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ABSTRACT 

The focus of this paper is to develop a procedure for the Maximum Composite Marginal 

Likelihood (MACML) estimation of multinomial logit models with normally mixed terms, as 

would be the case with normally-mixed random coefficient and/or error-component structures.  
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1. BACKGROUND 

The Maximum Composite Marginal Likelihood (MACML) inference approach proposed by Bhat 

(2011) is particularly suited to estimating the multinomial probit (MNP) model, and can also be 

used for mixed MNP models where a normal-mixing structure (such as random coefficients) is 

superimposed on an MNP kernel. In the past several years, such mixed unordered-response 

models have mostly been estimated using a mixed (multinomial) logit formulation rather than a 

mixed MNP formulation, mainly because the former is easier to estimate using simulation 

techniques within a maximum simulated likelihood (MSL) approach. Also, in most applications 

of mixed models, a normally distributed mixture is used. Within the context of such normally-

mixed models, the mixed MNP model is simpler to estimate using the MACML approach than is 

the mixed logit model (a reverse of the case with the MSL approach), because of the conjugate 

additional property of the normal distribution. On the other hand, the MACML estimation of the 

mixed logit model may be undertaken using a normal scale mixture representation for the 

extreme value error terms, which adds an additional layer of computational effort.  

In applications, the use of a mixed MNP model or a mixed logit model is one of pure 

convenience, and so it stands to reason that the mixed MNP model should be used given the 

substantial computational efficiency achievable using the MACML inference approach 

compared to the MSL estimation of a mixed logit model (see Bhat and Sidharthan, 2011). 

However, it is of some academic interest to develop a procedure for the MACML estimation of 

mixed logit models. Besides, once developed, such an approach can be extended to estimating 

MNP models with non-normal mixing distributions. Accordingly, the focus of this paper is to 

develop the procedure for the MACML estimation of normally-mixed logit models.  

The next section presents the MACML estimation of the mixed cross-sectional logit 

model, while Section 3 presents the MACML estimation of the mixed panel logit model.  

 

2. THE MIXED CROSS-SECTIONAL MULTINOMIAL LOGIT MODEL 

Consider a random-coefficients formulation in which the utility that an individual q associates 

with alternative i is written as: 

qiqiU ε+′= qiq xβ                   (1) 
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where qix  is a )1( ×K -column vector of exogenous attributes, qβ  is an individual-specific 

)1( ×K -column vector of corresponding coefficients that varies across individuals based on 

unobserved individual attributes, and qiε  is assumed to be an independently and identically 

distributed (across alternatives and individuals) standard Type I extreme value (or Gumbel) error 

term.  Assume that the qβ  vector in Equation (1) is a realization from a multivariate normal 

distribution with a mean vector b and covariance matrix LL ′=Ω , where L is the lower-

triangular Choleski factor of Ω . Then, the likelihood contribution of individual q who chooses 

alternative m takes the familiar mixed multinomial logit form: 
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where qmqiqim xxz −= . This requires the integration of a K-dimensional integral, which is 

typically undertaken using maximum simulated likelihood estimation with pseudo-Monte Carlo 

(PMC) or Quasi-Monte Carlo (QMC) draws (Yu et al., 2010 provides a recent overview and 

comparison of alternative QMC methods, while Bastin et al. (2006) and Qian and Shapiro (2006) 

discuss optimization/adaptive algorithm techniques to accelerate estimation using PMC draws). 

Bayesian approaches to the mixed logit estimation are also available based on Allenby and 

Lenk’s (1994) approach (see Train, 2009, Chapter 12 for a discussion). 

 The MACML estimation approach we propose here (rather than the typical simulation-

based approaches) for the mixed logit model is based on using a normal scale mixture 

representation for the extreme value error terms. Specifically, consider the utility differentials 

again, each between the chosen alternative m and the other )1( −I  alternatives: 

qqqimqqimqimq βbβzβzbzβ ~  ,  , ..., ,2 ,1  ,~* +=≠=⎟
⎠
⎞⎜

⎝
⎛ −+′+′=−+′= miIiy qmqiqmqiqim εεεε            (3) 

The probability of alternative m being chosen continues to be given by the multivariate orthant 

probability expression ]0[Prob * miyP qimqm ≠∀<= . However, this orthant probability does not 

have a closed-form, because of the mixing of the normal term qimq zβ ′~  with the extreme value 

terms qiε  and qmε . But the approximation in Section 2.1 of Bhat (2011) based on the binary 
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variables holds for any multivariate cumulative distribution function (note that the derivation of 

the linear association coefficient vector α  in Equation (6) of Bhat (2011) is independent of any 

distributional assumption on the vector W). Thus, we still can write the following (assuming 

1≠m  and 2≠m  for ease in presentation and 3≥I ): 

( ), ~)(]0[ Prob]0,0[ Prob]0[ Prob
1

3

**
2

*
1

* ∏
−

≠
=

<
−
< ′+<×<<=≠∀<=

I

mi
i

qimmqmqqimqm yyymiyP ΦΓΓ ,
1

iii      (4) 

where iii ,ΓΓ <<  and  are matrices of bivariate marginal probabilities defined similarly as in 

Section 2.1 of Bhat (2011), and  

[ ] .])0[ Prob1]),...(0[ Prob1(]),0[ Prob1(~ *
)1(
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′
<−<−<−= − miqmqmq yyyΦ  Again, we have only 

bivariate and univariate distributions in the expression. To approximate these orthant 

probabilities, we use the idea of a scale mixture. In particular, the bivariate probability is 

obtained by replacing the non-normal densities of qiε  and qmε  by a weighted normal mixture of 

component densities of the normal distribution with mean sc  and variance 2
sσ : 

),  ;()(~ 2

1
ssqiNs

S

s
qi cafpa σξελ === ∑

=

,                   (5) 

where λ~  is the standard type I extreme value density function, sp  is the weight of the sth 

mixture, and Nf  is the normal density function with mean sc  and variance 2
sσ . Equivalently, 
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ε  Frühwirth-Schnatter and Frühwirth (2007) provide the 

mixture weight points sp  and the corresponding density moments ( sc  and 2
sσ ) based on 

minimizing the Kullback-Leibler distance measure (a measure of distance between the true 

density and estimated mixture-based density). The error in their approximation is extremely 

small even with 5 mixture points and literally non-existent with 10 mixture points (the values of 
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sp , sc , and 2
sσ  are tabled in their paper).1 Now, consider a specific mixture s for the error term 

qiε  and a specific mixture h for the error term qmε . Then for this combination of mixtures, 

),(~  and  ,),(~  ),,(~  , 22*
hhqnhssqisqmhqisqimsh cNcNNy σξσξξξ Ωbβzβ qqimq −+′=         (6) 
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To write the pairwise marginal probability )( )0,0Prob( ** giyy qgmqim ≠<< , consider now a 

specific mixture l for the error term qgε , while maintaining the same mixture h for the error term 

qmε  (this generates the needed correlation between the error terms )( qmqi εε −  and )( qmqg εε − ). 

Then, we may write: 
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where )(Var *
qimshy , )Var( *

qgmlhy , and ),(Cov **
qgmlhqimsh yy  are obtained from the following )22( ×  

matrix: 

slhigqigqigslh IDz z +′′= ΔΩΔΣ )( q ,                  (10) 

where igΔ  is a selector matrix of size )1(2 −× I  with a value of one in the ith column [ th)1( −i  

column] if )(   ][   mimimi ≠>< , a value of one in the gth column [ th)1( −g  column] if 

)(   ][   mgmgmg ≠>< , and zeros everywhere else. slhID  is a 22×  matrix given by:  

                                                 
1 A normal mixture representation has been suggested and applied for the logistic distribution in earlier studies 
(Monahan and Stefanski, 1992; Drum and McCullagh, 1993; Feddag and Bacci, 2009). It is tempting to use this 
representation directly for the qimη  logistic error terms (i = 1, 2, …, I, i ≠ m; qmqiqim εεη −= ), which we will do for 

the univariate distributions. However, the qimη  terms are correlated across the latent utility differentials because of 

the presence of the common extreme value qmε  term. Thus, we have to derive the bivariate cumulative distribution 
function using a normal scale mixture for the original extreme value error terms.  
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Next, one can obtain the overall pairwise marginal probability by taking the weighted sum of the 

mixture-specific bivariate probability in Equation (8) over all permutations of h, l, and s: 
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The univariate marginal probabilities in Equation (4) are much simpler to approximate, 

since one can directly use a normal scale mixture approximation for the logistic distribution. The 

normal scale mixture approximation for the symmetric logistic distribution is essentially exact 

for as few as 5~ =D  components (see Monahan and Stefansky, 1992; Drum and McCullagh, 

1993; Feddag and Bacci, 2009). The logistic distribution may be written as follows: 
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where Lf  is the standard logistic density function, and Nf  is the normal density function with 

mean a and variance 2
dσ . Monahan and Stefansky (1992) provide the mixture weight points dp  

and the corresponding density variance ( 2
dσ ) based on minimizing the absolute value of the 

difference between the true density and the estimated mixture-based density (to be precise, 

Monahan and Stefansky provide the mixture weight points and the inverse of the standard 

deviation of the corresponding density variance (= 1/ dσ )). With the above parameters, the 

univariate marginal probabilities may be written as follows: 
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and iΔ  is a selector matrix of size )1(1 −× I  with a value of one in the ith column [ th)1( −i  

column] if )(   ][   mimimi ≠>< , and zeros everywhere else.  

With the expressions above, the likelihood of individual q in the mixed multinomial logit 

model is obtained from Equation (4).  
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3. THE MIXED PANEL MULTINOMIAL LOGIT MODEL 

Consider the following model with ‘t’ now being an index for choice occasion: 

TtIiQqMVNU qitqit  ..., ,2 ,1  , ..., ,2 ,1  , ..., ,2 ,1  ,),(~  , ===+′= Ωbβxβ qqitq ε                   (15) 

Let qitε  be IID standard Type I-extreme value distributed over individuals, alternatives, and 

choice occasions. We will assume that the coefficients qβ  are constant over choice situations of 

a given decision maker. Also, we will assume that the number of choice occasions per individual 

is the same across all individuals. The case of different numbers of choice occasions per 

individual may be handled in a straightforward fashion based on Section 4.2 of Bhat (2011). 

The likelihood contribution of individual q who selects alternative tm  at the tth choice 

occasion t (t = 1, 2, …, T) is: 
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where )( tqmqittqim tt
xxz −= . For the estimation of the above mixed panel MNL model, we bring 

together all the three devices of (1) approximation for multivariate orthant probabilities, (2) the 

CML approach, and (3) the scale-mixture technique. In the mixed cross-sectional MNL mode, 

we started from the normal scale mixture approximation for the type I extreme value error term, 

because (in the notation of the panel model now) the utility difference error terms tqimt
η  at time t 

( tqmqittqim tt
εεη −= ; i = 1, 2, …, I, i ≠ tm ) are correlated by the presence of the common error 

term tqmt
ε . This is still the case for the bivariate probabilities involving the latent utility 

differentials within the same time period. However, there is an important way to increase 

computational efficiency in the CML estimation of the mixed panel MNL model when 

considering pairwise marginal likelihoods across time periods. In particular, note that the utility 

difference error terms tqimt
η  (i ≠ tm ) and wqgmw

η  (g ≠ wm ), t ≠ w, are not correlated across time 

periods. This recognition can be gainfully employed, so that when computing the bivariate 

marginal likelihoods in the approximation method for the inter-temporal terms in the MACML 

approach, we can directly use a normal scale mixture approximation for the logistic distribution.  
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Using the same notations and derivational approach as for the mixed cross-sectional 

MNL model, the relevant bivariate marginal orthant probabilities for the latent utilities within the 

same time period t take the form below ) ,,( gimgi t ≠≠ :  
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where qz~  is a KIT ×−× )]1([  matrix obtained by vertically concatenating the transpose of the 

1×K  vectors tqimt
z (i = 1, 2, …, I, i ≠ mt; t = 1, 2, …, T) (note that there are )1( −× IT  vectors in 

tqimt
z ), and igtΔ  is a selection matrix of size ])1[(2 TI ×−× . It has a value of one in the 

th])1()1[( itI +−×−  column in the first row if tmi <  or a value of one in the 

th)]1()1()1[( −+−×− itI  column in the first row if tmi > . Similarly, it has a value of one in the 

th])1()1[( gtI +−×−  column in the second row if tmi <  or a value of one in the 

th)]1()1()1[( −+−×− gtI  column in the second row if tmi > . The matrix has values of zero 

everywhere else.  

 The corresponding bivariate orthant probability expression for the pairings across time 

periods, using the normal scale mixture representation directly for the independent logistic terms 

is ) and :for ( wt mgmiwt ≠≠≠ : 
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In the above expression, igtwΔ  is a selection matrix of size ])1[(2 TI ×−× . This matrix has a 

value of one in the th])1()1[( itI +−×−  column in the first row if tmi <  or a value of one in the 

th)]1()1()1[( −+−×− itI  column in the first row if tmi > . Similarly, it has a value of one in the 

th])1()1[( gwI +−×−  column in the second row if wmg <  or a value of one in the 

th)]1()1()1[( −+−×− gwI  column in the second row if wmg > . The matrix has values of zero 

everywhere else. 

 

4. CONCLUSIONS 

In this paper, we introduce a simulation-free maximum approximated composite marginal 

likelihood (MACML) estimation approach for normally-mixed multinomial logit models in both 

a cross-sectional and panel context. The approach is based on using a normal scale mixture 

representation for the extreme value error terms. In both the cross-sectional and panel contexts, 

the MACML approach involves only univariate and bivariate cumulative normal distribution 

function evaluations, regardless of the number of alternatives or the number of choice occasions 

per individual. Extensions to include more complex mixing in panel models, such as intra- and 

cross-temporal random coefficients and/or autoregressive random coefficients, pose no 

conceptual difficulties and can be based on the same normal scale mixture technique as in the 

simpler mixing cases. The scale mixture technique developed here can also be extended to 

handle non-normal mixing distributions with an MNP kernel or a logit kernel.  
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