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A SIMPLE SIMULATION STUDY TO ASSESS THE ABILITY OF THE MACML 

ESTIMATOR TO RECOVER PARAMETERS 

 

Supplemental note to  

“Incorporating Spatial Dynamics and Temporal Dependency in Land Use Change Models” 

by Raghuprasad Sidharthan and Chandra Bhat 

 

We undertake a simple simulation exercise to examine the ability of the MACML estimation 

approach to recover the parameters. All the notations in this note are based on those defined in 

the main paper.  

A four-alternative choice situation (I = 4) with four time periods (T = 4) is considered for 

the simulation exercise (this scenario matches with the dimensions of the empirical study in this 

paper). A total of Q = 200 observation units are assumed (the observation units correspond to 

parcels in the case of the empirical application in the current paper). Three independent variables 

are used in the utility equation and each of them are generated from a standard univariate normal 

distribution (these are the elements of the qtix  vector). A random coefficient (across observation 

units) is assumed on the first variable, while fixed coefficients are assumed on the other two 

variables. Observation-specific random effects are also introduced, with the mean effect for the 

first alternative normalized to zero (equivalent to setting 0~
1 =a  in Section 2.1). A diagonal 

specification is considered for the covariance matrix of Λ~ , with the assumption that there is no 

random effect for the first alternative (note, however, that, as discussed in Section 2.1, a more 

general covariance specification is estimable for Λ~ ). In particular, using the normalization 

procedure in Section 2.1., Λ~  is specified as: 
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The covariance matrix Ψ~  for the error term vector qtη~  is also diagonal, but now with the fixed 

value of 0.5 along the diagonal for each alternative. Such a matrix is again a restrictive case of 
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the more general Ψ~  covariance matrix discussed in Section 2.1. Note that such a structure 

simplifies the simulation, since the elements of Ψ~  are not estimated. The reason for such 

restrictions on the Λ~  and Ψ~  matrices in the simulation design is to restrict the number of 

parameters to be estimated (given the moderate size sample used in the experiments) and to 

focus on the spatial and temporal dependency patterns. 

To generate the spatial lag dependency, the 200 observation points are located on a 

rectangular grid of size 3,800 meters (2.375 miles) by 1800 meters (1.125 miles). Each 

observation point is 200 meters away from its closest neighbor. The spatial weight matrix W (of 

size 200×200) is created using the inverse of the square of distance on the coordinate plane 

between observational units.  Finally, the first-order AR(1) temporal dependency parameters ρ  

is specified to be 0.6, and the spatial lag parameter δ  is specified to be 0.5.  

In total, the simulation design includes 13 parameters: three mean coefficients on the 

exogenous variables (corresponding to the b coefficient vector), one random coefficient element 

(corresponding to the Cholesky matrix in 'LLΩ =
~ , which in our simulation design is the 

standard deviation of )1β , three mean coefficients for the random effects (corresponding to the 

A~  vector), three parameters for the random effects (corresponding to the Cholesky 

decomposition of theΛ~  matrix, which in our simulation design are the standard deviations of 

332 ,, ααα and ), and the ρ  and δ  parameters. The simulation experiments entail assuming 

underlying “true” values for these parameters and generating data sets for estimation. 

Specifically, using the pre-specified parameters, the utility vector U  of Equation (3) in the main 

paper is generated by drawing realizations of ηαβ ~and ,, from their underlying distributions. 

Then, for each observation unit and choice occasion, the alternative with the highest utility is 

designated as the chosen alternative. This variable constitutes the discrete dependent variable. 

The above procedure is repeated 50 times with different realizations of the ηαβ ~and ,, to 

generate 50 different data sets. For each dataset, the 13 model parameters are estimated using the 

MACML method, considering all pairs of observations in the CML function.  

The results from the estimations are translated to measures of performance by comparing 

the estimated parameters with the “true” parameter values. To evaluate the ability of the 

MACML procedure to recover the parameters accurately, we compute an absolute percentage 
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bias (APB) measure for each parameter, which is the deviation of the mean estimate for the 

parameter. 

Table 1 presents the results. The MACML inference approach does quite well in 

recovering parameters for all distance bands, with the mean APB value being around 6% (see 

last row of the APB column). More extensive theoretical and simulation studies are needed to 

better understand and characterize the ability of the MACML estimator to recover parameters 

under alternative spatial-temporal dependency scenarios, and also to investigate estimator 

efficiency considerations. But, the simple simulation exercise undertaken here suggests that the 

MACML method is able to recover the true parameters remarkably well for the spatial lag 

unordered response model with temporal autocorrelation. 
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Table 1. MACML Estimation Results of 50 Simulated Datasets with 200 Individuals and    
4 Time Periods 

 
 

Parameter 

True 

MACML estimate  

Notation in 
Paper Components Mean est. Abs. Bias Abs. %age bias 

(APB) 

B 

b1 0.500 0.521 0.021 4.2% 

b2 0.700 0.710 0.010 1.5% 

b3 -0.600 -0.627 0.027 4.5% 

Chol(Ω~ ) 1βSD −  1.000 1.033 0.033 3.3% 

A~  

a2 0.300 0.334 0.034 11.3% 

a3 -0.400 -0.385 0.015 3.7% 

a4 0.500 0.569 0.069 13.8% 

Chol(Λ~ ) 

2α−SD  1.000 1.047 0.047 4.7% 

3α−SD  1.000 1.009 0.009 0.9% 

4α−SD  1.000 1.119 0.119 11.9% 

ρ  rho 0.600 0.576 0.024 4.0% 

δ  del 0.500 0.465 0.035 6.9% 

Mean value across 
parameters   0.037 5.9% 

 


