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ABSTRACT
The likelihood functions of multinomial probit (MNP)-based choice models entail the evaluation of analytically-intractable integrals. As a result, such models are usually estimated using maximum simulated likelihood (MSL) techniques. Unfortunately, for many practical situations, the computational cost to ensure good asymptotic MSL estimator properties can be prohibitive and practically infeasible as the number of dimensions of integration rises. In this paper, we introduce a maximum approximate composite marginal likelihood (MACML) estimation approach for MNP models that can be applied using simple optimization software for likelihood estimation. It also represents a conceptually and pedagogically simpler procedure relative to simulation techniques, and has the advantage of substantial computational time efficiency relative to the MSL approach. The paper provides a “blueprint” for the MACML estimation for a wide variety of MNP models. 
Keywords: multinomial probit, mixed models, composite marginal likelihood, discrete choice models, spatial econometrics, panel data. 
1. Introduction
The “workhorse” multinomial logit model, used extensively in practice for econometric discrete choice analysis, was introduced by Luce and Suppes (1965) and McFadden (1974), and has a very simple and elegant structure. However, it is also saddled with the familiar independence from irrelevant alternatives (IIA) property – that is, the ratio of the choice probabilities of two alternatives is independent of the characteristics of other alternatives in the choice set. This has led to several extensions of the MNL model through the relaxation of the independent and identically distributed (IID) error distribution (across alternatives) assumption. Two common model forms of non-IID error distribution include the generalized extreme-value (GEV) class of models proposed by McFadden (1978) and the multinomial probit (MNP) model that allow relatively flexible error covariance structures (up to certain limits of identifiability; see Train, 2009, Chapter 5). Both of these non-IID kernel structures (or even the IID versions of the GEV and the MNP models, which lead to the MNL and the independent MNP models) can further be combined with (a) continuous mixing factor error structures to accommodate unobserved taste variation across choice occasions through random coefficients (see Bhat and Sardesai, 2006), (b) individual-specific (time-stable or time-dissipating) error terms that generate error dependencies across the choice occasions of the same decision-maker in panel or repeated choice contexts (see Li et al., 2010), (c) spatial/social dependency-based error structure models that generate error dependencies across choice occasions of different decision-makers (see Franzese and Hays, 2008), or (d) some combinations of these model forms. While many different continuous error distributions can be used to accommodate these additional structures, it is most common to adopt a normal distribution for these. For instance, when introducing random coefficients, it is typical to use the multivariate normal distribution for the mixing coefficients, almost to the point that the terms mixed logit or mixed GEV or mixed probit are oftentimes used synonymously with normal mixing (see Fiebig et al., 2010, Dube et al., 2002).
 Similarly, when introducing panel effects or spatial/social interdependency, the use of normal error structures is ubiquitous, except for some recent developments using general copula forms by Bhat and Sener (2009) and Bhat et al. (2010a). 
In the context of the normal error distributions just discussed, the use of a GEV kernel structure leads to a mixing of the normal distribution with a GEV kernel, while the use of an MNP kernel leads once again to an MNP model. Both structures have been widely used in the past, with the choice between a GEV kernel or an MNP kernel really being a matter of “which is easier to use in a given situation” (Ruud, 2007). In recent years, the mixing of the normal with the GEV kernel has been the model form of choice in the economics and transportation fields, mainly due to the relative ease with which the probability expressions in this structure can be simulated (see Bhat et al., 2008 and Train, 2009 for detailed discussions). On the other hand, the use of an MNP kernel has not seen as much use in recent years, because the simulation estimation is generally more difficult. In any case, while there have been several approaches proposed to simulate these models with a GEV or an MNP kernel, most of these involve pseudo-Monte Carlo or quasi-Monte Carlo simulations in combination with a quasi-Newton optimization routine in a maximum simulated likelihood (MSL) inference approach (see Bhat, 2001, 2003). In such an inference approach, consistency, efficiency, and asymptotic normality of the estimator is critically predicated on the condition that the number of simulation draws rises faster than the square root of the number of individuals in the estimation sample. This effectively implies that the desirable asymptotic properties of the MSL estimator are obtained at the expense of computational cost. Unfortunately, for many practical situations, the computational cost to ensure good asymptotic estimator properties can be prohibitive and literally infeasible (in the context of the computation resources available and the time available for estimation) as the number of dimensions of integration increases. This is particularly so because the accuracy of simulation techniques is known to degrade rapidly at medium-to-high dimensions, and the simulation noise increases substantially. This leads to convergence problems during estimation, unless a very high number of simulation draws is used. Besides, an issue generally ignored in simulation-based approaches is the accuracy (or lack thereof) of the covariance matrix of the estimator, which is critical for good inference even if the asymptotic properties of the estimator are well established. Specifically, the hessian (or second derivatives) needed with the MSL approach to estimate the asymptotic covariance matrix of the estimator is itself estimated on a highly nonlinear and non-smooth second derivatives surface of the log-simulated likelihood function. This is also usually undertaken numerically because the complex analytic nature of the second derivatives makes them difficult to code. The net result is that Monte-Carlo simulation with even three to four decimal places of accuracy in the probabilities embedded in the log-likelihood function can work poorly (see Bhat et al., 2010b), suggesting a critical need to evaluate the likelihood function at a very high level of accuracy and precision. This further increases computational cost. Craig (2008) also alludes to this problem when he states that “(...) the randomness that is inherent in such methods [referring to the Genz-Bretz algorithm (Genz and Bretz, 1999), but applicable in general to MSL methods] is sometimes more than a minor nuisance.” 
In this paper, we propose a new methodology (which is labeled as the Maximum Approximate Composite Marginal Likelihood or MACML inference approach) that allows the estimation of models with both GEV and MNP kernels using simple, computationally very efficient, and simulation-free estimation methods. In the MACML inference approach, models with the MNP kernel, when combined with additional normal random components, are much easier to estimate because of the conjugate addition property of the normal distribution (which puts the structure resulting from the addition of normal components to the MNP kernel back into an MNP form). On the other hand, the MACML estimation of models obtained by superimposing normal error components over a GEV kernel requires a normal scale mixture representation for the extreme value error terms, and adds an additional layer of computational effort (see Bhat, 2011). Given that the use of a GEV kernel or an MNP kernel is simply a matter of convenience, we will henceforth focus in this paper on the MNP kernel within the MACML inference approach. 
The proposed MACML estimation of the resulting MNP-based models involves only univariate and bivariate cumulative normal distribution function evaluations, regardless of the number of alternatives or the number of choice occasions per individual or the nature of social/spatial dependence structures. This implies substantial computational efficiency relative to the MSL inference approach for models that can be estimated using the MSL approach, and also allows the estimation of several model structures that are literally infeasible to estimate using traditional MSL approaches (with the available computational resources and time available for estimation). For instance, consider the case of dealing with panel data or repeated unordered choice data from each individual in a sample, with individual-specific normally distributed random coefficients. In such a case, the full likelihood function contribution of an individual entails taking the product of the individual’s choices across choice occasions conditional on the random coefficients, and then unconditioning out the random coefficients by integration over the multivariate normal domain. The multivariate integration is over the real line with respect to each random coefficient, with the dimensionality being equal to the number of random coefficients. As the number of random coefficients increases, evaluating the likelihood using simulation techniques becomes computationally expensive. Another example where the full likelihood becomes near impractical to work with is when there are individual-specific normal random coefficients as well as choice occasion-specific normal random coefficients with panel or repeated unordered choice data. In this case, the result is a double multivariate integral, with the dimensionality of the two multivariate normal integrals being equal to the number of random coefficients in the individual-specific and occasion-specific cases (see Bhat and Castelar, 2002, Bhat and Sardesai, 2006, Hess and Rose, 2009). The explosion of the dimensionality of integration is rapid, making full likelihood evaluation using simulation techniques all but impractical. Finally, in the case of global social interactions or spatial interactions that lead to autoregressive error structures or spatial/social lag effects, the full likelihood is infeasible to estimate using simulation methods in any reasonable time because of the extremely high dimensionality involved (the dimensionality is of the order of the number of decision-makers times the number of alternatives in the multinomial choice situation minus one; for example, with 2000 decision-makers and 4 alternatives, the dimensionality of integration is 6000). In all these cases and more, the proposed MACML approach offers a computationally convenient inference approach, as we indicate in the rest of this paper. As importantly, the MACML inference approach is simple to code and apply using readily available software for likelihood estimation. It also represents a conceptually and pedagogically simpler procedure relative to simulation techniques. 
The paper is structured as follows. The next section presents the two main and fundamental building blocks of the MACML approach. Section 3 presents the MACML inference approach for the cross-sectional MNP model, while Section 4 illustrates the approach for panel and dynamic MNP model structures. Section 5 presents the extension to accommodate spatial/social effects. Section 6 discusses model selection issues in the CML estimation approach. Finally, Section 7 summarizes the contributions of the paper. 

2. The Basics of the MACML Approach to Estimate Unordered-Response Models
There are two fundamental concepts in the proposed MACML approach to estimate MNP models. The first is an approximation method to evaluate the multivariate standard normal cumulative distribution (MVNCD) function (discussed in Section 2.1). The second is the composite marginal likelihood (CML) approach to estimation (discussed in Section 2.2). 
2.1. Multivariate Standard Normal Cumulative Distribution (MVNCD) Function   

In the general case of an MNP model with I alternatives, the probability expression of an individual choosing a particular alternative involves an (
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) dimensional MVNCD function (more on this in Section 3). The evaluation of such a function cannot be pursued using quadrature techniques due to the curse of dimensionality when the dimension of integration exceeds two (see Bhat, 2003). Consequently, the probability expression is approximated using simulation techniques in the classical maximum simulated likelihood (MSL) inference approach, usually through the use of the Geweke-Hajivassiliou-Keane (GHK) simulator or the Genz-Bretz (GB) simulator, which are among the most effective simulators for evaluating multivariate normal probabilities (see Bhat et al., 2010b for a detailed description of these simulators). Some other recent sparse grid-based techniques for simulating the multivariate normal probabilities have also been proposed by Heiss and Winschel (2008), Huguenin et al. (2009), and Heiss (2010). In addition, Bayesian simulation using Markov Chain Monte Carlo (MCMC) techniques (instead of MSL techniques) have been used in the literature (see Albert and Chib, 1993, McCulloch and Rossi, 2000, and Train, 2009). However, all these MSL and Bayesian techniques require extensive simulation, are time-consuming, are not very straightforward to implement, and create convergence assessment problems as the number of dimensions of integration increases.


In this paper, we apply an analytic approximation method to evaluate the MVNCD function that is quite accurate and very fast even for 20 or more dimensions of integration. Further, unlike Monte-Carlo simulation approaches, even two to three decimal places of accuracy in the analytic approximation is generally adequate to accurately and precisely recover the parameters and their covariance matrix estimates because of the smooth nature of the first and second derivatives of the approximated analytic log-likelihood function. While several analytic approximations have been reported in the literature for MVNCD functions (see, for example, Solow, 1990, Joe, 1995, Gassmann et al., 2002, and Joe, 2008), the one we use here is based on decomposition into a product of conditional probabilities. This approximation appears to have been first proposed by Solow (1990) based on Switzer (1977), and then refined by Joe (1995). However, we are not aware of any earlier research effort that applies this technique for the estimation of parameters in econometric models (such as discrete choice models) involving the evaluation of MVNCD functions. The reason we select this approximation approach is that it is fast and lends itself nicely to combination with the composite marginal likelihood approach of MNP model estimation that we propose in this paper. 

To describe the approximation, let 
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 be a multivariate normally distributed random vector with zero means, variances of 1, and a correlation matrix 
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.  Then, interest centers on approximating the following orthant probability:
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The above joint probability may be written as the product of a bivariate marginal probability and univariate conditional probabilities as follows (I ≥ 3):
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Next, define the binary indicator 
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, where 
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F

 is the univariate normal standard cumulative distribution function. Also, we may write the following:
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where 
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 is the ijth element of the correlation matrix 
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. With the above preliminaries, consider the following conditional probability:
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The right side of the expression may be approximated by a linear regression model, with 
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 being the “dependent” random variable and 
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 being the independent random variable vector.
 In deviation form, the linear regression for approximating Equation (4) may be written as:
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where 
[image: image17.wmf]α

 is the least squares coefficient vector and 
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 is a mean zero random term. In this form, the usual least squares estimate of 
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 is given by:
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Finally, putting the estimate of 
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This conditional probability approximation can be plugged into Equation (2) to approximate the multivariate orthant probability in Equation (1). The resulting expression for the multivariate orthant probability comprises only univariate and bivariate standard normal cumulative distribution functions.

One remaining issue is that the decomposition of Equation (1) into conditional probabilities in Equation (2) is not unique. Further, different permutations (i.e., orderings of the elements of the random vector 
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) for the decomposition into the conditional probability expression of Equation (2) will lead, in general, to different approximations. One approach to resolve this is to average across the 
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 permutation approximations. However, as indicated by Joe (1995), the average over a few randomly selected permutations is typically adequate for the accurate computation of the multivariate orthant probability. In the case when the approximation is used for model estimation (where the integrand in each individual’s log-likelihood contribution is a parameterized function of the 
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 and 
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 parameters), even a single permutation of the W vector per choice occasion should typically suffice, as our own experimentations have shown. 
2.2. The Composite Marginal Likelihood (CML) Estimator

The composite marginal likelihood (CML) estimation approach is a relatively simple approach that can be used when the full likelihood function is practically infeasible to evaluate due to underlying complex dependencies. Unfortunately, in many such cases, the approximation discussed in the previous section for orthant probabilities, by itself, does not work with the full likelihood approach because the dimensionality can be far beyond the accuracy of the MVNCD analytic approximation.
In this paper, we propose the use of the CML approach of estimation, combined with the approximation for orthant probabilities discussed in the previous section. To our knowledge, no earlier study in the literature has considered the CML method in the context of unordered-response models (rather, all earlier studies have used the CML approach for multivariate models such as the multivariate binary probit or the multivariate ordered probit (see, for example, Renard et al., 2004, Zhao and Joe, 2005, Varin and Vidoni, 2006, Feddag and Bacci, 2009, Bhat and Sener, 2009, Varin and Czado, 2010, Bhat et al., 2010a,b). This is because the CML method by itself is not well suited to unordered-response models and does not provide substantial computational benefits in unordered-response models; rather, it is our specific proposal in this paper to combine the CML method with the normal orthant probability approximation method of the previous section that is the key to computational benefits. 
The CML approach, which belongs to the more general class of composite likelihood function approaches (see Lindsay, 1988), is based on maximizing a surrogate likelihood function that compounds much easier-to-compute, lower-dimensional, marginal likelihoods (see Varin, 2008 and Varin et al., 2011 for recent reviews of the CML method). The CML approach works as follows. Assume that the data originate from a parametric underlying model based on a D × 1 vector random variable Y with density function 
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 is difficult. However, suppose evaluating the likelihood functions of a set of 
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 observed marginal events (each observed marginal event being a subset of the observed joint event 
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, which is based on a lower-dimensional marginal joint density function corresponding to the original high-dimensional joint density of Y. Then, the general form of the composite marginal likelihood function is as follows:
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where 
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 is a power weight to be chosen based on efficiency considerations. If these power weights are the same across events, they may be dropped. The CML estimator is the one that maximizes the above function (or equivalently, its logarithmic transformation). 

The CML class of estimators subsumes the usual ordinary full-information likelihood estimator as a special case. For instance, consider the case of repeated unordered choices from a specific individual. Let the individual’s choice at time t be denoted by the index 
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 Then, one may define the observed event for this individual as the sequence of observed choices across all the T choice occasions of the individual. Defined this way, the CML function contribution of this individual becomes equivalent to the full-information maximum likelihood function contribution of the individual:
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However, one may also define the events as the observed choices at each choice occasion for the individual. Defined this way, the CML function is:
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This CML, of course, corresponds to the independence case between each pair of observations from the same individual. As we will indicate later, the above CML estimator is consistent. However, this approach, in general, does not estimate the parameters representing error correlation effects across choices of the same individual (i.e., only a subset of the vector 
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 is estimable). A third approach to estimating the parameter vector 
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 in the repeated unordered choice case is to define the events in the CML as the pairwise observations across all or a subset of the choice occasions of the individual. For presentation ease, assume that all pairs of observations are considered. This leads to a pairwise CML function contribution of individual q as follows:
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Almost all earlier research efforts employing the CML technique have used the pairwise approach, including Apanasovich et al., (2008), Varin and Vidoni (2009), Engle et al. (2007), Bhat et al. (2010a), and Bhat and Sener (2009). Alternatively, the analyst can also consider larger subsets of observations, such as triplets or quadruplets or even higher dimensional subsets (see Engler et al., 2006 and Caragea and Smith, 2007). However, it is generally agreed that the pairwise approach is a good balance between statistical and computational efficiency (besides, in almost all applications, the parameters characterizing error dependency are completely identified based on the pairwise approach). Importantly, the pairwise approach is able to explicitly recognize dependencies across choice occasions in the repeated choice case through the inter-temporal pairwise probabilities. More generally, and as we shall see later, the pairwise approach is adequate to estimate parameters of several MNP-based model structures. The pairwise CML function involves normal orthant probabilities of dimension 
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The properties of the general CML estimator may be derived using the theory of estimating equations (see Cox and Reid, 2004). Under usual regularity conditions (these are the usual conditions needed for likelihood objects to ensure that the logarithm of the CML function can be maximized by solving the corresponding score equations; the conditions are too numerous to mention here, but are listed in Molenberghs and Verbeke, 2005, page 191), the maximization of the logarithm of the CML function in Equation (9) is achieved by solving the composite score equations given by 
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where 
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These may be estimated in a straightforward manner at the CML estimate 
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Even in the case where the data include very few or no independent replicates (as would be the case with global social or spatial interactions across all individuals in a cross-sectional data in which D is equal to the number of individuals), the CML estimator will retain the good properties of being consistent and asymptotically normal as long as the data is formed by pseudo-independent and overlapping subsets of observations (such as would be the case when the social interactions taper off relatively quickly with the social separation distance between decision-makers, or when spatial interactions rapidly fade with geographic distance based on an autocorrelation function decaying toward zero; see Cox and Reid, 2004 for a technical discussion).
 
Of course, the Cramer-Rao inequality implies that the CML estimator loses some asymptotic efficiency from a theoretical perspective relative to a full likelihood estimator (Lindsay, 1988; Zhao and Joe, 2005).
 On the other hand, when simulation methods have to be used to evaluate the likelihood function, there is also a loss in asymptotic efficiency in the maximum simulated likelihood (MSL) estimator relative to a full likelihood estimator (see McFadden and Train, 2000).
 Consequently, it is difficult to state from a theoretical standpoint whether the CML estimator efficiency will be higher or lower than the MSL estimator efficiency. However, in a simulation comparison of the CML and MSL methods for multivariate ordered response systems, Bhat et al. (2010b) found that the CML estimator’s relative efficiency was almost as good as that of the MSL estimator, but with the benefits of a very substantial reduction in computational time and much superior convergence properties. Even when the log-likelihood function may be maximized without simulations, several studies have found that the efficiency loss of the CML estimator (relative to the maximum likelihood (ML) estimator) appears to be negligible to small from an empirical standpoint (see Zhao and Joe, 2005; Lele, 2006; Joe and Lee, 2009).


In the next few sections, we discuss how the MVNCD function approximation of Section 2.1 and the CML inference approach of Section 2.2 can be gainfully combined in the proposed MACML inference approach for MNP models.

3. Cross-Sectional Multinomial Probit Model
In the discussion below, we will assume that the number of choice alternatives in the choice set is the same across all individuals. The case of different numbers of choice alternatives per individual poses no complications whatsoever, since the only change in such a case is that the dimensionality of the multivariate normal cumulative distribution (MVNCD or normal orthant probability) function changes from one individual to the next. 
A multinomial probit model may arise from several underlying structural motivations. In this section, we will consider a random-coefficients normal formulation superimposed on an IID normal error structure as the mechanism that leads to the typical cross-sectional MNP model. We do so to streamline the presentation, especially because the panel MNP structure we consider in the next section is a natural extension of the cross-sectional random-coefficients MNP structure. In the random-coefficients formulation, write the utility that an individual q associates with alternative I as follows:
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where 
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where 
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where 
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The MVNCD approximation of Section 2.1 is computationally efficient and straightforward to implement when maximizing the likelihood function of Equation (18).
,
  As such, the MVNCD approximation can be used for any value of K and any value of I, as long as there is data support for the estimation of parameters. Of course, parsimonious factor-analytic or other spatial structures may be imposed on the covariance matrix 
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One final issue in the MACML estimation relates to the procedure to ensure that the symmetric matrix 
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4. Panel Multinomial PROBIT Models
In the discussion below, we will assume that the number of choice occasions per individual is the same across all individuals. We discuss the case of different numbers of choice occasions per individual in Section 4.2.

4.1. The Panel MNP Model

Consider the following model with ‘t’ now being an index for choice occasion:
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Let 
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 be IID normal over individuals, alternatives, and choice occasions with a variance of 0.5. We will assume that the coefficients 
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where 
[image: image117.wmf])

(

t

qm

qit

t

qim

t

t

x

x

z

-

=

. Another approach is to write the likelihood contribution in terms of the latent utility differentials 
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with 
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The simulation approaches for evaluating the panel likelihood function are time-consuming. In our MACML estimation approach, we propose a combination of the approximation method for multivariate normal orthant probabilities and the composite marginal likelihood method. Specifically, based on Equation (12) and the notation defined there, the analyst may construct the following pairwise CML function across the choice occasions of individual q:
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The computational effort is reduced in the CML above because only pairwise marginal multivariate probabilities are being considered across choice occasions. However, each multivariate orthant probability above still has a dimension equal to 
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In the equation above, 
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The bivariate probability expressions for the latent variables across time periods t and w take the form shown below:
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In the above expression, 
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The covariance matrix of the estimator may then be obtained using the inverse of the Godambe information matrix 
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4.2. The Case of Unequal Number of Choice Occasions

In Section 4.1, we assumed the same number of choice occasions T per individual. Now, consider the case when there are unequal numbers of choice occasions per individual, which is not uncommon with panel data. Let individual q be observed to contribute Tq choice occasions. Then, the unweighted CML functions presented earlier will give more weight to individuals who have more choice occasions than those who have fewer choice occasions. To address this situation, a weighted CML function may be used (see Kuk and Nott, 2000, Renard et al., 2004). Note that, in the context of the discussion in Sections 4.1, and in the absence of any random coefficient effects (that is, when all elements of 
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On the other hand, when there are random coefficients, the overall correlation between any inter-temporal pair of utility differentials could fall or rise from 0.0, depending upon the nature of the matrix 
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. However, except in extreme cases, such as when exogenous variables are of opposite signs across time periods for different alternatives or for the same alternative, the net result of the presence of random coefficients will be an increase in the magnitude of correlation from the value of zero. 

In the first case discussed above (that is, the absence of random coefficients), Le Cessie and Van Houwelingen (1994) suggest, in their binary data context, that each individual should contribute about equally to the CML function. This may be achieved by power-weighting each individual’s likelihood contribution by a factor that is the inverse of the number of choice occasions minus one (in our context, this is 
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 Of course, for MNP contexts where the number of choice occasions across individuals is not substantially different, the difference between the weighted and unweighted CML functions in terms of estimator efficiency may not be substantial. This is an issue that needs to be studied empirically, and is left as a direction for further research. 

4.3. Other Panel Extensions
We now discuss the MACML estimation approach for a few more extensions of the traditional panel probit models. In the following discussion, we assume the same number of choice occasions across individuals. This will help keep the presentation streamlined. Extending the models below to the case of different numbers of choice occasions across individuals poses no substantial difficulties, since weights can be used as just discussed. 
4.3.1. Intra- and Cross-Temporal Random Coefficients

Consider the following utility function:
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4.3.2. Autoregressive Random Coefficients Structure

In this structure, consider an autoregressive structure of order one:
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For this model, the CML function is the same again as in Equations (22), (23) and (25) with
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4.3.3. Individual-Constant and Autoregressive Random Coefficients Structure

This structure takes the following form:
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The CML function is as in Equations (22), (23), and (25) with
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4.3.4. Dynamic Panel Structure

Consider a first-order lagged dependence structure that takes the following form:
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 is IID normal across individuals, alternatives, and time periods with a variance of 0.5. Taking utility differences (
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The expected value and the variance of 
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The MACML approach remains the same as for the panel MNP models, with the following bivariate probability expression for the latent variables within the same time period t: 
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The corresponding expression for the bivariate probability expression for the latent variables across time periods is given by 
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5. Extension to Incorporate Spatial Correlation
In this section, we discuss the MACML application to multinomial probit models with spatial correlation, though the same procedures may be adopted to accommodate social interaction effects. 

Spatial correlation may exist across discrete choice alternatives (see, for example, Bolduc et al., 1996; Bhat and Guo, 2004; Miyamoto et al., 2004; Sener et al., 2011) or across decision-makers (see, for example, Anselin, 2003; Fleming, 2004; Franzese and Hays, 2008; Bhat and Sener, 2009). The focus here will be on spatial correlation across decision makers. Interestingly, in the context of spatial correlation across decision makers, almost all earlier studies have either focused on binary response models or ordered response models. In particular, spatial correlation across individuals has seldom even been discussed (let alone being studied) in the context of unordered-response models. On the other hand, spatial correlation in data may occur in unordered-response models for the same reasons (for example, diffusion effects, social interaction effects, and unobserved location-related effects) they have been studied extensively in binary and ordered-response models. 

In terms of estimation of binary and ordered-response discrete choice models with a general spatial correlation structure, the analyst confronts, in the familiar probit model, a multi-dimensional integral over a multivariate normal distribution, which is of the order of the number of observational units in the data. While a number of approaches have been proposed to tackle this situation (see McMillen, 1995; LeSage, 2000; Pinkse and Slade, 1998; Fleming, 2004; Beron et al., 2003; Beron and Vijverberg, 2004), none of these remain practically feasible for moderate-to-large samples. These methods are also quite cumbersome and involved.  In the context of unordered-response models, the situation becomes even more difficult – the likelihood function entails a multidimensional integral over a multivariate normal distribution, which is of the order of the number of observational units factored up by the number of alternatives minus one. This situation, however, is relatively easily handled using the MACML method, as we discuss below. As in Section 4, we assume the same number of alternatives across individuals to help keep the presentation streamlined. We also focus on a cross-section spatial formulation. The extension to a panel formulation is similar to the extensions from the cross-sectional to the panel structure in the non-spatial structures discussed earlier. 

The next section discusses a spatial error model, while Section 5.2 presents the minor modifications that need to be made to handle the spatial lag model. 
5.1. Spatial Error Model

Consider the following specification of utility for individual q and alternative i:
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Then, we can write Equation (39) in a compact form as:
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Finally, define the following additional matrices:


[image: image306.wmf])

(

~

QI

QI

´

Ä

=

Λ

Λ

Q

IDEN

 matrix,


[image: image307.wmf]QI

QI

´

¢

Ä

=

(

~

)

(

~

~

x

IDEN

x

Q

Ω

Ω

) matrix,

[image: image308.wmf])]

(

)

[(

a 

 

,

~

~

QI

QI

´

¢

=

S

S

F

Λ

 matrix, and





                 (44)

[image: image309.wmf])}]

1

(

{

)}

1

(

[{

an 

 

,

)

~

~

(

-

´

´

-

´

¢

+

=

I

Q

I

Q

M

F

M

Ω

Σ

 matrix

Then we can write 
[image: image310.wmf])

,

(

~

Σ

B

y

*

MVN

, and the likelihood function of the sample is:


[image: image311.wmf])

,

(

)

0

(

Prob

)

(

)

1

(

*

Σ

B

y

θ

-

=

<

=

-

´

I

Q

ML

F

L

,





                 (45)

where 
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 is the collection of parameters to be estimated: 
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The pairwise likelihood function above is similar to the case of a panel model, except that the pairs correspond to the choices of two different individuals at the same point in time. Each multivariate orthant probability above has a dimension equal to 
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One final issue. As discussed earlier in Section 1.2, the spatial property that the correlation fades over time implies that the CML estimator will retain the properties of being consistent and asymptotically normal. The “bread” matrix of 
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where 
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5.2. The Spatial Lag Model

The spatial lag model structure, with random coefficients, takes the following form:


[image: image355.wmf]1

|

|

 

),

,

0

(

~

  

;

 

<

+

¢

+

=

¢

¢

¢

å

r

x

x

r

Λ

N

U

w

U

qi

qi

i

q

q

q

q

qi

qi

q

x

β

,



                 (50)

where 
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 is independent and identically distributed across q. Using the same notation as earlier, the equivalent of Equation (41) in the spatial lag model is:
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6. Model Selection 
Procedures similar to those available with the maximum likelihood approach are also available for model selection with the MACML approach, based on results relevant to the composite marginal likelihood (CML) estimation approach. The statistical test for a single parameter may be pursued using the usual t-statistic based on the inverse of the Godambe information matrix. When the statistical test involves multiple parameters between two nested models, an appealing statistic, which is also similar to the likelihood ratio test in ordinary maximum likelihood estimation, is the composite likelihood ratio test (CLRT) statistic. Consider the null hypothesis 
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where 
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where 
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 evaluated under the null hypothesis (this result may be obtained based on the (profile) likelihood ratio test for a mis-specified model; see Kent, 1982, Theorem 3.1 and the proof therein). Unfortunately, the departure from the familiar asymptotic chi-squared distribution with d degrees of freedom for the traditional maximum likelihood procedure is annoying. Pace et al. (2011) have recently proposed a way out, indicating that the following adjusted CLRT statistic, ADCLRT, may be considered to be asymptotically chi-squared distributed with d degrees of freedom:
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where 
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 distributed under the null.  Alternatively, one can resort to parametric bootstrapping to obtain the precise distribution of the CLRT statistic for any null hypothesis situation. Such a bootstrapping procedure is rendered simple in the CML approach, and can be used to compute the p-value of the null hypothesis test. The procedure is as follows (see Varin and Czado, 2010):

1. Compute the observed CLRT value as in Equation (53) from the estimation sample. Let the estimation sample be denoted as 
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3. Compute the CLRT statistic of Equation (53) for each generated data set, and label it as 
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4. Calculate the p-value of the test using the following expression:
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The above bootstrapping approach has been used for model testing between nested models in Varin and Czado (2010), Bhat et al. (2010a), and Ferdous et al. (2010). 

When the null hypothesis entails model selection between two competing non-nested models, the composite likelihood information criterion (CLIC) introduced by Varin and Vidoni (2005) may be used. The CLIC takes the following form
:
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The model that provides a higher value of CLIC is preferred.

7. Conclusions
It is typical to use simulation techniques to estimate multinomial probit-based models arising from general error covariance structures, random coefficients, panel effects, or spatial/social interaction effects. However, the accuracy of simulation techniques is known to degrade rapidly at medium-to-high dimensions, and the simulation noise increases substantially. This leads to convergence problems during estimation. In addition, such simulation-based approaches become impractical in terms of computation time as the number of dimensions of integration grows. 

In this paper, we introduce a maximum approximate composite marginal likelihood (MACML) estimation approach for multinomial probit models. The MACML approach introduced here only involves univariate and bivariate cumulative normal distribution function evaluations. As importantly, the approach can be applied using simple optimization software for likelihood estimation. 
The author is currently exploring methods to extend the MACML approach to allow a non-normal multivariate mixing distribution (such as non-normal random coefficients) over a multinomial probit kernel. Such non-normal mixing distributions may be accommodated by replacing them with an appropriate finite normal mixture distribution.  
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� To be sure, there have been models with non-normal mixing distributions too, such as the log-normal distribution, the triangular distribution, and the Rayleigh distribution (see, Bhat et al., 2008 for a review). However, it has been well known that using non-normal distributions can lead to convergence/computational problems, and it is not uncommon to see researchers consider non-normal distributions only to eventually revert to the use of a normal distribution (see, for example, Bartels et al., 2006 and Small et al., 2005). 


� Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can be continually improved by increasing the order of the approximation. For instance, a second-order approximation would approximate the right side of Equation (4) by the expectation from a linear regression model that has � EMBED Equation.3  ��� as the “dependent” random variable and � EMBED Equation.3  ��� as the independent random variable vector, where � EMBED Equation.3  ��� Essentially this adds second-order interactions in the independent random variable vector (see Joe, 1995). However, doing so entails trivariate and four-variate normal cumulative distribution function (CDF) evaluations (when I >4) as opposed to univariate and bivariate normal CDF evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show empirically in a companion paper (Bhat and Sidharthan, 2011), the first-order approximation is more than adequate (when combined with the CML approach) for estimation of any MNP model. Thus, in the rest of this paper, we will use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.  


� In the discussion below, for presentation ease, we will ignore the power weight term � EMBED Equation.3  ��� (we revisit this later in Section 4.2, when discussing the case of potentially different numbers of choice occasions across individuals).


� Otherwise, there may be no real solution to the CML function maximization and the asymptotic results laid out above will not hold.


� The theoretical efficiency loss of the CML estimator compared to the full information maximum likelihood (ML) estimator, if such an estimator is feasible, originates from the failure of the information identity (i.e., � EMBED Equation.3  ���). This is also referred to as the failure of the second Bartlett identity. In particular, from a theoretical standpoint, the difference between the asymptotic variances of the CML estimator (i.e., � EMBED Equation.3  ���) and the ML estimator (� EMBED Equation.3  ���) is positive semi-definite (see Cox and Reid, 2004; Zhao and Joe, 2005). 


� Specifically, McFadden and Train (2000) indicate, in their use of independent number of random draws across observations, that the difference between the asymptotic covariance matrix of the MSL estimator obtained as the inverse of the sandwich information matrix and the asymptotic covariance matrix of the ML estimator obtained as the inverse of the cross-product of first derivatives is also theoretically positive semi-definite for finite number of draws per observation. 


� A handful of studies (see Hjort and Varin, 2008; Mardia et al., 2009; Cox and Reid, 2004) have also theoretically examined the limiting normality properties of the CML approach, and compared the asymptotic variance matrices from this approach and the ML approach. However, such a precise theoretical analysis is possible only for extremely simple models.


�As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood estimator as a special case. It is this characteristic of the CML approach that leads us to the label MACML for the estimation approach proposed here. Specifically, even in cross-sectional mixing distribution contexts, when our approach involves only the approximation of the maximum likelihood function, the MACML label is appropriate since the maximum likelihood function is a special case of the CML function. Of course, in a panel context or in cross-sectional/panel contexts with spatial/social error dependencies, we use a specific pairwise (and non-ML) technique within the CML approach for estimation, as discussed in Sections 4 and 5. 


�The use of the MVNCD approximation (as discussed in Section 2.1) has been shown to be accurate in the context of evaluating single multivariate integrals. Joe (1995) indicates that the approximation has an error (even in the worst case of high correlations) in the third decimal place. In a companion paper, we have examined the performance of the MVNCD approximation in the context of estimating parameters in cross-sectional and panel multinomial probit models. The results indicate that the approximation provides parameter values very close to the “true” population parameter values in simulation experiments, with the empirical absolute percentage bias being smaller than that from regular simulation techniques to evaluate the MVNCD function. Thus, the MVNCD-approximated log-likelihood function as proposed here should be close to the log-likelihood function for all parameters in a neighborhood of the “true” parameter values, which implies that the covariance matrix computed using our MACML procedure should also be an accurate approximation to the actual covariance matrix.


� Individuals are observed making choice from t = 1. The lagged utility structure brings up the issue of initial conditions, since we do not observe individual choices before t = 1. Here we assume that Uqio = 0 to resolve the initial conditions issue, which is equivalent to assuming equal probabilities of choice for any alternative i before observation begins. Other ways to accommodate initial conditions are discussed in Heckman and Singer (1986).


� Note also that while we discuss the application of the MACML approach in the context of spatial dependence, the framework is extendable to include social and other forms of dependence too. This is because the weight matrix W that forms the basis for spatial dependence can be the basis for more general forms of dependence. In fact, W itself can be parameterized as a finite mixture of several weight matrices, each weight matrix being related to a specific covariate k: � EMBED Equation.3  ���where � EMBED Equation.3  ��� is the weight on the kth covariate in determining dependency between individuals (� EMBED Equation.3  ���), and � EMBED Equation.3  ��� is a measure of distance between individuals on the kth covariate. 


� Obviously, there needs to be a balance here between the number of sets of pairings K and the proximity of points. The smaller the value of K, the less proximal are the sets of observation units and more likely that the sets of observational pairings will be independent. However, at the same time, the value of K needs to be reasonable to obtain a good empirical estimate of J, since this empirical estimate is based on the score functions (computed at the convergent parameter values) across the K sets of observations.  


� This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information Criterion (AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood inference procedure, the information identity holds (i.e., H(θ) = J(θ)) and the CLIC in this case is exactly the AIC [� EMBED Equation.3  ���(# of model parameters)].
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