) + 0 },)]( 5.0

12 >τθ−θ          (22) 

where 2
1p  and 2

2p  are the adjusted likelihood ratio index values for each of the two models under 

consideration, 1θ  and 2θ  are the number of parameters estimated in the two models and Φ 

represents the cumulative standard normal distribution. In our case, the adjusted likelihood ratio 

index values are 0.0997 and 0.0999 for the weibull baseline with gamma and nonparametric 

heterogeneity, respectively, and 0.1209 and 0.1233 for the nonparametric baseline with gamma 

and nonparametric heterogeneity, respectively. Application of equation (22) indicates that the 

probability that a difference of 0.0002 in 2p  (between the nonparametric and gamma 

heterogeneity specifications) for the weibull baseline could have occurred by chance is less than 

Φ(-1.16) = 0.123. The corresponding figure for the difference of 0.0024 in 2p  for the 

nonparametric baseline is Φ(-2.83) = 0.002. Thus, we can conclude that the nonparametric 
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heterogeneity specification is the preferred specification for the nonparametric baseline. 

However, in the case of the weibull baseline, the nonparametric heterogeneity specification is not 

significantly better than the gamma specification (at the 0.1 significance level). 

 The finding above that the nonparametric heterogeneity specification is the appropriate 

one for the nonparametric baseline specification, combined with the finding in the previous 

section that the nonparametric specification is the most suitable one for the baseline hazard, 

indicates that, at least in the context of the current empirical analysis, the nonparametric 

baseline-nonparametric unobserved heterogeneity specification is preferable to other 

specifications. This result is important. It is contrary to the commonly held view that the choice 

of the mixing distribution may not be important if the baseline hazard is nonparametrically 

specified (see Meyer, 1990; Han and Hausman, 1990; Manston et al., 1986). The results suggest 

that specifying a nonparametric baseline and a nonparametric unobserved heterogeneity 

distribution may both be important and cautions against resorting to parametric heterogeneity 

specifications by appealing to the nonparametric specification of the baseline hazard. 

 

4.3.  Covariate Effects  

 In this section, we discuss the effects of covariates on the duration hazard. It should be 

observed that a positive coefficient on a covariate implies that the covariate increases shopping 

activity duration (equation 2) or, equivalently, the covariate lowers the hazard rate (equation 1). 

 Table 4 shows the estimated covariate effects for the alternative model specifications. We 

include four sets of covariates: Individual's work characteristics, Spouse's work characteristics, 

mode to work of individual and spouse, and socio-demographic variables. The different model 

specifications provide similar results with regard to the sign and significance of the covariate 
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effects. For example, work duration has a positive and significant effect on the hazard; departure 

from work before 4 pm has a negative effect; travel time to work is insignificant in all models. 

We also find consistency in the direction of the effect of the other variables. However, the 

sensitivity of the hazard to the covariates is influenced by the assumptions made about the 

baseline hazard and unobserved heterogeneity. For instance, the duration hazard is much less 

sensitive to the work duration of individuals in the nonparametric (NP) baseline - NP 

heterogeneity specification than in other specifications. The covariate "Departure from work 

before 4 pm" has a higher impact on the duration hazard in the NP baseline models with gamma 

and NP heterogeneity. The effects of the spouse's work duration and travel time to work 

variables are different among the alternative heterogeneity specifications. In particular, the NP 

baseline-NP heterogeneity specification indicates that the effect of spouse's work duration on an 

individual's hazard is higher when the individual is a female (spouse is a male) than when the 

individual is a male (spouse is female). The magnitudes of these effects are reversed in all other 

specifications. A similar result holds for the spouse's travel time to work variable. 

 The results discussed above suggest that parametric assumptions about the baseline 

hazard distribution and unobserved heterogeneity distribution have biased the covariate 

estimates. As noted earlier, the nonparametric baseline-nonparametric unobserved heterogeneity 

specification (Model 6) is the most preferred specification and rejects all other model 

specifications in formal statistical tests. We now examine and discuss the effect of covariates in 

greater detail, focusing on this nonparametric baseline-nonparametric unobserved heterogeneity 

specification. 

 Among the variables representing an individual's work characteristics, work duration and 

departure from work before 4 pm have significant impacts on the shopping activity duration 
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hazard. The effect of these variables is as expected. A longer duration at work leaves less time 

for participation in other activities after work and, therefore, decreases shopping activity duration 

(increases the activity duration hazard) after work. Departure from work before 4:00 pm provides 

more time and opportunity to participate in shopping activity after work and therefore increases 

shopping duration. The effect of travel time to work is not significant. 

Three variables; employment status of spouse, work duration of spouse, and travel time 

to work of spouse; are included to represent the impact of spouse's work characteristics on an 

individual's shopping duration (these variables are relevant only for married individuals). The 

empirical results show that if an individual's spouse is employed, the individual's shopping 

duration increases. Spouse's employment is likely to lead to a more equitable allocation of 

shopping activities between the individual and her/his spouse, thereby increasing the 

involvement of the individual in shopping. Further, the individual's shopping duration tends to 

increase as her/his spouse's travel time to work and work duration increase. This is an expected 

result; as the work commitments of an individual's spouse increases, constraints on the spouse's 

time also increase, and the individual contributes greater amounts of her/his time to household 

maintenance activities such as shopping. The results, however, indicate differences in this 

contribution based on the sex of the individual and spouse. The husband's duration hazard is less 

sensitive to his wife's travel time and work duration than is the wife's duration hazard to her 

husband's travel time and work duration. It is particularly interesting to note that the husband's 

hazard is about equally sensitive to his work hours (see coefficient on "work duration" under 

individual's work characteristics) and his spouse's work hours (see coefficient on "female 

spouse" under spouse's work duration), while the wife's duration hazard is more sensitive to her 

husband's work hours than to hers. We did not find any differences in the duration hazard 
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between males and females who are unmarried or who are married, but whose spouses do not 

work.         

 The mode to work variables indicate that individuals who drive alone to work have 

shorter shopping activity durations compared to individuals who rideshare or use transit. 

However, if an individual drives alone and her/his spouse rideshares or uses transit (relevant only 

for married individuals with an employed spouse), then there is an additional positive effect on 

the individual's shopping duration. The net effect for such individuals is obtained by adding the 

coefficients on the two mode-related variables. This net effect is positive (0.961-0.817 = 0.144), 

but insignificant. 

 Among the socio-demographic variables, the only significant one is the "returning young 

adult" variable. The parameter on this variable indicates that returning young adults tend to 

participate for longer periods in shopping activity during the return home from work compared to 

other individuals. 

 

5. Conclusions and Directions for Future Research 

 This paper provides a unified methodological framework to estimate a proportional 

hazard duration model with a nonparametric baseline hazard distribution and a non-parametric 

unobserved heterogeneity distribution from grouped (interval-level) data, while incorporating the 

effects of covariates. The framework facilitates the comparison of alternative parametric 

specifications of the baseline hazard and of unobserved heterogeneity against the nonparametric 

specification using statistical tests. The methodological framework is applied to an analysis of 

individual shopping activity duration during the return home from work. Such an analysis 
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contributes to a better understanding of the activity pattern of individuals during the work-to-

home trip.  

 A number of important findings emerge from our empirical analysis. First, the results 

indicate that parametric baseline forms may provide biased estimates of duration dependence. In 

the current analysis, we find that the duration dependence is considerably underestimated when a 

weibull baseline form is used (as a matter of future research, it would be useful to examine if a 

similar result holds in other empirical applications). Second, the results suggest that 

accommodating heterogeneity (in either a parametric or a nonparametric form) does not alleviate 

the bias in duration dynamics resulting from an incorrect assumption of the hazard distribution. 

Third, we find that ignoring heterogeneity results in a substantial underestimation of duration 

dependence (an observation also made by Kiefer, 1988). Fourth, our results indicate the 

persistence of bias in duration dependence if a parametric form of heterogeneity is used (this 

result is consistent with the results of Heckman and Singer, 1985). This holds true even if the 

baseline hazard is nonparametrically specified. Thus, the result suggests that the form of the 

unobserved heterogeneity distribution may be important even when a flexible nonparametric 

baseline specification is used and cautions against ignoring heterogeneity or resorting to a 

parametric heterogeneity specification by appealing to the nonparametric baseline specification. 

Fifth, we find that the use of a weibull baseline hazard with a nonparametric heterogeneity 

distribution, or a gamma heterogeneity distribution with a nonparametric baseline hazard, or a 

weibull hazard with a gamma heterogeneity distribution tends to underestimate unobserved 

heterogeneity. This finding cautions against inferring about the presence and magnitude of 

unobserved heterogeneity if a parametric baseline form and/or a parametric heterogeneity 

distribution is used. Finally, we find that there are differences in covariate effects based on the 
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specification of the baseline hazard and heterogeneity distributions. It should be emphasized that 

all the foregoing findings are specific to the empirical analysis in this paper; the results may be 

different in other data samples. Also, there is the possibility that the findings are a consequence 

of the variable specification adopted. However, a general result is that it is always preferable 

(unless there is a strong theoretical basis otherwise) to estimate a nonparametric baseline-

nonparametric heterogeneity specification and test parametric specifications as special cases of 

this more general formulation rather than make an a priori assumption of a particular parametric 

form). 

 The results of this research also provide insights into the determinants of shopping 

activity duration during the commute trip. An individual's shopping duration is affected by the 

work characteristics of the individual, the work characteristics of the individual's spouse (if 

individual is married and spouse is employed), the mode to work used by the individual and 

her/his spouse (if individual is married), and whether the individual is a returning young adult or 

not. Our analysis shows the important influence of the spouse's work characteristics and the 

mode to work used by the individual vis-a-vis the mode used by the individual's spouse. 

  A number of future research directions may be identified based on this research. An 

important extension of the current model is to analyze the choice of the decision to participate in 

shopping activity along with a hazard model of shopping duration to accommodate any sample 

selection in activity duration based on the choice to participate in shopping activity. More 

generally, it would be useful to examine the choice of participation in different activities 

(shopping, recreation, social, or go home directly from work) using a discrete-choice model 

along with the hazard duration model of participation in the different out-of-home activities. 

Other extensions include consideration of other dimensions of activity participation, modeling 
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the activity behavior during the commute trip as a component of a broader daily activity 

participation decision-making process of individuals, and accommodating inter-personal 

interactions among household members in activity decisions (for example, work and shopping 

participation and duration decisions of an individual and her/his spouse may be jointly 

determined).  
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Figure 1. Baseline hazard functions. 
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Table 1.  Shopping Activity Durations and the Discrete Period Sample Hazard 

 

Period k Time interval 
(mins.) 

Failures 
Fk 

1 
No. at Risk 

Rk 
2 

Discrete-period 
hazard Hk= Fk/Rk 

Std. error 
of Hk 

1 0.0  -   7.5 64 355 0.180 0.020 

2 7.5  -  12.5 59 291 0.203 0.024 

3 12.5  -  17.5 38 232 0.164 0.024 

4 17.5  -  22.5 22 194 0.113 0.023 

5 22.5  -  27.5 9 172 0.052 0.017 

6 27.5  -  32.5 35 163 0.215 0.032 

7 32.5  -  37.5 10 128 0.078 0.024 

8 37.5  -  42.5 11 118 0.093 0.027 

9 42.5  -  47.5 17 107 0.159 0.035 

10 47.5  -  52.5 2 90 0.022 0.015 

11 52.5  -  57.5 6 88 0.068 0.027 

12 57.5  -  62.5 20 82 0.244 0.048 

13 62.5  -  72.5 5 62 0.081 0.035 

14 72.5  -  82.5 10 57 0.175 0.050 

15 82.5  -  92.5 14 47 0.298 0.067 

16 92.5  - 112.5 5 33 0.152 0.062 

17 112.5 - 132.5 11 28 0.393 0.092 

18 132.5 - 152.5 6 17 0.353 0.116 

19 152.5 - 212.5 6 11 0.546 0.150 

20 > 212.5 5 5 1.000 - 
 
 

 

                                                 
1Failures, Fk, represents the number of individuals whose shopping participation end in period k. 
2The number at risk, Rk, is the number of individuals who are “at risk” of terminating their shopping 
participation in period k; alternatively, it is the number of shopping spells which have “survived” till the 
beginning of period k.  
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Table 2. List of Exogenous Variables in Model 
 
 

Variable Definition 

Work duration Time between arrival at work in the morning to departure from work 
at the evening (in minutes) 

Travel time to work Travel time to work from home if individual does not make any 
diversions during the commute (in minutes) 

Departure from work 
before 4 pm 

1 if individual departs from work before 4 pm, 
0 otherwise 

Spouse's employment 
status  

1 if individual is married and individual's spouse is employed, 
0 otherwise 

Work duration of female 
spouse 

Work duration of spouse if spouse is a female (individual is a male), 
0 for unmarried individuals (UI), married individuals with an 
unemployed spouse (MU), and for female married individuals with 
an employed spouse (FE). 

Work duration of male 
spouse  

Work duration of spouse if spouse is a male (individual is a female), 
0 for UI, MU, and for male married individuals with an                   
employed spouse (ME) 

Travel time to work of 
female spouse 

Travel time to work from home (without diversions) of spouse (in 
minutes) if spouse is a female (individual is a male), 
0 for UI, MU, and FE 

Travel time to work of 
male spouse 

Travel time to work from home (without diversions) of spouse if        
spouse is a male (individual is a female), 
0 for UI, MU, and ME 

Individual drives alone to 
work 

1 if individual drives alone to work, 
0 otherwise 

Individual drives alone 
and spouse rideshares 3 

1 if individual drives alone to work and spouse rideshares to work, 0 
for UI, MU, and for ME/FE who drive alone and whose spouse also 
drives alone  

Returning young adult 1 if individual is an employed adult living with one or both parents, 
0 otherwise 

 
 
 

                                                 
3We use the term “ridesharing” in a broad sense to include all non-drive alone modes of travel such as 
carpooling, vanpooling, and using transit. 
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Table 3.  Summary Statistics for the Hazard Models 
 
 

Weibull Baseline Models Nonparametric Baseline Models 
Summary Statistic No 

Heterogeneity 
Gamma 

Heterogeneity 
Nonparametric 
Heterogeneity 

No 
Heterogeneity 

Gamma 
Heterogeneity 

Nonparametric 
Heterogeneity 

Number of baseline 
parameters 

2 2 2 19 19 19 

Number of unobserved 
heterogeneity parameters 

0 1 2 0 1 4 

Number of 
covariates 

11 11 11 11 11 11 

Total number of estimated 
parameters 

13 14 15 30 31 34 

Log-likelihood at 
convergence 

-931.85 -927.02 -925.88 -891.25 -887.94 -882.37 

Log-likelihood with 
baseline parameters only 

-968.58 -968.58 -968.58 -925.80 -925.80 -925.80 

Log-likelihood 
at zero 

-1045.27 -1045.27 -1045.27 -1045.27 -1045.27 -1045.27 

Adjusted likelihood ratio 
index 

0.0961 0.0997 0.0999 0.1186 0.1209 0.1233 
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Table 4.  Estimated Covariate Effects 
 

Weibull Baseline Nonparametric (NP) baseline 
No heter. Gamma heter. NP heter. No heter. Gamma heter. NP heter. Variable 

Parm. t-stat. Parm. t-stat. Parm. t-stat. Parm. t-stat. Parm. t-stat. Parm. t-stat. 

Work characteristics             

Work duration x 10-2 -0.153 -2.57 -0.179 -2.06 -0.229 -2.77 -0.150 -2.52 -0.209 -1.95 -0.095 -1.82 

Travel time to work x 10-1 -0.042 -1.28 -0.019 -0.52 -0.039 -0.96 -0.037 -1.20 -0.012 -0.23 0.003 0.10 

Departure from work before 4 pm 0.330 2.33 0.532 2.71 0.430 2.44 0.323 2.36 0.601 2.50 0.605 3.31 

Spouse's work characteristics             

Employment status 0.797 2.54 1.175 2.63 0.969 2.47 0.801 2.55 1.281 2.42 1.204 2.50 

Work duration x 10-2             

Female spouse 0.209 2.88 0.186 1.88 0.226 2.48 0.207 2.89 0.189 1.72 0.095 1.34 

Male spouse 0.098 1.80 0.162 2.05 0.134 1.90 0.101 1.87 0.187 1.93 0.176 2.05 

Travel time to work x 10-1        

Female spouse 0.175 2.80 0.155 2.20 0.181 2.19 0.178 3.02 0.164 2.04 0.079 1.71 

Male spouse 0.070 2.86 0.122 3.02 0.134 3.74 0.067 2.76 0.149 2.10 0.164 5.07 

Mode to work        

Individual drives alone -0.562 -4.32 -0.758 -3.68 -0.800 -5.10 -0.536 -4.33 -0.840 -3.31 -0.817 -4.20 

Individual drives alone and 
spouse rideshares 

0.666 2.33 0.862 3.08 0.804 4.18 0.654 3.20 0.928 2.87 0.961 3.61 

Socio-demographic characteristics        

Returning young adult 0.975 2.86 1.268 2.68 1.518 3.07 0.926 2.88 1.518 2.31 1.465 2.88 
 


