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ABSTRACT 

This paper formulates an empirical discrete land-use model within a spatially explicit economic 

structural framework for land-use change decisions. The underlying framework goes beyond 

mechanistic fitting models for the spatial process of land use change to more closely link 

landowner decision behavior to land use patterns. At the same time, the paper explicitly 

considers spatial “spillover” effects in the decisions of land-owners of proximately located 

parcels. These “spillover” or peer influences may be due to strategic or collaborative partnerships 

between land owners, and can be associated with observed variables to the analyst (such as 

accessibility to city centers and market places) and unobserved variables to the analyst (such as 

perhaps soil quality and neighborhood attitudes/politics). In addition to spatial spillover effects, it 

is also likely that there is heterogeneity in the decision-making process of different land owners 

because of differential responsiveness to various signals relevant to decision-making. This leads 

to a stationary across-time correlation in land uses for the same spatial unit. The paper 

accommodates these technical considerations by formulating a random-coefficients spatial lag 

discrete choice model using a fine resolution for the spatial unit of analysis. Time-varying 

random effects are also considered to capture the effects of time-varying unobserved factors (for 

instance, unobserved land owner attitudes regarding specific land uses may shift over time). The 

model is estimated using Bhat’s (2011) maximum approximate composite marginal likelihood 

(MACML) inference approach. The analysis is undertaken using the City of Austin parcel-level 

land use database for multiple years (1995, 2000, 2003, and 2006). The estimation results 

indicate that proximity to highways and other roadways, distance from flood plains, parcel 

location in the context of existing development, and distance from schools are all important 

determinants of land-use. As importantly, the results provide very strong evidence of temporal 

dependency and spatial dynamics in land-use decisions. There is also a suggestion that major 

highways may not only physically partition regions, but may also act as social barriers for 

didactic interactions among individuals.  

 

Keywords: spatial econometrics, spatial multipliers, discrete spatial panel, random-coefficients, 

land use analysis. 



1 

1. INTRODUCTION 

This paper proposes a new econometric approach to specify and estimate a model of land-use 

change, based on the now rich theoretical literature on land use conversion decisions made by 

economic agents to maximize net returns (see Plantinga and Irwin, 2006). As such, the 

motivations of this paper stem both from a methodological perspective as well as an empirical 

perspective. At a methodological level, the paper focuses on specifying and estimating a multi-

period multinomial probit model, accounting for observation unit-specific inter-temporal 

dependencies, and a spatial lag structure across observation units. The model also accommodates 

spatial heterogeneity in the model. The model should be applicable in a wide variety of fields 

where social and spatial interactions (or didactic interactions) between decision agents lead to 

spillover effects. The inference methodology used is the maximum approximate composite 

marginal likelihood (MACML) approach proposed by Bhat (2011), and is strongly motivated by 

the very difficult computational problems that arise from the use of a Bayesian Markov chain-

Monte Carlo (MCMC) or classical maximum simulated likelihood (MSL) inference approaches. 

At an empirical level, the paper models the discrete indicators for the type of land-use of each 

spatial unit within a discrete choice model framework. The model brings together the 

quantitative (but aspatial or highly stylized spatial effects) perspective of land-use analysis that 

dominates the economic literature with the qualitative (but richer spatial dynamics and 

heterogeneity) perspective of land-use analysis that is quite prevalent in the ecological literature 

(see Irwin, 2010 for a discussion of the different perspectives of economists and ecologists in the 

context of urban land use change analysis). In this manner, the current paper also attempts to 

develop a stronger linkage between the spatial unit of analysis used in economic models of land-

use change and the didactic interactions between land-owners of proximally-spaced spatial units. 

Thus, the empirical model is closely tied to the underlying theoretical underpinnings of the land-

use model.  

The next section discusses the econometric context for the current paper, while the 

subsequent section presents the empirical context.  

 

1.1. The Econometric Context 

In the past decade, there has been increasing attention in discrete choice modeling on 

accommodating spatial dependence across decision agents or observational units to recognize the 
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potential presence of diffusion effects, social interaction effects, or unobserved location-related 

influences (see Jones and Bullen, 1994, and Miller, 1999). Specifically, spatial lag and spatial 

error-type structures developed in the context of continuous dependent variables to accommodate 

spatial dependence (see, for instance, Dubin, 1998, Cho and Rudolph, 2007, Messner and 

Anselin, 2004, Anselin, 2006, Elhorst, 2010ab, Lee and Yu, 2010) are being considered for 

discrete choice dependent variables (see reviews of this literature in Franzese et al. 2010, Brady 

and Irwin, 2011, and Bhat et al., 2010a). But almost all of this research focuses on binary or 

ordered response choice variables by applying global spatial structures to the linear (latent) 

propensity variables underlying the choice variables (for example, see Fleming, 2004, Franzese 

and Hays, 2008, Franzese et al., 2010, and LeSage and Pace, 2009). The two dominant 

techniques, both based on simulation methods, for the estimation of such spatial binary/ordered 

discrete models are the frequentist recursive importance sampling (RIS) estimator (which is a 

generalization of the more familiar Geweke-Hajivassiliou-Keane or GHK simulator; see Beron 

and Vijverberg, 2004) and the Bayesian Markov Chain Monte Carlo (MCMC)-based estimator 

(see LeSage and Pace, 2009). However, both of these methods are confronted with multi-

dimensional normal integration, and are cumbersome to implement in typical empirical contexts 

with moderate to large estimation sample sizes (see Bhat, 2011 and Smirnov, 2010).1  

The RIS and MCMC methods become even more difficult to implement in a spatial 

unordered multinomial choice context because the likelihood function entails a multidimensional 

integral of the order of the number of observational units factored up by the number of 

alternatives minus one (in the case of multi-period data, as in the current paper, the integral 

dimension gets factored up further by the number of time periods of observation).  Thus, it is no 

surprise that there has been little research on including spatial dependency effects in unordered 

choice models. However, Bhat (2011) suggested a maximum approximate composite marginal 

likelihood (MACML) for spatial multinomial probit (MNP) models that is easy to implement, is 

based on a frequentist likelihood-based approach, and requires no simulation. The MACML 

estimation of spatial MNP models involves only univariate and bivariate cumulative normal 

distribution function evaluations, regardless of the number of alternatives or the number of 

choice occasions per observation unit, or the number of observation units, or the nature of 

                                                            
1 The reader is referred to Franzese et al., 2010 for an excellent discussion of the many challenges that arise with the 
frequentist RIS or Bayesian MCMC procedures in spatial discrete choice models.  
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social/spatial dependence structures. In this paper, we use Bhat’s MACML inference approach to 

estimate a spatial MNP model with random coefficients as well as temporal dependence.  

There are four precursors of the current research that are worth noting. The recent studies 

by Carrión-Flores et al. (2009) and Smirnov (2010) superimposed a spatial lag structure over a 

multinomial logit (MNL) model. Carrión-Flores et al. estimated the resulting spatial model using 

a linearized version of Pinkse and Slade’s (1998) Generalized Method of Moments (GMM) 

approach (as proposed by Klier and McMillen, 2008 for the binary choice model), while 

Smirnov employed a pseudo-maximum likelihood (PML) estimator to obtain model parameters. 

Smirnov’s PML estimator is essentially based on estimating the spatial autoregressive term in the 

spatial lag model by recognizing the implied heteroscedasticity generated by the spatial 

correlation, while ignoring the spatial correlation across observational units. The approaches of 

Carrión-Flores et al. and Smirnov simplify inference by avoiding multidimensional integration. 

However, they are both based on a two-step instrumental variable estimation technique after 

linearizing around zero interdependence, and so work well only for the case of large estimation 

sample sizes and weak spatial dependence. Chakir and Parent (2009) estimated a multinomial 

probit model of land-use change, similar to the empirical focus of the current paper. However, 

they employed a Bayesian MCMC method, which requires extensive simulation, is time-

consuming, is not straightforward to implement, and can create convergence assessment 

problems.2 Sener and Bhat (2011) allowed spatial error dependence in a multinomial logit model 

of choice, but their approach is not applicable to a spatial lag structure. The reader will also note 

that none of the above studies consider random coefficients to account for spatial heterogeneity 

and temporal dependence effects.  

 

1.2. The Empirical Context 

There are several approaches to studying and modeling land-use change. Irwin and Geoghegan 

(2001) and Irwin (2010) provide a good taxonomy of these approaches. In the current paper, we 

derive our empirical discrete choice model based on an economic structural framework for land-

                                                            
2 Franzese et al. (2010) and LeSage and Pace (2009) point out a mistake in the original MCMC method proposed for 
spatial probit models by LeSage (2000). Essentially, the earlier LeSage (2000) study provided the false perception 
that Bayesian MCMC was simpler and faster than frequentist methods, because LeSage inadvertently used a 
univariate truncated normal distribution in translating the latent variables to the observed variables, while a 
multivariate truncated normal distribution is needed for this purpose. The net result is that the Bayesian MCMC 
“parallels the computation intensity of the classical RIS strategy” (Franzese et al., 2010).   
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use change decisions within a spatially explicit framework. This underlying framework goes 

beyond mechanistic fitting models for the spatial process of land use change to more closely 

linking landowner decision behavior to land use patterns. At the same time, we explicitly 

consider spatial dynamics (caused by interdependence among individual landowners) that lead to 

the land-use decisions of one landowner affecting that of the landowners of proximally located 

properties. To elucidate, consider landowners as being economic agents who make forward-

looking inter-temporal land use decisions based on profit-maximizing behavior regarding the 

conversion of a parcel of land to some other economically viable land use (for example, see 

Capozza and Li, 1994). The stream of returns from converting a parcel from the current land-use 

to some other land-use has to be weighed against the costs entailed in the conversion from the 

current land-use to some other land-use. The premise then is that the land use at any time will 

correspond to the land use type with the highest present discounted sum of future net returns 

(stream of returns minus the cost of conversion). Some of the factors affecting the stream of 

returns and the cost of conversion (and, therefore, the net returns) will be observed (such as road 

accessibility, distance from flood plain, and the availability and quality of amenities), while 

others will not. Thus, the net returns may be considered as a latent variable that includes a 

systematic component and an unobserved component. In addition, spatial interactions are likely 

to naturally arise because land owners of proximately located spatial units (say, parcels) are 

likely to be influenced by each other’s perceptions of net returns from a certain land-use type 

investment. These peer influences may be due to strategic or collaborative partnerships between 

land owners associated with observed variables to the analyst (such as accessibility to city 

centers and market places) and unobserved variables to the analyst (such as perhaps soil quality 

and neighborhood attitudes/politics). Such spatial interactions can be captured by relating the 

latent continuous “net returns” from each land-use type for a parcel (as perceived by the land 

owner of that parcel) with the corresponding latent “net returns” from surrounding parcels (as 

perceived by the land owners of those surrounding parcels) using a spatial lag formulation.3 But, 

                                                            
3 Interestingly, many spatial formulations for land-use modeling have considered spatial interactions to be a 
“nuisance” issue, and have employed a spatial error structure. However, didactic and related interactions between 
land owners require the use of a spatial lag structure that allows spillover effects, as also suggested by Carrión-
Flores et al. (2009). Further, more generally, and as emphasized by McMillen (2010), it is much easier to justify a 
parametric spatial lag structure when accommodating spatial dependence, while the use of a parametric spatial error 
structure is “troublesome because it requires the researcher to specify the actual structure of the errors”. Beck et al. 
(2006) also find theoretical and conceptual issues with the spatial error model and refer to it as being “odd”, because 
the formulation rests on the “hard to defend” position that “space matters in the error process but not in the 
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in addition to the spatial lag-based interaction effect just discussed, it is also likely that there is 

heterogeneity in the decision-making process of different land owners because of differential 

responsiveness to various signals relevant to decision-making. For instance, different land 

owners may perceive the effects of market place proximity on the net returns differently based 

on their individual experiences, risk-taking behavior, and even vegetation conservation values. 

This would then translate to a land owner-specific random coefficients formulation for the “net 

returns”, leading to a stationary across-time correlation in land uses for the same spatial unit. 

Such land owner-specific random coefficients and resulting temporal correlations of the land-

owner’s choices across time have been ignored thus far in the literature. Some earlier studies 

have considered a generic time-stationary random effect (that is, a random coefficient only on 

the intercept) for each spatial unit in their spatial error formulation, but such a formulation is 

restrictive relative to the more general random-coefficients spatial lag formulation used here. In 

addition to such a general time-stationary random-coefficients effect, there may also be time-

varying correlation effects for landowners in their assessment of net returns. Such effects may be 

due to personality characteristics (such as, say risk averseness or risk acceptance behavior) that 

fade over time or recent personal experiences. 
The implementation of the economic land use change framework discussed above is 

facilitated by the recent public availability of longitudinal and high resolution spatial land-use 

data (collected using aerial photography, remote-sensing, and real-estate appraisal information), 

which enables the modeling of land use at a fine spatial level such as a parcel. In particular, the 

observed land use data for each spatial unit is in the form of categorical data. Also, the choice of 

land use is mutually exclusive. Thus, the theoretical “net returns” land use change framework 

leads naturally to an empirical discrete choice model at a very fine level of spatial resolution (see 

Bockstael, 1996, Carrión-Flores and Irwin, 2004, Chakir and Parent, 2009, and Carrión-Flores et 

al., 2009). In such a model, the “net returns” concept is replaced by an “instantaneous utility” of 

each landowner to have a spatial unit in a certain land use type. This utility is a function of 

exogenous variables and unobserved variables, and the land use observed at a spatial unit 

corresponds to the one with highest utility. While earlier studies have used such a cross-sectional 
                                                                                                                                                                                                
substantive portion of the model”. As they point out, the implication is that if a new independent variable is added to 
a spatial error model “so that we move it from the error to the substantive portion of the model”, the variable 
magically ceases to have a spatial impact on neighboring observations.  Overall, we submit that land-use models 
should be developed using the spatial lag formulation or its many variants, and by explicitly linking land owner 
decision behavior to land use patterns.  
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discrete choice model, no earlier land-use study that we are aware of has considered and applied 

a discrete choice formulation that simultaneously accommodates the spatial dynamics through a 

spatial lag structure, spatial heterogeneity through spatial-unit specific random coefficients, time-

varying as well as time-stationary unobserved components extracted from multiperiod 

observations on the same spatial units, as well as a flexible contemporaneous covariance 

structure across the utilities of the different land use type alternatives. 

 

2. MODELING METHODOLOGY 

2.1. Model Formulation 

Let the instantaneous utility qtiU  obtained by the landowner of parcel q (q = 1, 2, …, Q) at time t 

(t = 1, 2, …, T) with land use i (i = 1, 2, …, I) be a function of a (K × 1)-column vector of 

exogenous attributes qtix  . This utility is spatially interdependent across landowners (due to 

spillover effects based on spatial proximity of parcels) as well as has a temporally interdependent 

component (due to unobserved factors specific to each landowner). Thus, we write the utility 

qtiU  using a spatial lag structure as follows: 

 ~~
qtiqtiqqi

q
tiqqqqti  UwδU εα +′++= ∑

′
′′ xβ                                                   (1)

 
where qqw ′  is the usual distance-based spatial weight corresponding to units q and q′  (with 

0=qqw  and 1=′
′
∑ qq

q
w )  for each (and all) q, ( )10 << δδ  is the spatial lag autoregressive 

parameter, qiα~  is a normal random-effect term capturing time-stationary preference effects of the 

landowner of parcel q for land use i, and qβ  is a parcel-specific (K×1)-vector of coefficients 

assumed to be a realization from a multivariate normal distribution with mean vector b and 

covariance 'LLΩ =
~ .  It is not necessary that all elements of qβ  be random; that is, the analyst 

may specify fixed coefficients on some exogenous variables in the model, though it will be 

convenient in presentation to assume that all elements of qβ  are random. For later use, we will 

write ,qq βbβ
�

+=  where )~,0(~ Ωβ Kq MVN
�

( KMVN  represents the multivariate normal 

distribution of dimension K). Also, for later use, we will write qiia αα �+= ~~
qi , and let the mean 

and variance-covariance matrix of the vertically stacked (I×1)-vector of random-effect terms 
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( ) ⎥⎦
⎤

⎢⎣
⎡ ′= qIqq ααα ~,...,~,~~

21qα  be A~  and ,~Λ  respectively. qtiε~  in Equation (1) is a normal error term 

uncorrelated with qβ
~  and all qiα~  terms (i = 1, 2, …, I), and also uncorrelated across observation 

units q. However, the qtiε~  terms may have a covariance (dependency) structure across land uses i 

(due to unobserved factors at time t that simultaneously increase or simultaneously decrease the 

utility of certain types of land uses) and also a covariance structure across time to recognize 

time-varying preference effects of the landowner of parcel q. For the time varying effects, it is 

reasonable to consider that the dependency effects fade over time, and so we consider a first 

order autoregressive temporal dependency process: qtiitqqti ηερε ~~~
,1, += −  , with ( )10 << ρρ  being 

the temporal autoregressive parameter. The error term qtiη~ is temporally uncorrelated, but can be 

correlated across alternatives - ( ) ).~,0(~~,...,~,~~
21 Ψη IqtIqtqt MVN⎥⎦

⎤
⎢⎣
⎡ ′= ηηηqt  As usual, appropriate 

scale and level normalization must be imposed on ,~A ΨΛ ~and~  for identifiability. Specifically, 

only utility differentials matter in discrete choice models. Take the utility differentials with 

respect to the first alternative. Then, only the elements )1(~~
11 ≠−= iqqiqi ααα  and its covariance 

matrix 1Λ , and the covariance matrix 1Ψ  of )1(~~
11 ≠−= iqtqtiqti ηηη , are estimable. However, as 

discussed in Bhat (2011), the MACML inference approach, like the traditional GHK simulator, 

takes the difference in utilities against the chosen alternative during estimation. Thus, consider 

that land use qtm  exists at parcel q at time t. This implies that values of 

),(~~
qtqmqiqim mi

qtqt
≠−= ααα and the covariance matrices 

qtmΛ , and 
qtmΨ are desired for parcel q 

at time t. However, though different random effects differentials and different covariance 

matrices are used for different parcels and different time periods, all of these must originate in 

the same values of the undifferenced error term vector A~  and covariance matrices ΨΛ ~and~ . To 

achieve this consistency, we normalize .0~
1 qq ∀=α  This implies that 0~

1 =a . Also, we develop 

Λ  from 1Λ  by adding an additional row on top and an additional column to the left. All 

elements of this additional row and additional column are filled with values of zeros. Similarly, 

we construct Ψ  from 1Ψ  by adding a row on top and a column to the left. This first row and the 

first column of the matrix Ψ~  are also filled with zero values. However, an additional 
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normalization needs to be imposed on Ψ~  because the scale is also not identified. For this, we 

normalize the element of Ψ~  in the second row and second column to the value of one. Note that 

all these normalizations do not place any restrictions, and a fully general specification is the 

result. But they are needed for econometric identification.   

We now set out notation to write the likelihood function in a compact form. Define the 

following: 

),...,,( 21 ′= qtIqtqtqt UUUU , )~,...,~,~(~
211 ′= qtIqttqt εεεε , )~,...,~,~(~

21 ′= qTIqtqtqt ηηηη  ( 1×I  vectors), 

),...,( 21 ′′′′= qTqqq UUUU , )~,...~,~(~
21 ′′′′= qTqqq εεεε , )~,...~,~(~

21 ′′′′= qTqqq ηηηη  ( 1×TI vectors), 

),...,( 21 ′′′′= QUUUU , )~,...~,~(~
21 ′′′′= Qεεεε , )~,...~,~(~

21 ′′′′= Qηηηη  ( 1×QTI vectors),   

),...,,( 21 ′= qIqqq ααα ����α  (I 1× vector), [ ]′′⊗′⊗′⊗= )1,...()1(,)1( 21 QTTT ααα ����α  ( 1×QTI vector), 

) ,...,,( 21 ′= qtIqtqtqt xxxx  ( KI ×  matrix), ) ,...,,( 21 ′′′′= qTqqq xxxx  ( KTI ×  matrix), 

) ,...,,( 21 ′′′′= Qxxxx  ( KQTI ×  matrix), and ( )′′′′= Qββββ
����

,...,, 21  ( 1×QK  vector) . Let EIDEN  be the 

identity matrix of size E, E1 be a column vector of size E with all of its elements taking the value 

of one, and EE1 be a square matrix of size E with all unit elements. Also, define the following 

matrices: 

),matrix(

0000

0000
0000
0.000

~,)matrix(

010000

000100
000010
000001
000000

3

2

1

QKQTITT

Q

×

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

x

x
x

x

xR

…
#…####

"
"
"

"
######

"
"
"
"

 (2) 

{ }[ ] ),matrix()( 1 QTIQTIITQTI ×⊗⊗−= −IDENIDENWIDENS δ  W is the )( QQ×  weight 

matrix with the weights qqw ′  as its elements, and 

( )[ ] ( )[ ]( )11 −− ⊗−⊗=⊗⊗−= ITIQIQQTI IDENRIDENIDENIDENRIDENIDENC ρρ  

matrix( QTIQTI × ). Then, we can write Equation (1) in matrix notation as: 

( )[ ]ηCβxαxbA1SU ~~~
++++⊗=
��

QT                          (3) 



9 

Let e[.]  indicate the eth element of the column vector [.], and let .)1()1( iItTIqdqti +−+−=  

Equation (3) can be equivalently written as: 

( ){ }[ ] { }[ ]
qtiqti

ddQTqtiU ηCβxαSxbA1S ~~~ ++++⊗=
��                                     (4)  

Define ( ){ }[ ] qtidQTqtiV xbA1S +⊗= ~  and { }[ ]
qtidqti ηCβxαS ~~ ++=

��ε .
 

The landowner of parcel q 

chooses the land use at time t that provides maximum utility. As earlier, let the land use of parcel 

q at time t be mqt. In the utility differential form, we may write Equation (4) as: 

qtqtmqtiqtimqtmqtiqtimqtimqtimqtmqtiqtim miandVVHHUUy
qtqtqtqtqtqtqtqt

≠−=−=+=−= ;; εεξξ
        

(5) 

Then stack the utility differentials 
qtqtimy ) ,( qtqtmqti miUU

qt
≠−= in the following order: 

,) ..., , ,( 21 ′=
qtqtqt Imqtmqtmqt yyyqty an 1)1( ×−I  vector; ,) ..., , ,( ′′′′= qTqqq yyyy 21  an [ ] 1)1( ××− TI  

vector; and ) ..., ,,( 21 ′′′′= Qyy yy , an [ ] 1)1( ×××− QTI  vector. Correspondingly, let 

,) ..., , ,( 21 ′=
qtqtqt Imqtmqtmqt HHHqtH an 1)1( ×−I  vector; ,) ..., , ,( ′′′′= qTqqq HHHH 21  an 

[ ] 1)1( ××− TI  vector; and ) ...,  ,( ′′′′= QHHHH 21 , an [ ] 1)1( ×××− QTI  vector. It is easy to see 

that y  has a mean vector H. To determine the covariance matrix of y , several additional matrix 

definitions are needed. Define ( ) QITQITTTQ ×⊗⊗= (~Λ1IDENΛ matrix), 

QTIQTIQ ×′⊗= (~)~(~ xΩIxΩ matrix), and QTIQTIQT ×⊗= (~ΨIDENΨ matrix). Let 

[ ]SCΨCΩΛSF ′′++=~  and define M as an ][])1[( QTIQTI ×××××−  block diagonal matrix, 

with each block diagonal having )1( −I  rows and I columns corresponding to the tth observation 

time period on parcel q. This II ×− )1(  matrix for parcel q and observation time period t 

corresponds to an )1( −I  identity matrix with an extra column of 1− ’s added as the qtm th 

column. For instance, consider the case of  Q = 2, T = 2, and I = 4. Let parcel 1 be observed to be 

in land-use 2 in time period 1 and in land-use 1 in time period 2, and let parcel 2 be in land-use 3 

in time period 1 and in land-use 4 in time period 2. Then M takes the form below. 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−
−
−

−
−
−

−
−
−

=

1100000000000000
1010000000000000
1001000000000000

0000110000000000
0000011000000000
0000010100000000
0000000010010000
0000000001010000
0000000000110000
0000000000001010
0000000000000110
0000000000000011

M                      (6) 

Finally, we obtain the multivariate distribution of the utility differentials 

),ΣB,(y:y MVN~ where .~MFMΣ ′=  Next, let θ  be the collection of parameters to be 

estimated: [ ] , ,,)~Vech(),~Vech(~ ;)~(Vech ; ′′′= ρδΨΛAΩbθ ,  where Vech(Ω~ ) represents the row 

vector of upper triangle elements of Ω
~ . Then, the likelihood of the observed sample may be 

written succinctly as Prob[y* < 0].  

),(]0*[Prob)( )1( ΣByθ −=<= −×× ITQML FL                          (7) 

where )1( −×× ITQF  is the multivariate cumulative normal distribution of )1( −×× ITQ  dimensions. 

Despite advances in simulation techniques and computational power, the evaluation of such a 

high dimensional integral is literally infeasible using traditional frequentist and Bayesian 

simulation techniques. For instance, in frequentist methods, where estimation is typically 

undertaken using pseudo-Monte Carlo or quasi-Monte Carlo simulation approaches (combined 

with a quasi-Newton optimization routine in a maximum simulated likelihood (MSL) inference), 

the computational cost to ensure good asymptotic estimator properties can be prohibitive as the 

number of dimensions of integration increases (see Bhat et al., 2010b for a detailed discussion of 

frequentist simulation procedures and problems under high integration dimensionality). Similar 

problems arise in Bayesian Markov Chain Monte Carlo (MCMC) simulation approaches, which 

remain cumbersome, require extensive simulation, are time consuming, and pose convergence 
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assessment problems as the number of dimensions increases (see Müller and Czado, 2005, Ver 

Hoef and Jansen, 2007, and Franzese et al., 2010 for discussions).  

 In a recent paper, Bhat (2011) proposed a maximum approximate composite marginal 

likelihood (MACML) approach for multinomial probit models, which is used in the current 

paper. The MACML inference approach is briefly discussed next. 

  

2.2. The Maximum Approximate Composite Marginal Likelihood (MACML) Approach 

The MACML approach combines a composite marginal likelihood (CML) estimation approach 

with an approximation method to evaluate the multivariate standard normal cumulative 

distribution (MVNCD) function. The composite likelihood approach replaces the likelihood 

function with a surrogate likelihood function of substantially lower dimensionality, which is then 

subsequently evaluated using an analytic approximation method rather than simulation 

techniques. This combination of the CML with the specific analytic approximation for the 

MVNCD function is effective because it involves only univariate and bivariate cumulative 

normal distribution function evaluations, regardless of the spatial and/or temporal complexity of 

the model structure. The approach is able to recover parameters and their covariance matrix 

estimates quite accurately and precisely because of the smooth nature of the first and second 

derivatives of the approximated analytic log-likelihood function (unlike the non-smooth first and 

second derivatives that arise in simulation approaches). The MVNCD approximation method is 

based on linearization with binary variables (see Bhat, 2011). 

The MACML approach, similar to the parent CML approach (see Varin et al., 2011 for a 

recent review of CML approaches), represents a conceptually and pedagogically simple 

simulation-free procedure relative to simulation techniques. The approach may be explained in a 

simple manner as follows. In the current empirical context, instead of developing the likelihood 

of the entire sample, consider developing a surrogate likelihood function that is the product of 

the probability of easily computed marginal events. For instance, one may compound (multiply) 

pairwise probabilities of parcel q being in land use i at time t and being in land use j at time s, of 

parcel q being in land use i at time t and parcel q’ being in land use j at time s, and so on and so 

forth. The CML estimator is then the one that maximizes the compounded probability of all 

pairwise events (see Varin and Vidoni, 2009, Engle et al., 2007, Bhat et al., 2010b, and Bhat and 

Sener, 2009 for earlier applications of the estimator for binary and ordered-response systems). 



12 

Alternatively, the analyst can also consider larger subsets of observations, such as triplets or 

quadruplets or even higher dimensional subsets (see Engler et al., 2006 and Caragea and Smith, 

2007). However, doing so in the MNP context defeats the purpose of the approach because it 

leads to high dimensionality of integration, especially when the number of alternatives is high. 

Besides, it is generally agreed that the pairwise approach is a good balance between statistical 

and computational efficiency. The properties of the general CML estimator may be derived using 

the theory of estimating equations (see Cox and Reid, 2004). Specifically, under usual regularity 

assumptions (Molenberghs and Verbeke, 2005, page 191), the CML estimator is consistent and 

asymptotically normal distributed (this is because of the unbiasedness of the CML score 

function, which is a linear combination of proper score functions associated with the marginal 

event probabilities forming the composite likelihood). The CML function may be written as:  

,' when  ' with ),( Prob)( ''
1 1 '

ttqqmCmCL tqtqqtqt

Q

q

Q

qq

T

t

T

tt
CML =≠=== ′′

= =′ = =
∏∏∏∏θ                     (8) 

where qtC  is an index for the land use in which parcel q is at time t. Each of these pairwise 

probabilities is of 2)1( ×−I dimensions, which may be computed easily using the MVNCD 

approximation method embedded in the MACML method (the MVNCD function approximates 

the pairwise probabilities in Equation (8) using only univariate and bivariate cumulative normal 

distribution functions; see Bhat, 2011).4  

The pairwise marginal likelihood function of Equation (8) comprises 2/)1( −QTQT  

pairs of pairwise probability computations. But, in a spatial-temporal case where spatial 

dependency drops quickly with inter-observation distance, the pairs formed from the closest 

observations provide much more information than pairs that are very far away. In fact, as 

demonstrated by Varin and Vidoni (2009), Bhat et al. (2010a), and Varin and Czado (2008) in 

different empirical contexts, retaining all pairs may reduce estimator efficiency. We examine this 
                                                            
4 It should be noted that while the MVNCD approximation of Equation (8) provides a relatively simple objective 
function to be maximized with respect to the parameters, the resulting function can theoretically have multiple 
maxima (note, however, that this is also true of the likelihood function of pretty much every other multinomial 
discrete choice model except the multinomial logit model). There is no way out of this “multiple maxima” situation, 
other than for the analyst to test various different starting points and see whether the parameters converge to the 
same point. We undertook such an analysis with some of the data sets generated as part of testing whether the 
MACML procedure is able to recover parameters (see next section), and found that the parameters always 
converged to the same point. Of course, this does not mean that there are no multiple optima, because it is 
impossible to test the infinite number of possible starting parameter spaces; but our testing does suggest reasonable 
stability of the maximization procedure.  
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issue by creating different distance bands (including the band that includes all pairings) and, for 

each specific distance band, considering only those unordered pairings in the CML function that 

are within the distance band. Then, we develop the asymptotic variance matrix )ˆ(θCMLV  for each 

distance band and select the threshold distance value (say threshd~ ) that minimizes the total 

variance  across all parameters as given by )]ˆ([ θCMLVtr   (i.e., the trace of the matrix )]ˆ([ θCMLV .5   

 The CML estimator of θ  is consistent and asymptotically normal distributed with 

asymptotic mean θ  and covariance matrix given by the inverse of Godambe’s (1960) sandwich 

information matrix (see Zhao and Joe, 2005): 
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The “bread” matrix )(θH of Equation (9) can be estimated in a straightforward manner using the 

Hessian of the negative of the MACML likelihood function, evaluated at the MACML estimate 

θ̂ . On the other hand, the “vegetable” matrix )(θJ  is not that straightforward to estimate. But 

the decaying nature of the distance weight matrix can be used to create pseudo-independent 

subsamples of the data using the windows sampling method proposed by Heagerty and Lumley 

(2000). Based on this windows sampling method, Bhat (2011) suggests overlaying the spatial 

region under consideration with a square grid providing a total of D internal and external nodes. 

Then, select the observational unit closest to each of the D grid nodes to obtain D observational 

units from the original Q observational units ( ).,,3 ,2 ,1~ Dd …=  Let C~  be a DQ×  matrix with 

its thd~  column filled with a 1×Q  vector of 0s and 1s, with a zero value in the 'q th row ( q′=1, 2, 

…, Q) if the observational unit q′  is not within the specified threshold distance threshd~  of unit d~ , 

                                                            
5 We do not test different time period bands like we do distance bands. This is because, unlike the spatial 
dependency pattern, the temporal dependency includes a time-invariant component that does not fade over time. 
Thus, for each observation unit, all time periods need to be considered, unless the time-stationary dependency is 
negligible, which we generally do not believe will be the case.  
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and a one otherwise (by construction, ).~'if1~
~' dqdq ==C  Also, let CC ~1 ⊗= T

�
. Then, the 

columns of C
�

 provide pseudo-independent sets of observational units.6 Let the score matrix 

corresponding to the pairings in column d~ of matrix C
�

 be )(, θdCMLS .  Also, Let dN ~  be the sum 

of the thd~  column of C
�

, and let  W~  be the total number of pairings used in the CML function of 

Equation (8) (after considering the distance threshold threshd~ ). Then, the J matrix maybe 

empirically estimated as: 
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One additional issue regarding estimation. The analyst needs to ensure the positive 

definiteness of the three covariance matrices, ΨΛΩ ~ and ,~ ,~ . Once this is ensured, and as long as 

10and10 <<<< δρ , Σ  will be positive definite. In our estimation, the positive-definiteness 

of each of the ΨΛΩ ~ and ,~ ,~  matrices is guaranteed by writing the logarithm of the pairwise-

likelihood in terms of the Cholesky-decomposed elements of these matrices, and maximizing 

with respect to these elements of the Cholesky factor. Essentially, this procedure entails passing 

the Cholesky elements as parameters to the optimization routine, constructing the covariance 

matrix internal to the optimization routine, then computing Σ , and finally picking off the 

appropriate elements of the matrix for the pairwise likelihood components. To ensure the 

constraints on the autoregressive terms ρ  and δ , we parameterize these terms as 

)]~exp(1/[1 ρρ +=  and )]~exp(1/[1 δδ += , respectively. Once estimated, the  ~and ~ δρ estimates 

can be translated back to estimates of ρ  and δ . 

 

2.3. Simulation Study 

We have undertaken a simple simulation exercise to examine the ability of the MACML 

estimation approach to recover the parameters in the context of a four-alternative choice situation 

                                                            
6 As indicated by Bhat (2011), there needs to be a balance here between the number of sets of pairings D and the 
proximity of points. The smaller the value of D, the less proximal are the sets of observation units and more likely 
that the sets of observational pairings will be independent. However, at the same time, the value of D needs to be 
reasonable to obtain a good empirical estimate of J, since this empirical estimate is based on averaging the cross-
product of the score functions (computed at the convergent parameter values) across the D sets of observations. 
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(I = 4) with four time periods (T = 4) (this scenario matches with the dimensions of the empirical 

study in this paper). A total of Q = 200 observation units are assumed (the observation units 

correspond to parcels in the case of the empirical application in the current paper). Three 

independent variables are used. The details are available in an online supplementary note at 

http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/LandUse/Supp_Note.pdf. The simulation 

results illustrate the ability of the MACML method to recover the true parameters remarkably 

well for the spatial lag unordered response model with temporal autocorrelation. Future studies 

should more extensively examine the performance of the MACML estimation approach under 

alternative spatial and temporal dependency patterns, as well as investigate estimator efficiency 

considerations. 

 

3. APPLICATION 

3.1. The Data and the Context 

The data used in this paper is from the City of Austin, Texas. Parcel level land use inventory data 

for the years 1995, 2000, 2003 and 2006 are used. This data is available in the Environmental 

Systems Research Institute’s (ESRI’s) shape file format for all the four years for a 2 mile 

extraterritorial jurisdiction (ETJ) of the City of Austin, covering a total area of 1795 sq km. (693 

sq mile). The land use type for each parcel is available at a fine level of detail; however, for the 

current study, they are aggregated into four mutually exclusive land use categories. These are (1) 

residential (including single family, duplexes, three/four-plexes, apartments, condominiums, 

mobile homes, group quarters, and retirement housing), (2) commercial (including commercial, 

office, hospitals, government services, educational services, cultural services, and parking), (3) 

industrial (including manufacturing, warehousing, resource extraction (mining), landfills, and 

miscellaneous industrial), and (4) undeveloped (including open and undeveloped spaces, 

preserves, parks, golf courses, and agricultural open spaces).  

 An area measuring 23.5 sq km (9.06 sq miles) in the suburbs of Austin city is selected for 

the analysis. The interstate highway, IH-35, divides this analysis area into an eastern section with 

two-thirds of the total area and a western section with the remaining one-third of the area. A part 

of the eastern section falls within the City of Pflugerville, a suburban Austin city. Mopac (Loop 

1), another major expressway in Austin, also runs in the North-South direction about half a mile 

west of the western boundary of the analysis area. Apart from IH-35 and Mopac, three minor 
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arterials and a major arterial pass through the analysis area. All the explanatory variables were 

created from the GIS data obtained from the City of Austin, except the flood plains data, which 

was obtained from the Capital Area Council of Governments (CAPCOG).  

For the econometric analysis, the area is divided into 400 square cells each of size 

242m×242m. The land use in the parcel at the centroid of each cell is designated as the land use 

for that grid cell. If the centroidal point falls well within the right-of-way of an arterial roadway 

or other roadways with high land-use access functionality, the corresponding grid cell is assigned 

the predominant land use of the adjacent area. However, if the centroidal point of a grid cell falls 

within the right-of-way of IH-35, which primarily serves the functionality of through movement, 

we removed the corresponding grid cell from analysis (a total of five grid cells were accordingly 

removed, leaving a sample of 395 grid cells observed at each of four time points).   

 In the rest of this paper, and for ease in presentation, we will use the terms “grid cell” 

and “parcel” interchangeably, though the analysis is technically being conducted at the grid cell 

level. The explanatory variables for each parcel considered in the model include road access 

measures (distance to IH-35, distance to Mopac, distance to the nearest non-freeway roadway, 

and interactions of these variables), location relative to the flood plains, an interaction term of 

proximity to road access with proximity to the flood plain (distance to nearest road divided by 

distance to the nearest flood plain), being situated in Pflugerville city, and proximity to schools.7 

To construct distances (all measured in kilometers) from each parcel to the roadways, a road 

network data in polyline format (obtained from the City of Austin) was overlaid on the analysis 

area, and the Euclidean distance from the parcel to roadways was calculated. To construct 

distances from each parcel to the nearest flood plain, the flood plain data in polygon format 

(obtained from the Capital Area Council of Governments) was overlaid onto the analysis area, 

and Euclidean distances were computed from each parcel centroid to the nearest floodplain 

polygon. School data was available as point data, and this was overlaid on the analysis area to 

obtain the distance from a parcel to the nearest school.  

Among the exogenous variables considered, we expect that land-owners of parcels in 

close proximity to highways will most likely invest their parcels in commercial and industrial 

land-uses. On the other hand, one can expect parcels located far from highways and roadways to 

                                                            
7A floodplain is an area susceptible to flooding. Such areas in the United States are identified by the Federal 
Emergency Management Agency (FEMA) in its Flood Insurance Rate Maps, which show spatial regions likely to be 
affected by a 100-year flood (1% chance of a flood of this magnitude during the year).  
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remain undeveloped, as land-owners are not likely to see much net returns in developing these 

parcels. Similarly, we can expect parcels in close proximity to flood plains not to be built up. In 

addition, we consider an interaction effect of distance to the nearest roadway divided by distance 

to the nearest flood plain. This captures the potential “push-pull” non-linear positive effect (on 

the propensity of a parcel being undeveloped) of being afar from roadways and being proximal 

to a flood plain. However, the land-owner of a parcel that is distant from roadways may see some 

“net returns” potential in developing the parcel if the parcel is also far away from the flood 

plains. Similarly, the land-owner of a parcel that is close to a flood plain may still invest the 

parcel in some kind of development if the parcel is close to roadways. All of these effects are 

captured by introducing the “distance to nearest roadway divided by distance to the nearest flood 

plain” variable. The Pflugerville city dummy variable is introduced to capture the effects of a 

differential development/tax incentive structure in Pflugerville relative to the remainder of the 

analysis region. Finally, the proximity to schools is likely to be an incentive to develop the parcel 

for residential land-use.  

Figure 1 shows the analysis area along with the roadways in the region, the boundary of 

Pflugerville, the locations of the flood plains and the land-use type of each grid point for the year 

1995 (see the legend for land-use type at the bottom right of the figure). Figure 2 is the 

corresponding figure for the year 2000. Several observations may be made just from a visual 

scan of the figures. First, there is a clustering of parcels in industrial and commercial land-uses 

immediately adjacent to IH-35. Second, there are more parcels in an undeveloped state as one 

goes eastwards, away from Mopac. Third, parcels close to the floodplains indeed are more likely 

to be in an undeveloped land-use state. Fourth, the share of parcels within Pflugerville city in 

commercial land-use appears higher than in other areas of the analysis region. Fifth, while 

residences are not necessarily closely clustered around each school, there is a tendency to have 

quite a few residential parcels within a reasonable range of schools (this visual scan suggests the 

need to test distance bands from parcels to schools rather than a simple continuous representation 

of distance from school). Sixth, there is clear evidence of parcels with the same land-use in close 

proximity, reinforcing the notion of spatial dynamics at play. This effect is particularly obvious 

when looking at each of the eastern and western sections of the area (as delineated by IH-35) 

individually. Seventh, one can see how the clustering effect of similar land-uses manifests itself 

in the change from 1995 to 2000. Specifically, it can be clearly observed from Figures 1 and 2 
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that many parcels in an undeveloped state in 1995 are in a developed state in 2000. Most of these 

conversions are to residential land-use, though there also is a clear surge in industrial land-use in 

2000. As can be noted, there is a distinct clustering pattern in parcels that change from an 

undeveloped state to each of the residential and industrial land-use types.  

Table 1 shows the percentage shares of parcels in each of the four land use types at each 

of the four years of analysis. A high share of the parcels is either in residential or undeveloped 

land-uses, with the commercial and industrial land-uses representing about 20% of the total 

share. Another observation from this table, also visible from Figures 1 and 2, is the boom in 

residential land development that occurred between 1995 and 2000 (and the reduction in the 

share of undeveloped land during the same period). This boom is consistent with ground reality 

in the Austin region (Glaeser et al., 2006). Historically speaking, Austin, like other cities in 

Texas, has had relatively weak land use zoning policies. Thus, the economic prosperity of the 

late 90s (and into the first year of the new millennium) led to substantial and relatively 

uncontrolled development in the Austin area, resulting in the emergence of several low density 

residential enclaves at the fringes of the main city (such as the area considered in this paper). Of 

course, this growth tapered off and came to a literal standstill after 2001 (see also Table 1), 

attributable to the economic recession that began around March 2001 rather than to any land-use 

regulations.8 

  

3.2. Variable Specification and Spatial Weight Matrix Formulation 

Many different variable specifications, functional forms, and variable interactions were 

considered to determine the final model specification. The roadway access variables (distance 

from IH-35, Mopac, and other arterials) as well as the distance to the closest flood plain polygon 

were considered both in linear and non-linear forms (such as the logarithm of distance, the 

square of distance, and spline variables that allow piece-wise linear effects of distance on the 

utilities). In addition, we also considered dummy variables for different ranges of distance for 

these variables (for instance, parcel is within 200 meters of IH-35, parcel is within 300 meters of 
                                                            
8 To be sure, Austin has had comprehensive development plans since 1928, including the Austin Tomorrow 
Comprehensive Plan (ATCP) adopted by the City Council in the late 1970s. The ATCP was not acted upon due to 
lack of consensus and shifts in the Austin City Council make-up over the years, furthered by the non-involvement of 
the Austin development community. The ATCP was resurrected in 2008 with interim updates. In the meantime, the 
Austin City also established an explicit and streamlined land use planning process with significant public 
participation to develop a future land use map (FLUM), which provides the framework for zoning regulations (see 
City of Austin, 2008). But these issues are not relevant for the period of analysis in the current paper.  
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IH-35, etc.). The Pflugerville city location dummy variable was introduced as a switch variable 

taking the value of ‘1’ for parcels within the City of Pflugerville and ‘0’ otherwise. The 

proximity to school effect was considered similar to the other continuous variables, and included 

alternative functional forms of distance from the nearest school as well as dummy variables for 

different ranges of distance from school (such as parcel is located within 300 meters of a school 

and within 1 kilometer of a school). In addition to the variables just discussed, we also included a 

“1995 dummy variable” to capture the rather substantial temporal shifts in shares among the 

land-use categories between this first year and the subsequent years (see Table 1). Further, 

various interactions of the continuous and the categorical variables were also considered 

whenever adequate observations were available to test such interaction effects.  

The final model specification was obtained after extensive explorations and testing, and 

based on statistical fit, intuitiveness, parsimony considerations, and the preliminary insights 

offered by the visual scan of Figure 1 (as discussed in the previous Section). Specifically, in 

terms of statistical fit, we used the adjusted composite likelihood ratio test (ADCLRT) statistic 

(see Pace et al., 2011 and Bhat, 2011) to compare nested models and the composite likelihood 

information criterion (CLIC) introduced by Varin and Vidoni (2005) to test non-nested models. 

Table 2 provides the descriptive statistics of the independent variables in the final model 

specification. We also examined alternative specifications for the construction of the spatial 

weights, including inverse distance and the inverse of the square of distance, the inverse of 

exponential distance, a simple contiguity indicator, and a contiguity weight but based on shared 

boundary length rather than a simple indicator. Further, based on the insights from the visual 

scan of Figure 1, we decided to test two spatial variants for the weight specification. The first 

was to develop the weight matrix between any two parcels over the entire analysis region. The 

second was to assume no spatial dependency between parcels on the western and eastern sections 

of the analysis area (as determined by IH-35), but assuming dependence between parcels within 

each of the two sections. That is, if two parcels are located on the same side of IH-35, then the 

spatial weight for the pair is non-zero based on the weight matrix; otherwise, the spatial weight 

for the pair is assigned a value of zero. At the end of this extensive testing, which was 

undertaken using all pairwise interactions in the CML function, the best weight specification 

involved the inverse of the square of distance specification with spatial dependency confined to 

parcels within each of the western and eastern sections of the analysis area (with no dependence 
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between parcels lying on opposite sides of I-35). This selection from among the many non-

nested weight specifications was undertaken using the composite likelihood information criterion 

(CLIC) introduced by Varin and Vidoni (2005), which takes the following form:  

[ ]1)ˆ(ˆ)ˆ(ˆ)ˆ(log −−= θHθJθ trLCLIC CML              (11) 

where θ̂  represents the estimated model parameter vector, and )ˆ(ˆand)ˆ(ˆ θHθJ  are the estimated 

“vegetable” and “bread” matrices as discussed in Equations (9) and (10), respectively. The 

model that provides a higher value of CLIC is preferred. For instance, Table 3 provides the 

values of the log-composite likelihood at convergence )ˆ(log θCMLL , the trace value in the CLIC 

statistic ( ))ˆ()ˆ(( 1−θHθJtr ), and the CLIC statistic value for the model that constructs the weight 

matrix over the entire region (Full region-based weight matrix model) and the model that 

constructs the weight matrix over each of the eastern and western sections of the analysis region 

(Partitioned region-based weight matrix model), with the preferred inverse of the square of 

distance as the basis for the weight matrix. As can be observed from the CLIC statistic column, 

the partitioned region-based spatial weight matrix model is superior in representing spatial 

effects in the current empirical context, indicating the lack of didactic interactions between land-

owners of parcels on either side of IH-35. This result emphasizes the social separation that can 

be caused by a physical barrier such as a freeway.9  

Finally, using the preferred combination of the variable specification, and the partitioned 

weight matrix with the inverse of the square of distance as the separation measure, we undertook 

an efficiency analysis to determine the optimal distance band for including pairwise interactions 

in the CML function, based on minimizing the trace of the variance-covariance matrix given by 

)]ˆ([ θVCMLtr  (see Section 2.2). The )]ˆ([ θVCMLtr  value was the lowest for a distance band of 400 

meters (other distance bands considered included 800, 1200 and 7000 meters, the last one 

representing the case of including all pairs of parcel-year observations in the CML function). 

                                                            
9 One of the reviewers encouraged us to develop a more rigorous confidence level-based procedure to test this social 
barrier hypothesis, and suggested a bootstrapping of the CLIC statistic. To do so, we generate 100 data sets using the 
estimated values for the partitioned region-based weight matrix model (PRWM) model. Then, for each data set, we 
estimate the full region-based weight matrix model (FRWM) and the PRWM model, and subsequently obtain the 
corresponding CLIC statistics (say, CLIC-FRWM and CLIC-PRWM). In 75% of the bootstrap-generated data sets, 
we obtained CLIC-PRWM>CLIC-FRWM, providing confidence that the “social barrier” finding is not simply an 
artifact of sampling. We would like to thank the referee for suggesting that we pursue such an effort.  
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Thus, all subsequent results for models including spatial dependency are based on the 400 meters 

distance band.  

The next section discusses the results of the following two models in more detail: (1) the 

multinomial probit model with no temporal and spatial dependencies or the MNP model (in the 

notation of Section 2.1, this model imposes the restrictions that 'LLΩ =
~  is a KK × -matrix of 

zero values, Λ~  is an II × -matrix of zeros, 0=ρ , and 0=δ ), and (2) the multinomial probit 

model with temporal and spatial dependencies (MNPTS).  In both of these models, we could not 

reject the null hypothesis that, after accommodating the exogenous variables, the covariance 

matrix Ψ~  had the structure below: 
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which is equivalent to the specification that the intrinsic utility preferences are independent and 

identically distributed across the four alternatives (with the scale normalized to 0.5). However, 

note that the MNPTS model does incorporate both dependence and heteroscedasticity across the 

overall utilities of the alternatives because of the random coefficients on the exogenous variables. 

Finally, in the MNPTS model, we could not reject the hypothesis that the covariance matrix Λ~  

had the following form (the utilities are arranged in the following order of land-use type: 

residential, commercial, industrial, and undeveloped):  
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The covariance matrix above indicates that there are no time-stationary random effects in the 

utilities for the residential and industrial land-uses. More intuitively speaking, land-owners are 

likely to have intrinsic (unobserved and randomly distributed) time-invariant utility “biases” (or 

preferences) for commercial and undeveloped land-use types, but not for residential and 

industrial land-use types. This also implies that the utilities for commercial and undeveloped 

land-use types are correlated across time due to time-invariant land-owner preferences.  
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3.3. Model Estimation Results 

The results of the MNP and the MNPTS models are presented in Table 4. We first discuss the 

effects of variables on the utilities of alternatives (Section 3.3.1), next the temporal and spatial 

effects (Section 3.3.2), then the model fit comparisons (Section 3.3.3), and finally the variable 

magnitude effects (Section 3.3.4). A ‘-’ entry in a cell of Table 4 indicates that the corresponding 

“row” variable did not have a statistically significant effect on the utility of the corresponding 

“column” land-use category. 

  

3.3.1. Variable Effects on Utility of Alternatives 

The estimated coefficients of the two models in Table 4 are not directly comparable, since the 

scales of the error terms in the utilities are different. But the mean coefficient estimates are the 

same in sign in both models. All the results are consistent with the hypotheses in Section 3.1. 

The constant terms do not have any substantive interpretations, and simply represent adjustments 

in the utilities of alternatives after accommodating the other variables in the model. The presence 

of standard deviations on the constants for the commercial and undeveloped land-uses (in the 

MNPTS model) indicates time-invariant preference heterogeneity across landowners in the 

utilities for these land-uses, as discussed earlier.  Parcels located proximal to IH-35 are more 

likely to be invested in commercial and industrial land-uses, though the functional form of 

proximity to IH-35 in the utilities of these two land-uses takes different forms. For commercial 

land-use, the proximity to IH-35 enters as a distance band of 350 meters from IH-35, which is 

consistent with the clustering of commercial parcels close to IH-35 in Figure 1. However, for 

industrial land-use, the linear form of distance to IH-35 (interacted with distance to nearest non-

freeway road) enters the utility function, again consistent with the relative scatter of industrial 

parcels around IH-35. More generally, industrial facilities (and therefore their land-owners) gain 

from proximity to freeways. At the same time, zoning setback guidelines can preclude owners of 

parcels that are immediately adjacent to freeways from investing their land in industrial use 

(which is why the distance band specification did not come out statistically significant for the 

industrial land-use alternative). Also, land-owners of parcels close to other major roads can 

benefit from placing their land in industrial use because of improved transportation accessibility. 

These behaviors are captured by the negative coefficient for the industry land use category on the 

interaction variable of the distance to IH-35 and the distance to the nearest non-freeway road.  
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The results in Table 4 also indicate that parcels farther away from Mopac are more likely 

to be in an undeveloped state. Mopac is a major expressway connecting the analysis area to the 

Austin Central Business District (CBD), so it is not surprising that land-owners of parcels  

located closer to Mopac are more likely to develop their parcels, while land-owners of parcels far 

away from Mopac may not see the value in developing their land (see Carrión-Flores and Irwin, 

2004 and Chakir and Parent, 2009, who also discuss how proximity and access to central 

metropolitan areas and major roadways can impact land-use decisions). The “push-pull” non-

linear effect of distance to the nearest road and distance to the nearest flood plain is clear from 

the positive coefficient on the ratio of these two variables. Parcels situated within Pflugerville 

city, according to the MNP model, provide high “net returns” (relative to parcels outside 

Pflugerville) if invested in residential or commercial land-uses (particularly the latter) rather than 

being undeveloped or invested in industrial land-use. However, according to the MNPTS model, 

on average, parcels within Pflugerville are less likely (relative to parcels outside Pflugerville) to 

be in residential land-use than being undeveloped or in industrial use. However, there is 

substantial heterogeneity in this effect, as can be observed from the large estimated standard 

deviation of the random coefficient on this “Parcel lies within Pflugerville City” variable for the 

residential land-use alternative. The mean and standard deviation effects on the variable indicate 

that, for 47.4% of the land-owners of the parcels in the City of Pflugerville, the utility of 

investing in residential land-use is higher than the utility of leaving the land undeveloped or 

investing in industrial land-use; for the remaining 52.6% of land-owners of parcels in the City of 

Pflugerville, the reverse situation holds. Such heterogeneity is a natural result of the tension 

between the urban amenities (access to retail places and public services such as hospitals) on the 

one hand that may increase the demand for residential development in already dense residential 

areas, and the urban “disamenities” (such as traffic congestion effects and air quality problems) 

on the other hand that may decrease demand for residential development in already dense 

residential neighborhoods (see Anas et al., 1998; Carrión-Flores and Irwin, 2004 and Irwin and 

Bockstael, 2002),  But, consistent with the MNP model, the MNPTS model also shows a higher 

propensity of parcels within Pflugerville City to be invested in commercial land-use than 

invested in industrial land-use or left undeveloped (see Carrión-Flores et al., 2009).  Also, as 

expected, the proximity to schools is likely to be an incentive to develop the parcel for residential 

land-use (see Li and Liu, 2007). Finally, the dummy variable for 1995 shows the lower share of 
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parcels in residential land-use and the higher share of parcels in undeveloped land-use in 1995 

relative to the other years, as highlighted earlier in Section 3.1. 

  

3.3.2. Temporal and Spatial Dependency Effects 

Temporal dependency (across years) is introduced in our model in the utilities of each alternative 

for the same land-owner through time-invariant utility preferences and sensitivities to variables 

(as captured by the random coefficients specification on the constants and the “parcel lies within 

Pflugerville City” dummy variable in Table 4), as well as through the time-varying 

autoregressive error correlation structure to represent land-owner characteristics that may fade 

over time (as captured by the autoregressive coefficient ).ρ  As already indicated in the earlier 

section, the results show the presence of time-invariant dependency in the utilities for the same 

land-owner. In addition, Table 4 shows a statistically significant and moderate-level 

autoregressive coefficient of 0.367, indicating the presence of land-owner specific unobserved 

factors (such as risk averseness or risk acceptance for specific land-use types) that change over 

time (due to recent events or experiences, or due to lifecycle-related changes). Ignoring these 

time-varying effects will, in general, lead to inconsistent estimates (due to ignoring the 

heteroscedasticity generated by these time-varying effects) as well as inefficient estimates (due 

to ignoring the dependence across the land-use choice occasions of individuals).  

The spatial autoregressive parameter in the spatial lag formulation, ,δ  also turns out to 

be highly statistically significant with a value of 0.449. This is evidence of the presence of spatial 

spillover effects caused by didactic interactions between land-owners of proximately located 

spatial units.  These peer influences are due to strategic or collaborative partnerships between 

land owners associated with observed and unobserved variables to the analyst, supporting and 

reinforcing our hypothesis of a spatial lag formulation to capture spatial dependency in land-use 

modeling. However, note that this spatial dependence is confined to each of the eastern and 

western sections of the analysis region (as defined by IH-35), and does not extend to parcels 

across the two sections. In other words, IH-35 appears to act not simply as a physical barrier, but 

also as a barrier to peer interactions and influences.  
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3.3.3. Model Selection and Statistical Fit 

The MNPTS model is clearly superior to the MNP model, as observed from the statistically 

significant random coefficients, autoregressive temporal dependence parameter, and the spatial 

lag parameter. Another way to demonstrate the data fit superiority of the MNPTS model over the 

MNP model is through the adjusted composite likelihood ratio test (ADCLRT) test. The 

composite log- likelihood value for the MNP model is -53249.32 (12 parameters estimated) and 

for the MNPTS model is -51669.8 (17 parameters estimated).  The two models may be tested 

using the adjusted composite likelihood ratio test (ADCLRT) statistic (see Pace et al., 2011 and 

Bhat, 2011). This statistic has a chi-square asymptotic distribution with 5 degree of freedom. The 

statistic is about 4737, which is higher than the corresponding critical chi-squared value with five 

degree of freedom at any reasonable level of significance. This demonstrates very strong 

evidence of temporal dependence and spatial dynamics at play in land-use decisions.  

 

3.3.4 Aggregate Elasticity Effects 

The estimated parameter coefficients in Table 4 provide a sense of the direction of variable 

effects on the utilities of different land use types. However, these estimated parameters do not 

directly provide the magnitude of the impact of variables on the probabilities of each land-use 

category (this is an issue seldom considered in the spatial literature, with many papers simply 

presenting the parameter results and stopping there). To characterize the magnitude and direction 

of variable effects on the probabilities, we compute the aggregate-level “elasticity effects” of 

variables. Specifically, we examine the effects of variables on the expected share of each land-

use alternative for the year 2006, given the exogenous variable characteristics of all the 395 

parcels. We achieve this by computing the marginal probability of each parcel being in each 

land-use and aggregating these probabilities across parcels for each land-use category. The 

computation of the marginal probability of each parcel being in each land-use is relatively 

straightforward for the MNP model, so we will focus on the procedure for computing the 

marginal probabilities from the MNPTS model.  

 For the MNPTS model, we write the utility function of land-use i for the land-owner of 

parcel q as follows (note that the index ‘t’ does not appear, since we are focusing on a specific 

year (2006)): 
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where the notation is similar to Section 2.1. Next define the following (for ease in presentation, 

we maintain the same notations as in Section 2.1 for the re-defined vectors and matrices): 
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Then, using other notations as in Section 2.1, we may write the following counterpart of 

Equation (3) for the year 2006: 

( )[ ],~~~ ηβxαxbA1SU ++++⊗=
��

Q              (17) 

We simulate the above QI×1-vector U  thousand times using the estimated values of ,~, Aδ b , 

and by randomly drawing 1000 times from the appropriate normal distributions for ,, βα
��  and .~η  

Next, we compare the utilities across alternatives for each parcel q for each of the 1000 draws, 

assign the chosen alternative for each draw, and take the predicted share of each alternative 

across the 1000 draws to estimate the probability of each parcel being in each land-use 

alternative. The aggregate share (across parcels) of each land-use type is obtained by aggregating 

the parcel-level probabilities of each land-use category. 

 The elasticity computed is a measure of the aggregate percentage change in the aggregate 

share of each land-use alternative due to a change in an exogenous variable. We also compute 

the standard errors of the elasticity effects by using 200 bootstrap draws from the sampling 
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distributions of the estimated parameters.10 For dummy variables, the value of the variable is 

changed to one for the subsample of intersections for which the variable takes a value of zero, 

and to zero for the subsample of parcels for which the variable takes a value of one. We then add 

the shifts in expected aggregate shares in the two subsamples after reversing the sign of the shifts 

in the second subsample, and compute the effective percentage change in the expected shares 

across all parcels in the sample due to a change in the dummy variable from 0 to 1. For 

continuous variables, we increase the value of the variable by 25% for each parcel and compute 

the percentage change in the expected shares.  

The elasticity effects and their standard errors are computed for the MNP model and the 

MNPTS model, and are presented in Table 5. The effects (and their standard errors in 

parenthesis) are presented for the six scenarios listed in the table. The first entry in the table 

indicates that, on average, a parcel that is within 350 meters from IH-35 is about 35.1% less 

likely to be in residential land-use relative to a parcel that is beyond 350 meters of IH-35. 

Similarly, the entry in the first column and second row suggests that a parcel that is 25% farther 

away from IH-35 than another parcel is about 1.2% more likely to be in residential land-use than 

the closer-to-IH35 parcel. Other entries may be similarly interpreted. The last sub-column within 

each alternative column provides the p-value for the difference in elasticity estimates from the 

MNP and MNPTS models. A ‘-’ in this column implies that the difference is not statistically 

significant even at the 0.2 level of significance.  

The elasticity effects of both the MNP and MNPTS models are in the same direction for 

all variables, and are consistent with the discussions in the previous section. However, it is clear 

than the elasticity effects from the MNPTS model are generally higher in magnitude than those 

from the MNP model, a consequence of the “spillover” effects in the MNPTS model that causes 

a spatial multiplier effect. Specifically, a change in a variable for one parcel influences the 

utilities of the land-use alternatives of other parcels, which then have a “circular” influence back 

on the utilities of the land-use alternatives for the parcel for which a variable has been changed. 

This “circular” influence is reinforcing because of the positive spatial lag parameter, which 

implies the spatial multiplier effect (this spatial multiplier effect is captured by the S  matrix in 

                                                            
10 For ease in computation, we however fix the spatial lag parameter δ in the bootstrapping, so that we do not have to 
compute the matrix S for each bootstrap draw (the matrix S entails a high-dimensional matrix inversion). 
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Equation (17)). The MNP model ignores the presence of such spatial multiplier effects, and 

assumes that a change in a variable at one parcel impacts only the land-use at that parcel.  

The difference in the elasticity effects between the MNP and MNPTS models are, for the 

most part, statistically significant. Thus, the higher MNPTS-predicted positive effects of a parcel 

being within 350 meters of IH-35 (rather than being beyond 350 meters of IH-35) on the 

probabilities of the parcel being in commercial land-use, and the higher MNPTS-predicted 

negative effect of a parcel being within 350 meters of IH-35 (rather than being beyond 350 

meters of IH-35) on the probability of the parcel being in non-commercial land-uses, are all 

highly statistically significant. Similarly, the differential effects (between the MNP and MNPTS 

models) of the continuous distance from IH-35 (second variable in Table 5) on the probabilities 

of the residential and industrial land-uses are highly statistically significant, while the differential 

effects on the probabilities of commercial land-use are also quite statistically significant. Other 

differences and their p-values may be similarly extracted from Table 5. The one variable for 

which there is no statistically significant difference in the MNP and MNPTS elasticity effects is 

for the Pflugerville City variable (see the last but one row of the table). For this variable, while 

the elasticity effects are indeed higher from the MNPTS model, the heterogeneity in the utility 

for the residential land-use type leads to a tempering of the effects on the utilities of other 

alternatives, which counteracts the spatial multiplier effect. The heterogeneity also leads to 

higher standard errors for the elasticity estimates. In combination, the tempered effects on 

elasticities and the higher standard errors lead to less statistically significant differences. But, 

overall, there are statistically significant differences in elasticity predictions between the MNP 

and MNPTS models, highlighting the predictive differences between the two models and, in 

general, the under-estimations of the magnitudes of variable effects from the MNP model.  

The elasticity effects from the continuous variables (such as the continuous distance to 

IH-35) are not directly comparable to those from the dummy variables (such as whether or not 

the parcel is within 350 meters of IH-35). However, the results identify closeness to IH-35 

(whether within a 350 meters band of IH-35 or not), Pflugerville location, and proximity to 

schools as the dominant variables impacting the land-use type of a given parcel.   
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4. CONCLUSION 

This paper has proposed a new econometric approach to specify and estimate a model of land-

use change, based on the now rich theoretical literature on land use conversion decisions made 

by economic agents to maximize net returns. At a methodological level, the paper has formulated 

and estimated a multi-period multinomial probit model, accounting for time-varying and time-

stationary inter-temporal dependencies as well as a spatial lag structure across observation units. 

The model also accommodates spatial heterogeneity. The inference methodology used is the 

maximum approximate composite marginal likelihood (MACML) approach. The paper has 

modeled the land-use type of parcel-level spatial units in an area north of the City of Austin in 

Texas. In doing so, the emphasis has been on better linking the quantitative (but aspatial or 

highly stylized spatial effects) perspective for land-use analysis that dominates the economic 

literature with the qualitative (but richer spatial dynamics and heterogeneity) perspective for 

land-use analysis that is quite prevalent in the ecological literature. The empirical results indicate 

the presence of statistically significant time-invariant and time-varying land-owner-specific 

unobserved factors as well as the presence of spatial spillover effects caused by didactic 

interactions between land-owners of proximately located spatial units.  Ignoring these 

dependencies and dynamics will, in general, lead to inconsistent and inefficient estimates of 

parameter effects. This is highlighted by computing the elasticity effects of variables, which 

indicates that the model that accommodates temporal dependencies and spatial dynamics predicts 

magnitude effects that are statistically significantly different from the model that ignores these 

effects. Important determinants of land-use type include proximity to highways and other 

roadways, distance from flood plains, parcel location in the context of existing development, and 

distance from schools. The results also suggest that major transportation roadways can act not 

only as physical separators of land areas, but also as a barrier to peer interactions and influences.  

To conclude, the model structure and inference approach proposed in this paper should be 

applicable in a wide variety of fields where social and spatial interactions (or didactic 

interactions) between decision-makers lead to spatial multiplier and spillover effects in the 

choices of the decision-makers. Of course, as always, there are several directions for future 

research, including a more rigorous theoretical and simulation-based evaluation of estimator 

efficiency related to the specification of the composite marginal likelihood function, 

consideration of more flexible forms of spatial modeling that combine spatial lag and spatial 
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error formulations, and the incorporation of additional parcel-level, pedo-climatic, and regional-

level externalities.  
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Figure 1. The Analysis Area for the year 1995 
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Figure 2. The Analysis Area for the year 2000 
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Table 1. Percentage of Land by Land Use Types 

Land use Type 1995 2000 2003 2006 
Residential 25.80% 38.70% 39.70% 39.50% 
Undeveloped/Open Area 58.20% 39.50% 42.50% 39.70% 
Commercial   9.40%   9.90%   9.90% 13.40% 
Industrial   6.60% 11.90%   7.80%   7.30% 

 

 

Table 2. Descriptive Statistics of the Independent Variables used in the Model 

Variable Min Max Mean 
Std. 
Deviation 

Distance to IH-35 less than 350 meters 0.0000 1.0000 0.1038 0.3051 

Distance to  IH-35 0.0440 4.2664 1.7379 1.1556 

Distance to nearest non-freeway road (other 
than IH-35 and Mopac) 0.0004 1.7308 0.5397 0.4254 

Distance to IH-35 * Distance to nearest non-
freeway road 0.0600 4.3456 1.1479 1.0903 

Distance to Mopac Freeway 0.8150 7.154 3.9816 1.7321 

Distance to the nearest Roadway 0.0004 1.7308 0.5191 0.4262 

Distance to the nearest Flood Plain 0.0012 1.6492 0.6257 0.4065 

Distance to the nearest Road / Distance to the 
nearest flood plain 0.0006 11.5384 1.4367 2.0227 

Parcel lies within Pflugerville City 0.0000 1.0000 0.2278 0.4196 

Within one kilometer of a school 0.0000 1.0000 0.6127 0.4873 
 

 

Table 3. Model Selection 

 Statistic Full region-based weight 
matrix model 

Partitioned region-based 
weight matrix model 

Log-composite likelihood at convergence -2568369 -2567958 
Trace value           171           136 
CLIC statistic -2568540 -2568094 
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Table 4. Estimation Results (t-statistics in parenthesis) 

Variables 
Standard multinomial probit (MNP) model MNP Spatial lag model with temporal Panel and spatial 

effects (MNPTS) model autocorrelation 

Residential Commercial Industrial Undeveloped Residential Commercial Industrial Undeveloped 

Constant - -0.864 
 (-15.47) 

-0.133 
 (-2.31) 

-0.269  
(-3.38) - -1.869 

 (-3.90) 
0.471  
(5.64) 

-0.597 
 (-2.20) 

Standard deviation -  -  -  -  - 2.353 
 (1.25) - 2.403  

(1.46) 
Distance to IH-35 less than 350 
meters - 1.090 

 (12.97) - - - 3.207 
 (7.26) - - 

Distance to IH-35 * Distance to 
nearest non-freeway road - - -0.596 

 (-8.92) - - - -0.880 
 (-5.19) - 

Distance to Mopac Freeway - - - 0.089 
 (4.33) - - - 0.137  

(2.41) 

Distance to the nearest Road / 
Distance to the nearest flood plain - - - 0.101 

 (7.66) - - - 0.240  
(5.38) 

Parcel lies within Pflugerville City 0.185  
(1.87) 

0.899 
 (9.02) - - -0.338 

 (-1.26) 
2.000  
(4.52) - - 

 Standard deviation         5.231 
 (1.434) - - - 

Within one kilometer of a school 0.268 
 (4.56) - - - 0.657 

 (7.47) - - - 

(t=1995) time dummy -0.145 
 (-1.21) - - 0.349 

 (3.06) 
-0.11  

(-1.16) - - 0.624 
 (4.99) 

Temporal autocorrelation -ρ     Implicitly restricted to zero 0.367  
(3.98) 

 Spatial lag -δ   Implicitly restricted to zero 0.449  
(5.39) 
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Table 5. Aggregate-Level Elasticity Effects of the MNP and MNPTS Models (standard error in parenthesis) 

Scenario 
Residential Commercial Industrial Undeveloped 

MNP MNPTS p† MNP MNPTS p MNP MNPTS p MNP MNPTS p 

A change from the parcel 
being farther than 350 meters 
from IH-35 to within 350 
meters from IH-35 

-35.1 
(3.0) 

-67.3 
(6.5) 0.000 382.5 

(45.9) 
806.2 
(129.1) 0.002 -37.8 

(3.2) 
-75.2 
(7.6) 0.000 -32.7 

(2.7) 
-54.6 
(5.7) 0.001 

A 25% increase in the distance 
to IH-35, but only for those 
parcels farther than 350 meters 
from IH-35,  

1.2 
(0.1)  

3.4 
 (0.4)  0.000 0.9 

(0.2)  
1.8 
 (0.5)  0.075 -11.2 

(0.6)  
-22.1 
(2.2)  0.000 1.1 

(0.1)  
1.0 
 (0.2)  -* 

A 25% increase in the distance 
to the nearest flood plain 

1.9 
(0.3)  

3.0  
(0.5)  0.088 1.4 

(0.3)  
2.2  
(0.5)  0.126 1.2 

(0.2)  
1.8 
 (0.5)  - -2.5 

(0.4)  
-3.8  
(0.6)  0.064 

A 25% increase in distance to 
the nearest road and a 25% 
decrease in the distance to the 
nearest flood plain 

-6.6 
(0.7)  

-9.8 
(1.4)  0.033 -5.0 

(0.7)  
-6.7 
(1.3)  - -4.0 

(0.5)  
-6.3 
(1.4)  0.147 8.5 

(0.9)  
12.3 
(1.7)  0.042 

A switch of the parcel location 
from Pflugerville to outside 
Pflugerville 

-5.1 
(9.5) 

-15.3 
(11.1) - 253.6 

(41.7) 
380.4 
(143.0) - -41.8 

(7.7) 
-24.3 
(19.4) - -29.1 

(6.2) 
-34.9 
(7.6) - 

A switch of the parcel location 
from being farther than one 
kilometer from the closest 
school to being closer than one 
kilometer from the closest 
school 

34.7 
(9.4) 

89.7 
(17.3) 0.005 -17.5 

(3.5) 
-22.2 
(3.5) - -19.3 

(4.1) 
-64.5 
(5.4) 0.000 -14.8 

(3.1) 
-21.1 
(2.9) 0.143 

† p value of the difference 

*A ‘-’ implies that the difference is not statistically significant even at the 0.2 level of significance 


