
AN EXPLORATION OF THE RELATIONSHIP BETWEEN TIMING AND DURATION 

OF MAINTENANCE ACTIVITIES 

RAM M. PENDYALAa & CHANDRA R. BHATb 

aDepartment of Civil and Environmental Engineering, University of South Florida, ENB 118, 

4202 East Fowler Avenue, Tampa, FL 33620-5350, USA.  Ph: (813) 974-1084; Fax: (813) 974-

2957; Email: pendyala@eng.usf.edu (corresponding author) 

bDepartment of Civil Engineering, Ernest Cockrell Jr. Hall, 6.810, The University of Texas at 

Austin, Austin, Texas 78712, USA. Ph: (512) 471-4535; Fax: (512) 475-8744; Email: 

bhat@mail.utexas.edu

 

 
 

mailto:pendyala@eng.usf.edu
mailto:bhat@mail.utexas.edu


ABSTRACT 

The timing and duration of an activity episode are two important temporal aspects of activity-

travel behavior.  Understanding the causal relationship between these two variables would be 

useful in the development of activity-based travel demand modeling systems.  This paper 

investigates the relationship between these two variables by considering two different causal 

structures – one structure in which time-of-day choice is determined first and influences duration 

and a second structure in which activity duration is determined first and affects time-of-day 

choice.  These two structures are estimated within a discrete-continuous simultaneous equations 

framework employing a full-information maximum likelihood methodology that allows error 

covariance.  The estimation is performed separately for commuter and non-commuter samples 

drawn from a 1996 household travel survey data set from the Tampa Bay area in Florida.  The 

results of the model estimation effort show that the causal structure in which activity duration 

precedes or affects activity timing (time of day choice) performs better for the non-commuter 

sample.  For the commuter sample, the findings were less conclusive with both causal structures 

offering equally good statistical measures of fit.  In addition, for the commuter sample, all error 

correlations were found to be zero.  These two findings suggest that time of day choice and 

activity episode duration are only loosely related for the commuter sample, possibly due to the 

relatively non-discretionary and inflexible work activity and travel.     

 

Keywords: activity duration, activity timing, activity-travel behavior, causal structure, 

simultaneous equations, time of day 
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INTRODUCTION 

Activity-based approaches to travel demand analysis explicitly recognize the important 

role played by time in shaping activity and travel patterns (Axhausen and Garling 1992).  One of 

the key advantages of the activity-based approach is that it is capable of explicitly incorporating 

the time dimension into the travel modeling process (Pas and Harvey 1997).  In the new planning 

context where travel demand management (TDM) strategies and transportation control measures 

(TCM) are inherently linked to the time dimension, activity-based approaches that recognize the 

time dimension offer a stronger behavioral framework for conducting policy analyses and impact 

studies (Bhat and Koppelman 1999; Harvey and Taylor 2000; Kitamura et al 1996; Pendyala et 

al 1997, 1998; Yamamoto and Kitamura 1999). 

As an example of the importance of recognizing the time dimension, one may consider 

the case of telecommuting.  When a worker telecommutes (from home), the commute to and 

from the work location is eliminated.  Therefore, the worker now has additional time available 

for pursuing activities.  The elimination of the commute trip influences the duration of travel 

and/or activity engagement.  Besides influencing duration, telecommuting may influence the 

timing of activity engagement.  Whereas a worker may have pursued non-work activities in 

combination with the commute when traveling to and from work, the worker may now choose to 

engage in non-work activities at other times of the day.  In the absence of the commute trip, the 

worker no longer has the need or opportunity to link non-work activities to the commute.  

Analyzing these temporal changes in activity engagement patterns is important for accurately 

assessing the impacts of telecommuting on travel demand.   

As illustrated by the telecommuting example, there are two key aspects of the temporal 

dimension that play an important role in activity-travel demand modeling (Goulias 1997).  They 
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are the timing of an activity episode and the duration (time allocation) of an activity episode 

(Mahmassani and Chang 1985; Mahmassani and Stephan 1988; Abkowitz 1981).  In other 

words, activity-based analysis allows one to answer the two critical questions: 

• When is an activity pursued? 

• For how long is the activity pursued? 

Recent activity-based research has focused on the analysis of individual activity episodes 

so that both of these aspects may be studied in detail (Bhat 1996, 1998; Bhat and Misra 1999; 

Bhat and Singh 2000).  Studies that focused on daily time allocations to various activity types 

were not able to address the time-of-day choice in activity engagement (Kasturirangan et al 

2002).  Thus, conducting activity-based analysis at the individual activity episode level is crucial 

to gaining an understanding of the relationships between activity timing and duration (Hamed 

and Mannering 1993; Hunt and Patterson 1996; Levinson and Kumar 1995; Steed and Bhat 

2000). 

The relationship between activity timing and duration is an important component of 

activity-based travel demand modeling systems that aim to explicitly capture the temporal 

dimension (Kitamura et al 2000; Mannering et al 1994; Pendyala et al 2002; Wang 1996; Wen 

and Koppelman 2000).  On the one hand, one may hypothesize that the timing of an activity 

affects its duration.  Perhaps activity episodes pursued during peak periods are of short duration 

while those pursued in off-peak periods are longer in duration.  On the other hand, the duration 

of an activity may affect its timing.  Perhaps activities of longer duration are scheduled during 

the off-peak periods while activities of shorter duration are scheduled during peak periods.  This 

paper attempts to shed light on this relationship by exploring both causal structures in a 

simultaneous equations framework.  By identifying the causal structure that is most appropriate 
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in different circumstances, one may be able to design activity based model systems that 

accurately capture the relationship between activity timing and duration. 

This paper offers a detailed analysis of the relationship between activity timing and 

duration for maintenance activity episodes.  The analysis is performed on commuter and non-

commuter samples drawn from the 1996 Tampa Bay Household Travel Survey.  A simultaneous 

equation system approach where activity timing is represented as a discrete time-of-day choice 

variable and duration is represented as a continuous variable is developed and estimated for two 

different causal structures.  One causal structure assumes timing as a function of duration while 

the second assumes duration as a function of timing.  The discrete-continuous simultaneous 

equations model offers a powerful framework for analyzing such causal structures (Hanemann 

1984; Mannering and Hensher 1987; Barnard and Hensher 1992; Comte 1998).   

Following a brief discussion in the next section, a description of the sample and data set 

is provided in the third section.  The fourth section provides a descriptive analysis of activity 

timing and duration characteristics for maintenance activity episodes in the data set.  The fifth 

section describes the modeling methodology and estimation procedure.  The sixth and seventh 

sections provide results of the estimation of the two causal structures.  Finally, the eighth section 

offers concluding remarks. 

 

THE ROLE OF TIME IN ACTIVITY-TRAVEL BEHAVIOR: TWO CAUSAL 

STRUCTURES 

Time is a finite and critical resource that is consumed in the engagement of activity and 

travel.  All activities and trips consume time and regardless of the time span under consideration, 

there is only limited time within which an individual must pursue activities and trips.  As travel 
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is a derived demand, the focus of travel behavior research has shifted to analyzing the activity 

engagement patterns that drive trip making.   This paper focuses on two critical temporal aspects 

of activity engagement, namely, the timing and duration of activities.  The spatial dimension is 

very closely related to the temporal dimension as the distance traversed and the set of possible 

destination opportunities is dictated by timing and time availability.  However, within the scope 

of this paper, only the temporal dimension and the causal relationships underlying activity timing 

and duration are explored. 

To illustrate the importance of accurately capturing the relationship between activity 

timing and duration, two different causal structures may be considered in the context of 

analyzing the potential impacts of a variable pricing (congestion pricing or time-of-day based 

pricing) scheme.  Such schemes are aimed at changing the time of travel or activity engagement 

so that trips otherwise undertaken during the congested peak periods would shift to off-peak 

periods.  The two causal structures worthy of examination are briefly described in the following 

paragraphs. 

Causal Structure D T 

In this structure, activity episode duration is assumed to be predetermined.  The timing of 

an activity is determined next and is dependent on the duration of the activity episode.  The 

model system representative of this mechanism may be represented as follows: 

Da
* =  βa’X + αa’Za + εa

Ta
* = δa’S + ωa’Ra + θaDa + νaP + ξa

where Da
* =  latent variable underlying episode duration for activity type a 

 Ta
* =  latent variable underlying activity timing for activity type a 

 X, S = vectors of socio-economic characteristics 
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 Za, Ra = vectors of characteristics of activity type a 

 Da = observed or measured counterpart of Da
*

 P = variable pricing (amount charged) 

 εa, ξa = random error terms that may be correlated 

 βa, αa, δa, ωa, θa, νa = model coefficients 

Thus, in this model structure, activity episode duration is modeled as a function of socio-

economic characteristics (that do change based on the activity type) and activity characteristics 

(different activity types may have different characteristics).  The time of day choice is then 

modeled as a function of socio-economic characteristics, activity characteristics, the variable 

pricing cost, and the duration of the activity episode.  Thus, in this scheme, the duration of the 

activity is predetermined and the timing is determined as a function of the duration.  As variable 

pricing is aimed at merely shifting time of travel, it appears as an explanatory variable only in the 

timing equation. 

Causal Structure T D 

In the second causal structure, the time of day choice for an activity episode is 

determined first.  The duration of an activity episode is determined second in the causal 

structure.  The simultaneous equation system representative of this causal scheme is as follows: 

Ta
* = δa’S + ωa’Ra + νaP + ξa

Da
* =  βa’X + αa’Za + θaTa + εa

All of the symbols are as described previously.  In this scheme, activity timing is a function of 

socio-economic characteristics, activity characteristics, and variable pricing.  After the timing 

has been determined, the activity episode duration is determined as a function of socio-economic 
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characteristics, activity characteristics, and activity timing.  Once again, variable pricing appears 

only in the timing equation.   

Now, suppose one is interested in determining the potential impacts of variable pricing on 

travel demand by time of day.  The implications of using the two different structures for impact 

assessment are very significant.  In causal structure D T, duration is predetermined and is not 

sensitive to time of day choice.  In the presence of variable pricing, the extent to which a shift in 

activity timing may take place is dependent on the activity duration.  In causal structure T D, 

timing is sensitive to variable pricing and is determined first.  The activity episode duration is 

then adjustable in response to the timing of the activity episode.  Thus, the duration is no longer 

fixed and does not affect the potential shift in timing.   

In other words, if one used causal structure D T to assess variable pricing impacts when 

in fact structure T D is the correct one, then one might underestimate the potential shift in 

traffic.  This is because timing is a function of duration and the duration itself is not responsive 

to variable pricing.  So, even though the variable pricing cost may motivate an individual to shift 

time of travel for an activity, the duration of the activity may preclude the person from doing so.  

Thus causal structure D T may inhibit the potential shift in timing.  On a similar note, if one 

used causal structure T D to assess variable pricing impacts when in fact structure D T is the 

correct one, then one might overestimate the potential shift in traffic.   

The above example shows the critical importance of identifying the appropriate causal 

structure that should be employed under different circumstances.  It is possible that different 

causal structures would be suitable to different market segments, activity types, and urban 

contexts.  This paper attempts to control for some of these aspects by considering activity timing 

and duration relationships only for maintenance activities.  Models are estimated for commuters 
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and non-commuters separately to control for the significant influence that work and commute 

episodes may have on activity timing and duration decisions.   

 

DATA SET AND SAMPLE COMPOSITION 

The data set is derived from a comprehensive household travel survey that was 

administered in 1996 in the Tampa Bay Region of Florida.  The survey was a traditional trip 

diary survey and was not an activity or time use survey.  The survey was a mail-out mail-back 

survey that collected household and person socio-economic and demographic characteristics 

together with detailed information about all trips undertaken over a 24 hour period.  Households 

were asked to return one complete diary for every household member (including children); 

however, as expected, many households returned fewer diaries than household members.  The 

survey instrument was mailed to about 15,000 households and over 5,000 households returned at 

least one trip diary resulting in a response rate close to 35 percent.  Given the mail-out mail-back 

nature of the survey, this response rate may be considered quite reasonable and consistent with 

expectations. 

After extensive checking and data integrity screening, a final respondent sample of 5261 

households was obtained.  From these 5261 households, a total of 9066 persons returned usable 

trip diaries.  The 9066 persons reported information for a total of 31459 trips (through the 24 

hour trip diary).  The trip file was used to create an out-of-home activity file where individual 

activity records were created from the trip records.  This activity file included information about 

activity type, activity timing, activity duration, and other variables pertinent to each activity 

episode.  As the focus of this paper is on the modeling of causal relationships, the unweighted 

 9



sample was considered sufficient for analysis purposes.  No weighting or expansion of the 

sample has been done to reflect population characteristics.   

This paper focuses on the relationship between activity timing and duration for 

maintenance activities.  Maintenance activities included the following three activity (trip) types: 

• Shopping, personal business, and errands 

• Medical/dental 

• Serve passenger or child 

These activity records were extracted from the original file to create two maintenance 

activity record files, one for commuters and one for non-commuters.  Commuters were defined 

as driving age individuals who commuted to a work place on the travel diary day, while non-

commuters were defined as driving age individuals who did not commute to a work place (made 

zero work trips) on the travel diary day.  Note that a worker (employed person) who did not 

commute on the travel diary day would still be classified as a non-commuter for the purpose of 

this paper.  Also, children under the age of 16 were excluded from the analysis completely. 

Maintenance activity records that had full information (no missing data) were extracted to create 

commuter and non-commuter data files for the modeling effort in this paper. 

Maintenance activities were pursued by 2904 individuals residing in 2386 households.  

Of these individuals, 1023 were commuters and they reported 1351 maintenance activities.  The 

remaining 1881 individuals were non-commuters and they reported 2899 maintenance activities.  

The commuter and non-commuter maintenance activity episode data sets included complete 

socio-economic and activity information for the respective samples.  For these specific data sets, 

Table 1 provides a summary of the sample composition together with average activity 

characteristics.   This sample represents a self-selected sample of individuals who actually 
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participated in a maintenance activity on the travel survey day.  Thus, in modeling the 

relationship between activity timing and duration for these data sets, one needs to account for 

self-selectivity arising from the activity record selection and extraction process. 

[INSERT TABLE 1 ABOUT HERE] 

The average household size for the sample of 2386 households is 2.3 persons per 

household.  More than one-half of the households are two-person households in this particular 

sample.  Average vehicle ownership is about 1.8 vehicles per household with a little more than 

40 percent of the sample owning two cars.  More than three-quarters of the sample resides in a 

single family dwelling unit.  About one-third of the sample has annual income less than $25,000 

while about one-quarter of the sample has an annual income greater than $50,000. 

The major differences between commuters and non-commuters seen in the age and 

employment distribution are consistent with expectations.  Commuters are predominantly in the 

age groups of 22-49 years and 50-64 years while non-commuters are older with more than 60 

percent greater than or equal to 65 years of age.  Similarly, 80 percent of commuters are 

employed full time while only 7.7 percent of non-commuters are employed full time.   

Among those who undertake at least one maintenance activity, non-commuters undertake 

(on average) a higher number of maintenance activities.  In addition, they allocate more time to 

maintenance activities and have longer maintenance activity episode durations than commuters.  

While the commuter sample which reported at least one maintenance activity spent (on average) 

1.5 hours for maintenance activities during the day, the non-commuter sample spent nearly 4 

hours.  On average, the commuter sample reported activity episode durations of 70 minutes while 

the non-commuter sample reported activity episode durations twice that amount at a little over 

140 minutes. 
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DESCRIPTIVE ANALYSIS OF ACTIVITY DURATION AND TIMING 

Prior to commencing the model development effort, further analysis of the potential 

relationship between activity duration and timing was undertaken.  The analysis presented in this 

section constitutes a cross-tabulation where the distributions of activity duration and activity 

timing are examined relative to one another.  The results are presented in graphical form in 

Figures 1-4.   

Based on a time of day distribution of all trips in the data set, four distinct time periods 

were identified.  They are: 

• AM peak:  7:15 AM – 9:15 AM 

• Midday:  9:16 AM – 3:15 PM 

• PM peak: 3:16 PM – 6:15 PM 

• Off peak:  6:16 PM – 7:14 AM 

[INSERT FIGURES 1-4 ABOUT HERE] 

Similarly, for tabulation and graphical representation purposes, the activity episode 

duration was categorized into five possible duration categories.  Figure 1 shows the distribution 

of activity episode durations by time of day for commuters while Figure 2 shows a similar 

distribution for non-commuters.  A comparison between these figures shows differences between 

commuters and non-commuters that are consistent with expectations.  First, it is found that 

commuters undertake only about 30 percent of their maintenance activities in the midday (395 of 

1351) while non-commuters undertake about 70 percent of their maintenance activities in the 

midday (2019 of 2899).  In general, commuters show a greater proportion of maintenance 

activities in the PM peak period (presumably in conjunction with the return commute) and the 
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off-peak period when compared with the non-commuters.  The distribution of activity episode 

durations within each time period also reveals interesting differences.  More than 60 percent of 

all AM peak maintenance activities are 1-10 minutes long for commuters; the corresponding 

percentage for non-commuters is only 20 percent.  At the other end, about 13 percent of off-peak 

maintenance activities are more than 2 hours long for commuters; the corresponding percentage 

for non-commuters is 50 percent.  

Figures 3 and 4 show the relationship between activity episode duration and activity 

timing in a way that presents the time of day distribution of activity episodes by activity 

duration.  Once again, differences between commuters and non-commuters are striking and 

consistent with expectations.  While 30 percent of maintenance activities are 1-10 minutes long 

for commuters (407 of 1351), the corresponding percentage for non-commuters is only 17 

percent (493 of 2899).  Similarly, while nearly one-quarter of maintenance activity episodes are 

more than two hours long for non-commuters, the corresponding percentage for commuters is 

only 11 percent.  The differences in the time of day distributions are also quite striking.  Whereas 

commuters tend to have a more even distribution among the midday, PM peak, and off peak 

periods, the non-commuters are extremely midday oriented in their maintenance activity 

engagement regardless of the duration of the activity.   

Thus it appears that commuters tend to undertake shorter maintenance activities and 

evenly distribute them across the midday, PM peak, and off peak periods.  For example, while 

commuters are pursuing about 30-40 percent of their maintenance activities in the PM peak 

period, non-commuters are pursuing only about 10-20 percent of their maintenance activities in 

this period.  Non-commuters are found to pursue maintenance activities of longer duration and 

tend to pursue such activities largely in the midday period.  There is some tendency to shift the 
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activity engagement to the off peak period for activities greater than 2 hours in duration.  But, 

even for such long duration activities, more than 60 percent are pursued in the midday period.  

Activities pursued by commuters in the AM peak period tend to be of very short duration (1-10 

minutes long).  On the other hand, activities pursued by non-commuters in the off-peak period 

tend to be longer in duration. 

The charts presented in this section show that commuters and non-commuters exhibit 

substantial differences in their activity timing and duration patterns.  Therefore, separate models 

are developed in this paper for commuters and non-commuters.  It is plausible that different 

causal structures may apply for these two different groups.  Within each group, it is found that 

there are differences across time of day distributions by activity duration and activity duration 

distributions by time of day.  Such differences point to the inter-relationship and activity timing 

and duration that is best modeled using a simultaneous equations framework.  The next section 

provides a detailed description of the simultaneous equations methodology adopted in this paper. 

 

MODELING METHODOLOGY AND ESTIMATION PROCEDURE 

The decisions regarding the time of day of activity participation and activity duration are 

modeled using a joint discrete/continuous econometric framework.  In such joint systems, logical 

consistency considerations require certain restrictions to be maintained on the coefficients 

representing the causal effects of the dependent variables on one another.  Specifically, in the 

context of the joint time of day of activity participation and activity duration model of the current 

paper, the restrictions imply a recursive causal model in which time of day of activity 

participation affects activity duration or vice versa (but not both).  The next subsection discusses 

the restrictions in more detail for the case of a simple binary choice for time of day, as it 
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simplifies the presentation.  However, the same restrictions extend to the case of a multinomial 

choice situation for time of day.  Following this discussion, the structure and estimation 

technique for a multinomial time of day and continuous activity duration model are presented. 

Logical Consistency Condition 

Let  be a latent continuous variable that determines an observed binary variable s 

representing the time of day of activity participation; s may take the value 0 (say AM 

participation) or 1 (say PM participation).  Let a be the logarithm of the duration of activity 

participation (the logarithm form guarantees the non-negativity of duration predictions).   

*s

Consider the following equation system, where the index for observations has been 

suppressed: 

, 
0* if 1 ;0* if 0  ,*

2

1

ωδθ
εδβ

++′=
>=≤=++′=

sxa
ssssazs

             (1) 

where z and x are vectors of observed variables, ε  and ω  are random error terms assumed to be 

normally distributed, and β , θ , 1δ , and 2δ  are coefficients to be estimated.  Using the second 

equation to replace a in the first equation, we obtain: 

0* if 1  ; 0* if 0  , * 1211 >=≤=+++′+′= sssssxzs εωδδδθδβ .           (2) 

From the above equation, one can write the following: 

)(]1[ Prob
)(1]0[ Prob

211

1

δδθδβ
θδβ
+′+′Φ==

′+′Φ−==
xzs

xzs
                      (3) 

where Φ is the cumulative normal distribution function of εωδ +1 .  The sum of the above two 

probabilities is 1 only if 021 =δδ ; that is, only if either 01 =δ  or 02 =δ  in Equation (1).  

Intuitively, the logical consistency condition 021 =δδ  states that s* cannot be determined by s if 

it also determines s (see Equation 2) (Maddala 1983). 
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The application of the logical consistency condition leads to a recursive model system.  If 

01 =δ , then the time of day of participation affects the logarithm of activity duration (but not 

vice versa).  If 02 =δ , then the logarithm of activity duration affects time of day of participation 

(but not vice versa).  A natural question then is: which of the two assumptions ( 01 =δ  or 02 =δ ) 

should be maintained?  In this paper, both recursive systems are estimated and the two 

alternative systems are tested empirically to provide guidance regarding the causal direction to 

maintain in a joint time of activity participation and activity duration model system (Ben-Akiva 

and Lerman 1985; Van Garderen 2001). 

Model Structure and Estimation Procedure 

The previous section used a binary choice structure for time of day to discuss the need to 

maintain a recursive structure in the time of day/duration model system.  The same arguments 

are applicable even for a multinomial choice context for time of day.  In the next section, the 

recursive structure in which time of day affects activity duration is discussed.  Following this 

discussion, the alternative structure in which activity duration affects time of day is discussed. 

Time of Day Affects Activity Duration 

Let i be an index for time of day of activity participation (i = 1, 2,…, I) and let q be an 

index for observations (q = 1, 2,…, Q).  Consider the following equation system: 

),0(~  ,

(0,1) Gumbel IID~  , *
2σωωδθ

εεβ

NDxa

zu

qqqqq

qiqiqiiqi

+′+′=

+′=
              (4) 

where  is the indirect (latent) utility associated with the ith time of day for the qth 

observation,  is a vector of the time of day dummy variables of length I, 

*qiu

qD δ  is a vector of 

coefficients representing the effects of different times of the day of activity participation on 
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activity duration, qiε  is a standard extreme-value (Gumbel) distributed error term assumed to be 

independently and identically distributed across times of the day and observations, and other 

variables are as defined earlier in Equation (1) with the addition of appropriate subscripts.  The 

error term qω  is assumed to be identically and independently normal-distributed across 

observations with a mean of zero and variance of  .2σ

In Equation (4), the time of day alternative i will be chosen (i.e., =1) if the utility of 

that alternative is the maximum of the I alternatives.  Defining 

qiD

, 
 ,,...,2,1

*           max         
qi

qj
qi ijIj

u
v ε−

⎭
⎬
⎫

⎩
⎨
⎧

≠=
=                (5) 

the utility maximizing condition for the choice of the ith alternative may be written as: 1=qiD  if 

and only if qiqii vz >′β .  Let F epresent the marginal distribution function of qiv  plied by 

the assumed IID extreme value distribution for the error terms 

)( qii v  r im

qiε  (i = 1,2,…,I) and the 

relationship in Equation (5).  Using the properties that the maximum over identically distributed 

extreme value random terms is extreme value distributed and the difference of two identically 

distributed extreme values terms is logistically distributed, the implied distribution for  may 

be derived as: 

qiv

.
)exp()exp(

)exp()Prob()(
∑
≠

′+
=<=

ij
qjj

qii zy
yyvyF

β
             (6) 

Following Lee (1983), the non-normal variable  is transformed into a standard normal 

variate using the integral transform result (Feller 1971): 

qiv

)]([* 1
qiiqi vFv −Φ= ,                 (7) 
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where is the standard cumulative distribution function.  Equation system (4) may now be 

rewritten as: 

(.)Φ

.

0* if 1  ,0* if 0  *,*

qqqq

qiqqiqqiqiiqi

Dxa

DDDDvzD

ωδθ

β

+′+′=

>=<=−′=
            (8) 

A correlation iρ  between the error terms * and qiv qω  is allowed to accommodate 

common underlying unobserved factors influencing the time of day choice for activity 

participation and the duration of the participation.  For example, individuals who are physically 

challenged or “take things slowly” may prefer to participate in activities during the midday 

periods (rather than early in the morning) and may also have a long duration of participation. 

The parameters to be estimated in the joint model system are the iβ  parameter vectors in 

the time of day choice model, the θ  and δ  parameter vectors in the activity duration model, the 

standard deviation σ  of the qω  random term, and the correlation parameters iρ .  The likelihood 

function for estimating these parameters is: 

L = ,)()(1
1 1
∏ ∏
= = ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ Φ

Q

q

I

i

D

qiq

qi

blφ
σ

               (9) 

where (.)φ  is the standard normal density function, and  and  are defined as follows:  ql qib

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−′Φ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′−′−
=

−

2

1

1

)(
  ,

i

qiqiii
qi

qqq
q

lzF
b

Dxa
l

ρ

ρβ
σ

δθ
.         (10) 

Activity Duration Affects Time of Day 

The equation system in this case may be written in the following form: 

).,0(~                ,

(0,1) Gumbel IID~  , *
2σωωθ

εεγβ

Nxa

azu

qqqq

qiqiqqiiqi

+′=

++′=
           (11) 

The above system can be rewritten using the same procedures as in the previous section as: 
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.

0* if 1  ,0* if 0  *,*

qqq

qiqiqiqiqiqqiiqi

xa

DDDDvazD

ωθ

γβ

+′=

>=<=−+′=
         (12) 

Assuming a correlation iρ  between * and qiv qω , the likelihood function for estimating the 

parameters ),...2,1( Iii =β , γ , θ , σ , and iρ  is exactly the same as in Equation (9) with the 

following alternative definitions for  and : ql qib

.
1

)(
  ,

2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−+′Φ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′−
=

−

i

qiqqiii
qi

qq
q

lazF
b

xa
l

ρ

ργβ
σ
θ

          (13) 

 

ESTIMATION RESULTS: NON-COMMUTERS 

This section provides results of the model estimation effort for the non-commuter sample. 

Table 2 shows estimation results for the joint model where time of day choice affects activity 

duration.  Table 3 shows estimation results for the joint model where activity duration affects 

time of day choice.  The first block in each table corresponds to the time of day choice model 

where the off-peak period is considered the base alternative.  The second block corresponds to 

the log-linear duration model.  The standard deviation, σ, of the error term in the log-linear 

duration model is also provided.  Finally, correlations between error terms that turned out to be 

significant are documented. 

[INSERT TABLES 2 AND 3 ABOUT HERE] 

In Table 2, various socio-demographic variables are found to influence time of day 

choice.  The alternative specific constants in the time of day model seem to suggest that, relative 

to the off-peak period, there is a greater likelihood of pursuing a maintenance activity episode in 

the AM-peak, midday, and PM-peak periods.  All of the alternative specific constants are 

positive and significant.  The greatest likelihood occurs in the midday period.  While the 
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propensity to pursue a maintenance activity in the midday period is quite plausible for the non-

commuter sample, the positive alternative specific constants associated with the peak periods are 

less plausible.  One would expect non-commuters to pursue maintenance activities in the midday 

and off-peak periods.   

Non-commuters aged 50-64 years appear to show a greater propensity to pursue 

maintenance activities in the off-peak period.  All of the coefficients appearing in the model are 

negative.  After the off-peak period, the preferred time slots appear to be the midday and PM-

peak periods. A full-time employed person who did not commute on the survey day tends to 

perform a maintenance activity in the AM-peak period.  This may be a serve-child trip or another 

habitual trip that the worker performs regardless of whether he/she commutes on a particular 

day.  A homemaker shows a greater propensity to pursue maintenance activities in the midday 

period.  Single persons (household size = 1) show a greater propensity to pursue maintenance 

activities in the PM-peak period, possibly because they combine such activities with other 

recreational activities.  

In the duration model, it can be seen that maintenance activity episodes tend to be longer 

for single persons, persons living in households with no children, and persons living in lower 

income households.  It is possible that these persons are less rushed and therefore are able to 

pursue their maintenance activity episodes in a more relaxed manner.  On the other hand, a 

homemaker and a person aged 22-49 years have negative coefficients reflecting shorter 

maintenance activity episode lengths.  These individuals may be those who have household and 

child obligations that contribute to shorter maintenance activity episodes.  The time of day 

indicators are all statistically significant in the model.  Relative to the off-peak period, all other 

periods are characterized by shorter maintenance activity episodes as reflected by the negative 
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coefficients.  Strangely, the midday indicator has the most negative coefficient suggesting that 

the maintenance activity episodes in this period are the shortest.  

In this model, the error correlation between midday activity participation and activity 

duration is the only statistically significant error correlation.  The coefficient suggests that there 

is a positive correlation between midday activity participation and activity duration during this 

period (note that the negative sign in equation 8 and the negative sign of the estimate combine to 

form the positive correlation).  This positive correlation is quite intuitive.  It indicates that 

unobserved factors that increase the likelihood of participation during the midday also increase 

activity duration during that period.  For example, non-commuters who are physically challenged 

or who “take things slow” might not want to leave home early in the morning and might avoid 

the evening peak and late night due to congestion or safety considerations.  Such individuals 

would prefer midday activity participation and the same unobserved factors of “physically 

challenged” or “wanting to take things slow” would lead to long durations of activity 

participation. 

In Table 3, the alternative specific constants in the time of day choice model show that, 

relative to the off-peak period, there is a smaller likelihood of pursuing a maintenance activity 

episode in the AM-peak and PM-peak periods and a greater likelihood of pursuing a maintenance 

activity in the midday period.  This finding is very logical for a non-commuter sample that is 

likely to pursue maintenance activities in the midday period and off-peak period.  The activity 

duration variable affects time of day choice in the AM peak and PM peak activity participation 

equations.  It does not enter the midday activity participation equation.  The coefficients 

associated with the duration variable are positive indicating that non-commuters are not 

constrained with respect to the lengths of their activity episodes in these time periods.  They can 
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pursue long maintenance activity episodes in the  peak periods just as in the midday or off-peak 

periods (Figure 2 also shows this).  The dummy variables associated with age show negative 

coefficients indicating a greater propensity for most non-commuter adults to pursue maintenance 

activities in the off-peak period.  Full-time employed individuals who did not commute on the 

survey day show a greater propensity to pursue maintenance activities in the AM-peak period, 

possibly due to a habit effect.   

The log duration model also offers plausible indications.  Single persons and persons in 

households with no child offer positive coefficients indicating the ability to engage in longer 

maintenance activity episodes relative to homemakers and persons aged 22-49 years.  In both 

Tables 2 and 3, it can be seen that the history of maintenance activity engagement up to the 

current activity has a positive coefficient.  This suggests that, for non-commuters, there is a 

complementary effect across maintenance activity episodes.  Non-commuters, who might be 

typically bearing the household maintenance activity responsibilities, have a positive co-

dependence between maintenance activity episodes.  As in Table 2, the negative error correlation 

term suggest a positive correlation between midday activity participation and episode duration.   

As the time of day indicator variables were significant in Table 2 and the duration 

variables were significant in Table 3, an assessment of the causal structures may be performed 

through the goodness-of-fit measures.  Table 6 offers goodness-of-fit measures for the two non-

commuter models.  From these measures (and the interpretations of the alternative specific 

constants and coefficients), it is found that the model represented in Table 3, namely, activity 

duration affects time of day choice is performing better than that represented in Table 2 (in 

which time of day affects activity duration).  For non-commuters, it appears that the causal 
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decision structure is one in which the activity episode duration is estimated by an individual and 

then scheduled (timed) based on that best guess estimate of the duration.   

The adjusted likelihood ratio index at zero is computed as: 

)0(
)(12

0 L
kL −

−=
βρ          (14) 

where k is the number of parameters as shown in the table.    Similarly, the likelihood ratio 

index at sample shares is computed as: 
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A comparison of the adjusted likelihood ratio indices provides a mechanism for 

comparing two non-nested models.  Ben-Akiva and Lerman [28] note that, for estimations 

involving more than 250 observations, if the adjusted likelihood ratio indices differ by more than 

0.01, then the model with the lower index is almost certainly the incorrect model.  As the 

difference in indices for the non-commuter models is substantially greater than 0.01, it may be 

safely concluded that the model representing the causal structure where duration affects time of 

day is the more appropriate one.   

 

ESTIMATION RESULTS: COMMUTERS 

This section provides results of the model estimation effort for the commuter sample.  

Table 4 shows estimation results for the joint model where time of day choice affects activity 

duration.  Table 5 shows estimation results for the joint model where activity duration affects 

time of day choice.  The structure of the tables is similar to that in Tables 2 and 3. 

[INSERT TABLES 4 AND 5 ABOUT HERE]   
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A key finding of the model estimation for commuters is that none of the error correlation 

terms are statistically significant  regardless of the causal structure considered.  Thus, in effect, 

the joint model reduces to an independent model system where time of day and duration models 

may be estimated separately in a sequential fashion.  This is a key finding suggesting that there is 

only a loose relationship between time of day choice and activity episode duration for 

commuters. 

In Table 4, the causal structure where time of day affects activity duration is considered.  

The alternative specific constants suggest that commuters tend to pursue the maintenance 

activities in the midday or PM-peak periods (possibly linked to the work activity/trip) as opposed 

to the AM- peak or off-peak periods.  As expected, part-time employed persons show a greater 

propensity to pursue maintenance activities in the midday or PM peak periods.  Homemakers 

who commute to a work place (possibly for volunteer activities) indicate a greater propensity to 

pursue maintenance activities in the midday.  In general, commuting adults (aged 22-64 years) 

show a lower propensity to pursue maintenance activities during the work hours, possibly 

because of constraints imposed by work schedules. 

The log-linear duration model in Table 4 shows that time of day variables are significant 

in influencing activity duration.  As expected, episode duration tends to be longer in the off-peak 

period as reflected by the positive coefficient associated with the off-peak period indicator.  In 

general, persons who are full-time employed, 22-49 years old, and in multi-person households 

show a propensity to engage in shorter activity episodes.  Those who live alone (household size 

= 1) exhibit a positive coefficient indicating they are less rushed and engage in longer activity 

episodes. 
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In Table 5, the causal structure where activity duration affects time of day choice is 

considered.  Activity duration is found to be significant in all time period equations.  Relative to 

the off-peak period, the negative coefficients associated with activity duration suggest that there 

is lower propensity to pursue longer activity episodes in the AM-peak, midday, or PM-peak 

periods.  Within these three periods, the lowest propensity is seen in the AM-peak period and the 

highest propensity is seen in the midday periods.  These findings are consistent with 

expectations.  Full-time workers are generally more likely to pursue maintenance activities in the 

off-peak period as reflected by the negative coefficients associated with the worker and full-time 

employed dummy variables.  On the other hand, a part-time employed person shows a greater 

propensity to perform maintenance activities in the midday or AM-peak periods.  Part-time 

workers may have the flexibility that allows such activity engagement patterns.   

The log-linear duration model in Table 5 shows that full-time employed persons and 

those living in multi-person households or in middle income households have shorter 

maintenance activity episodes.  Those living alone (household size = 1) have longer maintenance 

activity episodes, possibly due to the lack of other household member obligations and 

constraints.    

[INSERT TABLE 6 ABOUT HERE] 

In general, both Tables 4 and 5 show slightly weaker interpretations relative to the non-

commuter models.  Within each causal structure, the time of day variables or the duration 

variable are significant in the respective equation suggesting that there is a strong correlation 

between these decisions.  However, a review of the goodness-of-fit measures presented in Table 

6 for the commuter models shows that it is very difficult to identify a better or more appropriate 

causal structure for commuters.  Both models offer virtually identical goodness-of-fit measures.  
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An examination of Table 6 shows that the adjusted likelihood ratio indices are very similar and 

have differences less than the 0.01 value required to help identify the correct model.  In addition, 

the model fit is substantially poorer than the fits obtained in the context of the non-commuter 

samples.  These findings coupled with the finding that none of the error correlation terms are 

statistically significant suggest that time of day choice and activity episode duration are 

correlated albeit with only a loose causal relationship between them.  It does not appear that one 

decision precedes or necessarily determines the other.  This conclusion may be explained by the 

fact that work schedules tend to dictate time of day participation and activity durations for 

commuters.  Given work schedules and constraints, there is not much flexibility for commuters 

to exercise choices and go through a decision process characterized by choices and causal 

relationships.   

 

DISCUSSION AND CONCLUSIONS 

This paper has presented an exploration of the relationship between activity timing (time 

of day choice) and activity episode duration for maintenance activities such as shopping, 

personal business, errands, and others.  The analysis involved the estimation of joint models of 

activity timing and duration separately for commuters and non-commuters while allowing error 

correlations between the timing and duration model equations.  Time of day choice was modeled 

as a discrete choice variable involving four alternative periods of the day while duration was 

modeled using a log-linear formulation. 

Travel survey data from the 1996 household travel survey conducted in the Tampa Bay 

area of Florida was used to describe the relationships between activity timing and duration and 

estimate the models.  Two different causal structures were considered: 
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• Activity timing (time of day choice) affects activity duration 

• Activity episode duration affects activity timing (time of day choice) 

Both of these causal structures were estimated on the non-commuter and commuter 

sample activity episodes to identify the appropriate causal structure for each sample group.  The 

identification of such causal relationships between activity engagement phenomena is very 

important from several key perspectives.  First, the identification of appropriate causal structures 

will help in the development of accurate activity-based travel demand model systems that intend 

to capture such relationships at the level of the individual traveler and activity episode.  Second, 

a knowledge of the true causal relationships underlying decision processes will help in the 

accurate assessment and impact analysis of alternative transportation policies such as variable 

pricing, parking pricing, and telecommuting. 

For the non-commuter sample, it was found that the model in which activity duration is 

assumed to be determined first and then influence time of day choice offered superior statistical 

measures of fit than the model in which activity timing was assumed to precede and determine 

activity duration.  In addition, the non-commuter model showed a significant error correlation 

between midday activity participation and activity episode duration suggesting non-commuters 

who do not like to be rushed prefer to engage in longer activities during the midday (avoiding 

peak periods).  These findings suggested that activity timing and duration are closely related for 

the non-commuter sample and that activity duration precedes the choice of time of day.   

For the commuter sample, on the other hand, it was found that both causal structures 

offered virtually identical statistical measures of fit and that the fits were substantially poorer 

than those obtained for the non-commuter samples.  In addition, all of the error correlation terms 

were found to be statistically insignificant suggesting that activity timing and duration could be 
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modeled in an independent and sequential framework.  These findings suggest that activity 

timing and duration are only loosely related from a causal decision-making standpoint although 

they are correlated with one another.  Commuters, who have relatively more constraints imposed 

by work schedules and commute trips, may not have the ability to exercise a decision process 

that is characterized by choices, alternatives, and causal relationships. In such a context, it is very 

difficult to identify a causal structure or relationship underlying activity timing and duration.   

The use of a traditional trip diary-based survey data set for the analysis proposed in this 

paper does not come without limitations.  One of the main limitations is that a trip diary survey 

does not capture multiple activity episodes that may occur at the same location (either 

simultaneously or sequentially).  A trip diary survey captures only one activity per location or 

trip.  Thus, it is possible that the trip diary survey data used in the analysis of this paper does not 

capture all of the individual activity episodes of maintenance activities.  More comprehensive 

activity or time use-based surveys should be used in the future to investigate the robustness of 

the findings reported in this paper. 

Activity scheduling surveys that involve the collection of data on underlying behavioral 

processes make it possible to study timing decisions in a robust framework (Doherty and Miller 

2000).  Such data would greatly help further explore the causal linkages between timing and 

other activity-travel variables.  In addition, such data would help further explore the decision 

processes that govern activity-travel engagement patterns for commuters and non-commuters and 

understand the reasons underlying the differences between these two samples found in this paper.  

Future research efforts include the development of models for identification of additional causal 

relationships, tests of applicability across a wide range of contexts, and methodological 
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enhancements where time of day choice is treated as a continuous decision variable using 

hazard-based survival model formulations.   
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Table 1.  Tampa Bay 1996 Travel Survey Sample Characteristics 
 

Household Attributes 
No. of households 2386 
Average household size 
   1 person household 
   2 person household 
   3 person household 
   4+ person household 

2.3 
16.3% 
56.5% 
14.2% 
13.0% 

Average vehicle ownership 
   0 car household 
   1 car household 
   2 car household 
   3+ car household 

1.8 
0.8% 
39.7% 
42.5% 
17.0% 

Dwelling unit type 
   Single-family dwelling unit 
   Multi-family dwelling unit 
   Mobile home 

 
76.2% 
10.8% 
12.1% 

Annual Income 
  Low (<$25 K) 
  Medium ($25 K-$50 K) 
  High (>$50 K) 

 
32.8% 
42.3% 
24.9% 

Person Attributes Commuter Non-commuter 
No. of persons 1023 1881 
Age (in years) 
  Young (16-21) 
  Middle (22-49) 
  Old (50-64) 
  Retired (≥65) 

 
3.8% 
64.9% 
25.4% 
5.9% 

 
0.7% 
15.0% 
23.6% 
60.7% 

Employment Status 
  Full time 
  Part time 

 
80.4% 
12.2% 

 
7.7% 
4.0% 

Average daily maintenance activity frequency (episodes) 1.32 1.54 
Average daily maintenance activity duration (min) 92.1 224.3 
Average duration of a maintenance activity  episode (min) 69.8 145.6 
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Table 2.  Non-Commuter Model: Time of Day Affects Activity Duration 

 
Variable Parameter Estimate t-statistic 

Time of Day Model (Off-peak = 0) 
AM Peak Activity Participation 
Constant 0.3852 3.355 
Person age 50-64 years -0.7530 -3.418 
Full-time employed 0.6157 3.061 
Multi-family dwelling unit -0.4946 -1.997 
Midday Activity Participation 
Constant 2.4973 26.673 
Person age 22-49 years -0.3409 -2.951 
Person age 50-64 years -0.4837 -3.079 
Homemaker 0.2491 1.950 
PM Peak Activity Participation 
Constant 1.2516 3.811 
Person age 50-64 years -0.3428 -1.815 
Household size = 1 0.2019 1.415a

Licensed driver -0.4600 -1.433a

Log-Linear Duration Model 
Constant 1.8907 25.633 
Household size = 1 0.0785 2.103 
Household with no child 0.0796 1.515a

Homemaker -0.0976 -2.125 
Person age 22-49 years -0.1331 -2.878 
Annual household income < $25,000 0.1387 5.106 
History of maintenance activity engagement 
up to the current activity (min) 

0.3431 2.665 

Time of day: AM Peak (7:15-9:15 AM) -0.2719 -3.882 
Time of day: Midday (9:16 AM-3:15 PM) -0.5718 -9.052 
Time of day: PM Peak (3:16-6:15 PM) -0.4003 -6.214 

Log-Linear Model Error Term 
Standard deviation, σ 0.7385 43.744 

Error Correlation Estimates 
ρmidday-duration -0.5984 -16.895 

N=2899 
asignificant at the α=0.1 level 
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Table 3.  Non-Commuter Model: Activity Duration Affects Time of Day 
 

Variable Parameter Estimate t-statistic 
Time of Day Model (Off-peak = 0) 

AM Peak Activity Participation 
Constant -1.3767 -5.186 
Activity Duration 1.8034 16.558 
Person age 22-49 years -0.5770 -2.127 
Person age 50-64 years -0.8484 -3.794 
Full-time employed 0.3760 1.573a

Multi-vehicle household (>1 vehicle) 0.3138 2.080 
Multi-family dwelling unit -0.3994 -1.513a

Midday Activity Participation 
Constant 3.0425 25.048 
Person age 22-49 years -0.6771 -3.870 
Person age 50-64 years -0.4490 -3.736 
PM Peak Activity Participation 
Constant -0.6244 -2.735 
Activity Duration 1.6860 17.756 
Person age 22-49 years -0.3770 -1.688 
Person age 50-64 years -0.3843 -2.136 

Log-Linear Duration Model 
Constant 1.3435 56.541 
Household size = 1 0.0583 1.818 
Household with no child 0.4021 8.290 
Homemaker -0.0687 -1.838 
Person age 22-49 years -0.1467 -3.259 
Annual household income < $25,000 0.0809 3.401 
History of maintenance activity engagement 
up to the current activity (min) 

0.1840 1.853 

Log-Linear Model Error Term 
Standard deviation, σ 0.8296 48.542 

Error Correlation Estimates 
ρmidday-duration -0.8938 -52.111 

N=2899 
asignificant at the α=0.1 level 
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Table 4.  Commuter Model: Time of Day Affects Activity Duration 
 

Variable Parameter Estimate t-statistic 
Time of Day Model (Off-peak = 0) 

AM Peak Activity Participation 
Constant -0.2598 -0.911 
Full-time employed -0.7408 -2.647 
Household with no child -0.6896 -3.071 
Midday Activity Participation 
Constant 0.9905 3.912 
Household size > 3 -0.3516 -2.390 
Person age 22-49 years -0.9610 -3.689 
Person age 50-64 years -0.9828 -3.474 
Part-time employed person 0.9656 4.097 
Homemaker 2.4549 2.341 
PM Peak Activity Participation 
Constant 0.8773 3.455 
Person age 22-49 years -0.5342 -2.027 
Person age 50-64 years -0.5999 -2.122 
Part-time employed person 0.5153 2.167 
50-64 year old non-worker in a multi-adult 
household 

-1.3329 -1.721 

Log-Linear Duration Model 
Constant 1.5781 31.573 
$25,000 ≤ Annual hhld income ≤ $50,000 -0.0660 -1.862 
Full-time employed -0.1186 -2.715 
Person age 22-49 years -0.0984 -2.497 
Household size = 1 0.1211 1.993 
Household size > 3 -0.0991 -2.503 
Time of Day: AM Peak (7:15-9:15 AM) -0.3177 -4.614 
Time of Day: Off Peak (6:16 PM-7:14 AM) 0.1040 2.585 

Log-Linear Model Error Term 
Standard deviation, σ 0.6378 53.724 

Error Correlation Estimates 
All correlation estimates statistically insignificant at α=0.05 level. 

N=1351 
asignificant at the α=0.1 level 
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Table 5.  Commuter Model: Activity Duration Affects Time of Day 
 

Variable Parameter Estimate t-statistic 
Time of Day Model (Off-peak = 0) 

AM Peak Activity Participation 
Constant 0.3102 0.487 
Activity Duration -0.9890 -5.548 
Household size = 2 -0.5040 -1.824 
Worker (full or part time) -1.6301 -3.733 
Person age 22-49 years 1.3544 2.372 
Person age 50-64 years 1.3541 2.316 
Part-time employed person 1.0982 3.084 
Midday Activity Participation 
Constant 1.4140 4.476 
Activity Duration -0.1753 -1.483a

Homemaker 1.9565 1.754 
Worker -1.2594 -4.689 
Part-time employed person 1.1688 5.041 
PM Peak Activity Participation 
Constant 0.9420 3.155 
Activity Duration -0.2934 -2.728 
Multi-vehicle household (>1 vehicle) 0.3789 2.178 
Annual household income < $25,000 0.3116 1.817 
Full-time employed person -0.5763 -2.737 

Log-Linear Duration Model 
Constant 1.5677 32.165 
$25,000 ≤ Annual hhld income ≤ $50,000 -0.0599 -1.669 
Full-time employed person -0.0957 -2.207 
Person age 22-49 years -0.1084 -2.677 
Household size = 1 0.1197 1.894 
Household size > 3 -0.1040 -2.587 

Log-Linear Model Error Term 
Standard deviation, σ 0.6457 52.539 

Error Correlation Estimates 
All correlation estimates statistically insignificant at α=0.05 level. 

N=1351 
asignificant at the α=0.1 level 
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Table 6.  Measures of Fit for Joint Timing-Duration Models 

 
Non-Commuter Model Commuter Model  

 
Summary Statistic 

Time of Day 
Affects 

Duration 

Duration 
Affects Time 

of Day 

Time of Day 
Affects 

Duration 

Duration 
Affects Time 

of Day 
Log-likelihood at zero, L(0)a -7072.00 -7072.00 -3216.60 -3216.60 
Log-likelihood at sample 

shares, L(C)b
-5756.11 -5756.11 -3058.38 -3058.38 

Log-likelihood at convergence, 
L(β) 

-5584.14 -5316.82 -2990.86 -2990.60 

Number of parameters, kc 22 21 21 22 
Number of observations, N 2899 2899 1351 1351 
Adjusted likelihood ratio index 

at zero, 2
0ρ  

0.207 0.245 0.064 0.063 

Adjusted likelihood ratio index 
at sample shares, 2

cρ  
0.027 0.073 0.016 0.016 

aThe log-likelihood at zero corresponds to the likelihood function value of the joint model with no variables in the 
MNL time of day model, and with only the constant and variance (standard deviation) term in the log-linear duration 
equation.  All correlation terms are zero.   
 
bThe log-likelihood at sample shares corresponds to the likelihood function value of the joint model with only 
alternative specific constants in the MNL time of day model, and with only the constant and variance term in the 
log-linear duration equation.  All correlation terms are zero. 
 
cThe number of parameters (k) does not include the constant and variance term in the log-linear duration model. 
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Figure 1.  Maintenance Activity Duration Distribution by Time of Day (Commuters) 
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Figure 2.  Maintenance Activity Duration Distribution by Time of Day (Non-commuters) 
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Figure 3.  Time of Day Distribution by Activity Episode Duration (Commuters) 
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Figure 4.  Time of Day Distribution by Activity Episode Duration (Non-commuters) 
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