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ABSTRACT 

The likelihood functions of multinomial probit (MNP)-based choice models entail the evaluation 

of analytically-intractable integrals. As a result, such models are usually estimated using 

maximum simulated likelihood (MSL) techniques. Unfortunately, for many practical situations, 

the computational cost to ensure good asymptotic MSL estimator properties can be prohibitive 

and practically infeasible as the number of dimensions of integration rises. In this paper, we 

introduce a maximum approximate composite marginal likelihood (MACML) estimation 

approach for MNP models that can be applied using simple optimization software for likelihood 

estimation. It also represents a conceptually and pedagogically simpler procedure relative to 

simulation techniques, and has the advantage of substantial computational time efficiency 

relative to the MSL approach. The paper provides a “blueprint” for the MACML estimation for a 

wide variety of MNP models.  

 

Keywords: multinomial probit, mixed models, composite marginal likelihood, discrete choice 

models, spatial econometrics, panel data.  
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1. INTRODUCTION 

The “workhorse” multinomial logit model, used extensively in practice for econometric discrete 

choice analysis, was introduced by Luce and Suppes (1965) and McFadden (1974), and has a 

very simple and elegant structure. However, it is also saddled with the familiar independence 

from irrelevant alternatives (IIA) property – that is, the ratio of the choice probabilities of two 

alternatives is independent of the characteristics of other alternatives in the choice set. This has 

led to several extensions of the MNL model through the relaxation of the independent and 

identically distributed (IID) error distribution (across alternatives) assumption. Two common 

model forms of non-IID error distribution include the generalized extreme-value (GEV) class of 

models proposed by McFadden (1978) and the multinomial probit (MNP) model that allow 

relatively flexible error covariance structures (up to certain limits of identifiability; see Train, 

2009, Chapter 5). Both of these non-IID kernel structures (or even the IID versions of the GEV 

and the MNP models, which lead to the MNL and the independent MNP models) can further be 

combined with (a) continuous mixing factor error structures to accommodate unobserved taste 

variation across choice occasions through random coefficients (see Bhat and Sardesai, 2006), (b) 

individual-specific (time-stable or time-dissipating) error terms that generate error dependencies 

across the choice occasions of the same decision-maker in panel or repeated choice contexts (see 

Li et al., 2010), (c) spatial/social dependency-based error structure models that generate error 

dependencies across choice occasions of different decision-makers (see Franzese and Hays, 

2008), or (d) some combinations of these model forms. While many different continuous error 

distributions can be used to accommodate these additional structures, it is most common to adopt 

a normal distribution for these. For instance, when introducing random coefficients, it is typical 

to use the multivariate normal distribution for the mixing coefficients, almost to the point that the 

terms mixed logit or mixed GEV or mixed probit are oftentimes used synonymously with normal 

mixing (see Fiebig et al., 2010, Dube et al., 2002).1 Similarly, when introducing panel effects or 

spatial/social interdependency, the use of normal error structures is ubiquitous, except for some 

recent developments using general copula forms by Bhat and Sener (2009) and Bhat et al. 

(2010a).  
                                                 
1 To be sure, there have been models with non-normal mixing distributions too, such as the log-normal distribution, 
the triangular distribution, and the Rayleigh distribution (see, Bhat et al., 2008 for a review). However, it has been 
well known that using non-normal distributions can lead to convergence/computational problems, and it is not 
uncommon to see researchers consider non-normal distributions only to eventually revert to the use of a normal 
distribution (see, for example, Bartels et al., 2006 and Small et al., 2005).  
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In the context of the normal error distributions just discussed, the use of a GEV kernel 

structure leads to a mixing of the normal distribution with a GEV kernel, while the use of an 

MNP kernel leads once again to an MNP model. Both structures have been widely used in the 

past, with the choice between a GEV kernel or an MNP kernel really being a matter of “which is 

easier to use in a given situation” (Ruud, 2007). In recent years, the mixing of the normal with 

the GEV kernel has been the model form of choice in the economics and transportation fields, 

mainly due to the relative ease with which the probability expressions in this structure can be 

simulated (see Bhat et al., 2008 and Train, 2009 for detailed discussions). On the other hand, the 

use of an MNP kernel has not seen as much use in recent years, because the simulation 

estimation is generally more difficult. In any case, while there have been several approaches 

proposed to simulate these models with a GEV or an MNP kernel, most of these involve pseudo-

Monte Carlo or quasi-Monte Carlo simulations in combination with a quasi-Newton optimization 

routine in a maximum simulated likelihood (MSL) inference approach (see Bhat, 2001, 2003). In 

such an inference approach, consistency, efficiency, and asymptotic normality of the estimator is 

critically predicated on the condition that the number of simulation draws rises faster than the 

square root of the number of individuals in the estimation sample. This effectively implies that 

the desirable asymptotic properties of the MSL estimator are obtained at the expense of 

computational cost. Unfortunately, for many practical situations, the computational cost to 

ensure good asymptotic estimator properties can be prohibitive and literally infeasible (in the 

context of the computation resources available and the time available for estimation) as the 

number of dimensions of integration increases. This is particularly so because the accuracy of 

simulation techniques is known to degrade rapidly at medium-to-high dimensions, and the 

simulation noise increases substantially. This leads to convergence problems during estimation, 

unless a very high number of simulation draws is used. Besides, an issue generally ignored in 

simulation-based approaches is the accuracy (or lack thereof) of the covariance matrix of the 

estimator, which is critical for good inference even if the asymptotic properties of the estimator 

are well established. Specifically, the hessian (or second derivatives) needed with the MSL 

approach to estimate the asymptotic covariance matrix of the estimator is itself estimated on a 

highly nonlinear and non-smooth second derivatives surface of the log-simulated likelihood 

function. This is also usually undertaken numerically because the complex analytic nature of the 

second derivatives makes them difficult to code. The net result is that Monte-Carlo simulation 
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with even three to four decimal places of accuracy in the probabilities embedded in the log-

likelihood function can work poorly (see Bhat et al., 2010b), suggesting a critical need to 

evaluate the likelihood function at a very high level of accuracy and precision. This further 

increases computational cost. Craig (2008) also alludes to this problem when he states that “(...) 

the randomness that is inherent in such methods [referring to the Genz-Bretz algorithm (Genz 

and Bretz, 1999), but applicable in general to MSL methods] is sometimes more than a minor 

nuisance.”  

In this paper, we propose a new methodology (which is labeled as the Maximum 

Approximate Composite Marginal Likelihood or MACML inference approach) that allows the 

estimation of models with both GEV and MNP kernels using simple, computationally very 

efficient, and simulation-free estimation methods. In the MACML inference approach, models 

with the MNP kernel, when combined with additional normal random components, are much 

easier to estimate because of the conjugate addition property of the normal distribution (which 

puts the structure resulting from the addition of normal components to the MNP kernel back into 

an MNP form). On the other hand, the MACML estimation of models obtained by 

superimposing normal error components over a GEV kernel requires a normal scale mixture 

representation for the extreme value error terms, and adds an additional layer of computational 

effort (see Bhat, 2011). Given that the use of a GEV kernel or an MNP kernel is simply a matter 

of convenience, we will henceforth focus in this paper on the MNP kernel within the MACML 

inference approach.  

The proposed MACML estimation of the resulting MNP-based models involves only 

univariate and bivariate cumulative normal distribution function evaluations, regardless of the 

number of alternatives or the number of choice occasions per individual or the nature of 

social/spatial dependence structures. This implies substantial computational efficiency relative to 

the MSL inference approach for models that can be estimated using the MSL approach, and also 

allows the estimation of several model structures that are literally infeasible to estimate using 

traditional MSL approaches (with the available computational resources and time available for 

estimation). For instance, consider the case of dealing with panel data or repeated unordered 

choice data from each individual in a sample, with individual-specific normally distributed 

random coefficients. In such a case, the full likelihood function contribution of an individual 

entails taking the product of the individual’s choices across choice occasions conditional on the 
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random coefficients, and then unconditioning out the random coefficients by integration over the 

multivariate normal domain. The multivariate integration is over the real line with respect to 

each random coefficient, with the dimensionality being equal to the number of random 

coefficients. As the number of random coefficients increases, evaluating the likelihood using 

simulation techniques becomes computationally expensive. Another example where the full 

likelihood becomes near impractical to work with is when there are individual-specific normal 

random coefficients as well as choice occasion-specific normal random coefficients with panel or 

repeated unordered choice data. In this case, the result is a double multivariate integral, with the 

dimensionality of the two multivariate normal integrals being equal to the number of random 

coefficients in the individual-specific and occasion-specific cases (see Bhat and Castelar, 2002, 

Bhat and Sardesai, 2006, Hess and Rose, 2009). The explosion of the dimensionality of 

integration is rapid, making full likelihood evaluation using simulation techniques all but 

impractical. Finally, in the case of global social interactions or spatial interactions that lead to 

autoregressive error structures or spatial/social lag effects, the full likelihood is infeasible to 

estimate using simulation methods in any reasonable time because of the extremely high 

dimensionality involved (the dimensionality is of the order of the number of decision-makers 

times the number of alternatives in the multinomial choice situation minus one; for example, 

with 2000 decision-makers and 4 alternatives, the dimensionality of integration is 6000). In all 

these cases and more, the proposed MACML approach offers a computationally convenient 

inference approach, as we indicate in the rest of this paper. As importantly, the MACML 

inference approach is simple to code and apply using readily available software for likelihood 

estimation. It also represents a conceptually and pedagogically simpler procedure relative to 

simulation techniques.  

The paper is structured as follows. The next section presents the two main and 

fundamental building blocks of the MACML approach. Section 3 presents the MACML 

inference approach for the cross-sectional MNP model, while Section 4 illustrates the approach 

for panel and dynamic MNP model structures. Section 5 presents the extension to accommodate 

spatial/social effects. Section 6 discusses model selection issues in the CML estimation 

approach. Finally, Section 7 summarizes the contributions of the paper.  
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2. THE BASICS OF THE MACML APPROACH TO ESTIMATE UNORDERED-

RESPONSE MODELS 

There are two fundamental concepts in the proposed MACML approach to estimate MNP 

models. The first is an approximation method to evaluate the multivariate standard normal 

cumulative distribution (MVNCD) function (discussed in Section 2.1). The second is the 

composite marginal likelihood (CML) approach to estimation (discussed in Section 2.2).  

 

2.1. Multivariate Standard Normal Cumulative Distribution (MVNCD) Function    

In the general case of an MNP model with I alternatives, the probability expression of an 

individual choosing a particular alternative involves an ( 1−I ) dimensional MVNCD function 

(more on this in Section 3). The evaluation of such a function cannot be pursued using 

quadrature techniques due to the curse of dimensionality when the dimension of integration 

exceeds two (see Bhat, 2003). Consequently, the probability expression is approximated using 

simulation techniques in the classical maximum simulated likelihood (MSL) inference approach, 

usually through the use of the Geweke-Hajivassiliou-Keane (GHK) simulator or the Genz-Bretz 

(GB) simulator, which are among the most effective simulators for evaluating multivariate 

normal probabilities (see Bhat et al., 2010b for a detailed description of these simulators). Some 

other recent sparse grid-based techniques for simulating the multivariate normal probabilities 

have also been proposed by Heiss and Winschel (2008), Huguenin et al. (2009), and Heiss 

(2010). In addition, Bayesian simulation using Markov Chain Monte Carlo (MCMC) techniques 

(instead of MSL techniques) have been used in the literature (see Albert and Chib, 1993, 

McCulloch and Rossi, 2000, and Train, 2009). However, all these MSL and Bayesian techniques 

require extensive simulation, are time-consuming, are not very straightforward to implement, and 

create convergence assessment problems as the number of dimensions of integration increases. 

 In this paper, we apply an analytic approximation method to evaluate the MVNCD 

function that is quite accurate and very fast even for 20 or more dimensions of integration. 

Further, unlike Monte-Carlo simulation approaches, even two to three decimal places of 

accuracy in the analytic approximation is generally adequate to accurately and precisely recover 

the parameters and their covariance matrix estimates because of the smooth nature of the first 

and second derivatives of the approximated analytic log-likelihood function. While several 

analytic approximations have been reported in the literature for MVNCD functions (see, for 
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example, Solow, 1990, Joe, 1995, Gassmann et al., 2002, and Joe, 2008), the one we use here is 

based on decomposition into a product of conditional probabilities. This approximation appears 

to have been first proposed by Solow (1990) based on Switzer (1977), and then refined by Joe 

(1995). However, we are not aware of any earlier research effort that applies this technique for 

the estimation of parameters in econometric models (such as discrete choice models) involving 

the evaluation of MVNCD functions. The reason we select this approximation approach is that it 

is fast and lends itself nicely to combination with the composite marginal likelihood approach of 

MNP model estimation that we propose in this paper.  

 To describe the approximation, let ) ,..., , ,( 321 IWWWW  be a multivariate normally 

distributed random vector with zero means, variances of 1, and a correlation matrix Σ .  Then, 

interest centers on approximating the following orthant probability: 

)  ..., ,  ,  ,( Pr)( Pr 332211 II wWwWwWwW <<<<=< wW .           (1) 

The above joint probability may be written as the product of a bivariate marginal probability and 

univariate conditional probabilities as follows (I ≥ 3): 

. )  ..., ,  ,  ,|( Pr                     

 )  ,( Pr)( Pr

11332211

I

3i

2211

−−
=

<<<<<

×<<=<

∏ iiii wWwWwWwWwW

wWwWwW
         (2) 

Next, define the binary indicator iI~  that takes the value 1 if ii wW <  and zero otherwise. Then 

)()~( ii wIE Φ= , where (.)Φ  is the univariate normal standard cumulative distribution function. 

Also, we may write the following: 

, )](1)[(                                  
)()()~()~,~(Cov

  ),()(),,()~()~()~~()~,~(Cov
2

2

ii

iiiii

jiijjijijiji

ww
wwIVarII

jiwwwwIEIEIIEII

Φ−Φ=
Φ−Φ==

≠ΦΦ−Φ=−= ρ

              (3) 

where ijρ  is the ijth element of the correlation matrix Σ . With the above preliminaries, consider 

the following conditional probability: 

. )1~  ..., ,1~  ,1~  ,1~|~(

)  ..., ,  ,  ,|( Pr

1321

11332211

=====

<<<<<

−

−−

ii

iiii

IIIIIE

wWwWwWwWwW
                       (4) 
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The right side of the expression may be approximated by a linear regression model, with iI~  

being the “dependent” random variable and )~,...~,~(~
121 −< = iIIIiI  being the independent random 

variable vector.2 In deviation form, the linear regression for approximating Equation (4) may be 

written as: 

η~)]~(~[)~(~ +−′=− << ii IIα EIEI ii ,               (5) 

where α  is the least squares coefficient vector and η~  is a mean zero random term. In this form, 

the usual least squares estimate of α  is given by: 

iiiα <
−
< ⋅= ,

1 ΩΩˆ , where   (6) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢
⎢

⎣

⎡

==

−−−−−

−

−

−

<<<
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)~,~(Cov)~,~(Cov)~,~(Cov)~,~(Cov
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2 Note that, theoretically, this approximation can be viewed as a first-order approximation. The approximation can 
be continually improved by increasing the order of the approximation. For instance, a second-order approximation 
would approximate the right side of Equation (4) by the expectation from a linear regression model that has iI~  as 
the “dependent” random variable and ),~,~,~,,~,~,~,~,~( 1,21,224231,11312121 −−−−−< = iiiii IIIIIIIIII …………

�
iI  as the 

independent random variable vector, where .~~~
jiji III ′′′′ =  Essentially this adds second-order interactions in the 

independent random variable vector (see Joe, 1995). However, doing so entails trivariate and four-variate normal 
cumulative distribution function (CDF) evaluations (when I >4) as opposed to univariate and bivariate normal CDF 
evaluations in the first-order approximation, thus increasing computational burden. As we discuss later and show 
empirically in a companion paper (Bhat and Sidharthan, 2011), the first-order approximation is more than adequate 
(when combined with the CML approach) for estimation of any MNP model. Thus, in the rest of this paper, we will 
use the term approximation to refer to the first-order approximation evaluation of the MVNCD function.   
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Finally, putting the estimate of α̂  back in Equation (5), and predicting the expected value of iI~  

conditional on 1=< iI~  (i.e., )1~  ,1~  ,1~
121 === −iIII , we get the following approximation for 

Equation (4): 

))(1)...(1  ),(1()()(

)  ..., ,  ,|( Pr

121

112211

′Φ−Φ−Φ−′⋅+Φ

≈<<<<

−<
−
<

−−

ii

iiii

wwww

wWwWwWwW

iii ,
1 ΩΩ

            (8) 

This conditional probability approximation can be plugged into Equation (2) to approximate the 

multivariate orthant probability in Equation (1). The resulting expression for the multivariate 

orthant probability comprises only univariate and bivariate standard normal cumulative 

distribution functions. 

 One remaining issue is that the decomposition of Equation (1) into conditional 

probabilities in Equation (2) is not unique. Further, different permutations (i.e., orderings of the 

elements of the random vector ) ,..., , ,( 321 IWWWW=W ) for the decomposition into the 

conditional probability expression of Equation (2) will lead, in general, to different 

approximations. One approach to resolve this is to average across the 2/!I  permutation 

approximations. However, as indicated by Joe (1995), the average over a few randomly selected 

permutations is typically adequate for the accurate computation of the multivariate orthant 

probability. In the case when the approximation is used for model estimation (where the 

integrand in each individual’s log-likelihood contribution is a parameterized function of the β  

and Σ  parameters), even a single permutation of the W vector per choice occasion should 

typically suffice, as our own experimentations have shown.  

 

2.2. The Composite Marginal Likelihood (CML) Estimator 

The composite marginal likelihood (CML) estimation approach is a relatively simple approach 

that can be used when the full likelihood function is practically infeasible to evaluate due to 

underlying complex dependencies. Unfortunately, in many such cases, the approximation 

discussed in the previous section for orthant probabilities, by itself, does not work with the full 

likelihood approach because the dimensionality can be far beyond the accuracy of the MVNCD 

analytic approximation. 
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In this paper, we propose the use of the CML approach of estimation, combined with the 

approximation for orthant probabilities discussed in the previous section. To our knowledge, no 

earlier study in the literature has considered the CML method in the context of unordered-

response models (rather, all earlier studies have used the CML approach for multivariate models 

such as the multivariate binary probit or the multivariate ordered probit (see, for example, 

Renard et al., 2004, Zhao and Joe, 2005, Varin and Vidoni, 2006, Feddag and Bacci, 2009, Bhat 

and Sener, 2009, Varin and Czado, 2010, Bhat et al., 2010a,b). This is because the CML method 

by itself is not well suited to unordered-response models and does not provide substantial 

computational benefits in unordered-response models; rather, it is our specific proposal in this 

paper to combine the CML method with the normal orthant probability approximation method of 

the previous section that is the key to computational benefits.  

The CML approach, which belongs to the more general class of composite likelihood 

function approaches (see Lindsay, 1988), is based on maximizing a surrogate likelihood function 

that compounds much easier-to-compute, lower-dimensional, marginal likelihoods (see Varin, 

2008 and Varin et al., 2011 for recent reviews of the CML method). The CML approach works 

as follows. Assume that the data originate from a parametric underlying model based on a D × 1 

vector random variable Y with density function ),( θyf , where θ  is an unknown K~ -

dimensional parameter vector. Suppose that ),( θyf  is difficult or near infeasible to evaluate in 

reasonable time with the computational resources at hand, so that the corresponding likelihood 

function from a sampled (observed) vector for Y (say ),,,( 321 ′= Dmmmm …m ) given by 

),)( θmmθ; (f L =  is difficult. However, suppose evaluating the likelihood functions of a set of 

E~  observed marginal events (each observed marginal event being a subset of the observed joint 

event m ) is easy and/or computationally expedient. Let these observed marginal events be 

characterized by ( )( ..., ,)( ,)( ~21 mmm EAAA ). For instance, )(1 mA  may represent the marginal 

event that the observed values in the sample for the first two elements of the vector Y are 

)',( 21 mm  , )(2 mA  may represent the marginal event that the observed values for the first and 

third elements of the vector Y are )',( 31 mm , and so on.  Let each event )(meA  be associated with 

a likelihood object [ ])();( mθ;mθ ee ALL = , which is based on a lower-dimensional marginal joint 

density function corresponding to the original high-dimensional joint density of Y. Then, the 

general form of the composite marginal likelihood function is as follows: 
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[ ] [ ]∏∏
==

==
E

e
e

E

e
eCML

ee ALLL
~

1

~

1

)(;();(),( ωω mθmθmθ , (9) 

where eω  is a power weight to be chosen based on efficiency considerations. If these power 

weights are the same across events, they may be dropped. The CML estimator is the one that 

maximizes the above function (or equivalently, its logarithmic transformation).  

The CML class of estimators subsumes the usual ordinary full-information likelihood 

estimator as a special case. For instance, consider the case of repeated unordered choices from a 

specific individual. Let the individual’s choice at time t be denoted by the index tC , and let this 

individual be observed to choose alternative tm  at choice occasion t ). ..., ,3 ,2 ,1( Tt =  Then, one 

may define the observed event for this individual as the sequence of observed choices across all 

the T choice occasions of the individual. Defined this way, the CML function contribution of this 

individual becomes equivalent to the full-information maximum likelihood function contribution 

of the individual:3 

),...,, ,( Prob),(),( 332211
1

TTCML mCmCmCmCLL ====== mθmθ .  (10) 

However, one may also define the events as the observed choices at each choice occasion for the 

individual. Defined this way, the CML function is: 

)(Prob...)(Prob)Prob()( Prob),( 332211
2

tTCML mCmCmCmCL =××=×=×==mθ  (11) 

This CML, of course, corresponds to the independence case between each pair of observations 

from the same individual. As we will indicate later, the above CML estimator is consistent. 

However, this approach, in general, does not estimate the parameters representing error 

correlation effects across choices of the same individual (i.e., only a subset of the vector θ  is 

estimable). A third approach to estimating the parameter vector θ  in the repeated unordered 

choice case is to define the events in the CML as the pairwise observations across all or a subset 

of the choice occasions of the individual. For presentation ease, assume that all pairs of 

observations are considered. This leads to a pairwise CML function contribution of individual q 

as follows: 

                                                 
3 In the discussion below, for presentation ease, we will ignore the power weight term eω  (we revisit this later in 
Section 4.2, when discussing the case of potentially different numbers of choice occasions across individuals). 
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),( Prob),(
1

1 1

3
wwtt

T

t

T

tw
CML mCmCL ===∏∏

−

= +=

yθ            (12) 

Almost all earlier research efforts employing the CML technique have used the pairwise 

approach, including Apanasovich et al., (2008), Varin and Vidoni (2009), Engle et al. (2007), 

Bhat et al. (2010a), and Bhat and Sener (2009). Alternatively, the analyst can also consider 

larger subsets of observations, such as triplets or quadruplets or even higher dimensional subsets 

(see Engler et al., 2006 and Caragea and Smith, 2007). However, it is generally agreed that the 

pairwise approach is a good balance between statistical and computational efficiency (besides, in 

almost all applications, the parameters characterizing error dependency are completely identified 

based on the pairwise approach). Importantly, the pairwise approach is able to explicitly 

recognize dependencies across choice occasions in the repeated choice case through the inter-

temporal pairwise probabilities. More generally, and as we shall see later, the pairwise approach 

is adequate to estimate parameters of several MNP-based model structures. The pairwise CML 

function involves normal orthant probabilities of dimension 2)1( ×−I , which can itself be 

computationally impractical as I (the number of alternatives at each choice occasion in the 

repeated choice case) becomes large. However, this is where our proposal of combining the 

pairwise CML with the orthant probability approximation of the previous section comes in. 

   The properties of the general CML estimator may be derived using the theory of 

estimating equations (see Cox and Reid, 2004). Under usual regularity conditions (these are the 

usual conditions needed for likelihood objects to ensure that the logarithm of the CML function 

can be maximized by solving the corresponding score equations; the conditions are too numerous 

to mention here, but are listed in Molenberghs and Verbeke, 2005, page 191), the maximization 

of the logarithm of the CML function in Equation (9) is achieved by solving the composite score 

equations given by ,),(),(log),(
~

1

0==∇= ∑
=

E

e
eeCMLCML sLs mθmθmθ ω  where 

).;(log),( mθmθ ee Ls ∇=  Since these equations are linear combinations of valid likelihood score 

functions associated with the event probabilities forming the composite log-likelihood function, 

they immediately satisfy the requirement of being unbiased. Further, if q independent 

observations on the vector Y are available (say ),,,, Q321 mmmm … , as would be the case when 

there are several individuals q (q = 1, 2, 3,…, Q) with panel data or repeated choice data, then, in 
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the asymptotic scenario that ∞→Q  with D  fixed, a central limit theorem and a first-order 

Taylor series expansion can be applied in the usual way (see, for example, Godambe, 1960) to 

the resulting mean composite score function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

),(1
1

,
qmθ

Q

q
qCMLs

Q
to obtain consistency and 

asymptotic normality of the CML estimator (see also Lindsay, 1988, Cox and Reid, 2004, and 

Zhao and Joe, 2005, Theorem 1): 

[ ],)(,0()ˆ( ~ θGθθ 1−→− K

d

CML NQ              (13) 

where )(θG  is the Godambe information matrix defined as )]([)]()[( 1 θHθJθH − .  )(θH  and 

)(θJ  take the following form: 

⎥
⎦

⎤
⎢
⎣

⎡
′∂∂

∂
−=

θθ
θθH )(log)(

2
CMLLE  and ⎥

⎦

⎤
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⎣

⎡
⎟
⎠
⎞

⎜
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⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
θ

θ
θ

θθJ )(log)(log)( CMLCML LLE .                  (14) 

These may be estimated in a straightforward manner at the CML estimate CMLθ̂  as follows: 
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Even in the case where the data include very few or no independent replicates (as would be the 

case with global social or spatial interactions across all individuals in a cross-sectional data in 

which D is equal to the number of individuals), the CML estimator will retain the good 

properties of being consistent and asymptotically normal as long as the data is formed by 

pseudo-independent and overlapping subsets of observations (such as would be the case when 

the social interactions taper off relatively quickly with the social separation distance between 

decision-makers, or when spatial interactions rapidly fade with geographic distance based on an 

autocorrelation function decaying toward zero; see Cox and Reid, 2004 for a technical 

discussion).4  

                                                 
4 Otherwise, there may be no real solution to the CML function maximization and the asymptotic results laid out 
above will not hold. 
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Of course, the Cramer-Rao inequality implies that the CML estimator loses some 

asymptotic efficiency from a theoretical perspective relative to a full likelihood estimator 

(Lindsay, 1988; Zhao and Joe, 2005).5 On the other hand, when simulation methods have to be 

used to evaluate the likelihood function, there is also a loss in asymptotic efficiency in the 

maximum simulated likelihood (MSL) estimator relative to a full likelihood estimator (see 

McFadden and Train, 2000).6 Consequently, it is difficult to state from a theoretical standpoint 

whether the CML estimator efficiency will be higher or lower than the MSL estimator efficiency. 

However, in a simulation comparison of the CML and MSL methods for multivariate ordered 

response systems, Bhat et al. (2010b) found that the CML estimator’s relative efficiency was 

almost as good as that of the MSL estimator, but with the benefits of a very substantial reduction 

in computational time and much superior convergence properties. Even when the log-likelihood 

function may be maximized without simulations, several studies have found that the efficiency 

loss of the CML estimator (relative to the maximum likelihood (ML) estimator) appears to be 

negligible to small from an empirical standpoint (see Zhao and Joe, 2005; Lele, 2006; Joe and 

Lee, 2009).7 

 In the next few sections, we discuss how the MVNCD function approximation of Section 

2.1 and the CML inference approach of Section 2.2 can be gainfully combined in the proposed 

MACML inference approach for MNP models. 

  

                                                 
5 The theoretical efficiency loss of the CML estimator compared to the full information maximum likelihood (ML) 
estimator, if such an estimator is feasible, originates from the failure of the information identity (i.e., 

)()]([ 1 θJθH ≠− ). This is also referred to as the failure of the second Bartlett identity. In particular, from a 
theoretical standpoint, the difference between the asymptotic variances of the CML estimator (i.e., 

1][)( −= )(θGθVCML ) and the ML estimator ( 1)]([ −θH ) is positive semi-definite (see Cox and Reid, 2004; Zhao and 
Joe, 2005).  
6 Specifically, McFadden and Train (2000) indicate, in their use of independent number of random draws across 
observations, that the difference between the asymptotic covariance matrix of the MSL estimator obtained as the 
inverse of the sandwich information matrix and the asymptotic covariance matrix of the ML estimator obtained as 
the inverse of the cross-product of first derivatives is also theoretically positive semi-definite for finite number of 
draws per observation.  
7 A handful of studies (see Hjort and Varin, 2008; Mardia et al., 2009; Cox and Reid, 2004) have also theoretically 
examined the limiting normality properties of the CML approach, and compared the asymptotic variance matrices 
from this approach and the ML approach. However, such a precise theoretical analysis is possible only for extremely 
simple models. 
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3. CROSS-SECTIONAL MULTINOMIAL PROBIT MODEL 

In the discussion below, we will assume that the number of choice alternatives in the choice set 

is the same across all individuals. The case of different numbers of choice alternatives per 

individual poses no complications whatsoever, since the only change in such a case is that the 

dimensionality of the multivariate normal cumulative distribution (MVNCD or normal orthant 

probability) function changes from one individual to the next.  

A multinomial probit model may arise from several underlying structural motivations. In 

this section, we will consider a random-coefficients normal formulation superimposed on an IID 

normal error structure as the mechanism that leads to the typical cross-sectional MNP model. We 

do so to streamline the presentation, especially because the panel MNP structure we consider in 

the next section is a natural extension of the cross-sectional random-coefficients MNP structure. 

In the random-coefficients formulation, write the utility that an individual q associates with 

alternative I as follows: 

qiqiU ε+′= qiq xβ                (16) 

where qix  is a )1( ×K -column vector of exogenous attributes, qβ  is an individual-specific 

)1( ×K -column vector of corresponding coefficients that varies across individuals based on 

unobserved individual attributes, and qiε  is assumed to be an independently and identically 

distributed (across alternatives and individuals) normal error term with a variance of one-half. 

Assume that the qβ  vector in Equation (16) is a realization from a multivariate normal 

distribution with a mean vector b and covariance matrix LL ′=Ω , where L is the lower-

triangular Cholesky factor of Ω . 

 The traditional classical MSL approach to estimate the model of Equation (16) depends 

upon the dimensionality of qβ (= K) relative to the dimensionality of I. If 2−< IK , then it is 

convenient to write the likelihood contribution of individual q who chooses alternative m as: 

[ ]{ }[ ] dβbβzβb qim
β

),|()(  )(2 ),( ΩΩ fdL
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⎝

⎛
+′−Φ= ∏∫∫
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∞

−∞=

∞

−∞=

λλφλ
λ

        (17) 

where qmελ ⋅= 2 , (.)φ  is the standard normal density function, and (.)f  is the multivariate 

normal density function with mean b and covariance Ω . The result is a multi-dimensional 
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integral of dimension 1+K . On the other hand, if 2−> IK , then it is convenient to write the 

likelihood contribution of individual q by noting that the latent utility differentials 

)  ,( * miUUy qmqiqim ≠−=  have a mean vector of qB  ),...,,( ′′′′ qImmqmq zbzbzb 21  and a covariance 

matrix given by 1)(ΩΣ −+′= Iqq IDz z q , where qz  is an KI ×− )1(  matrix of independent 

variables obtained by vertically concatenating the transpose of the 1×K  vectors qimz  

( ,qmqiqim xxz −= i = 1, 2, …, I, i ≠ m), and 1−IID  is a matrix of size )1( −I  with ones on the 

diagonal and values of 0.5 on the off-diagonals. The likelihood contribution of individual q 

choosing alternative m then takes the multidimensional )1( −I  integral form below: 

),(),( )1( qqBb ΣΩ −= −Iq FL               (18) 

where 1−IF  is the multivariate cumulative normal distribution of )1( −I  dimensions. 

 The MVNCD approximation of Section 2.1 is computationally efficient and 

straightforward to implement when maximizing the likelihood function of Equation (18).8,9  As 

such, the MVNCD approximation can be used for any value of K and any value of I, as long as 

there is data support for the estimation of parameters. Of course, parsimonious factor-analytic or 

other spatial structures may be imposed on the covariance matrix Ω  based on the process under 

study to reduce the number of parameters to be estimated and increase estimator efficiency. 

One final issue in the MACML estimation relates to the procedure to ensure that the 

symmetric matrix Ω  is positive-definite (that is, all the eigenvalues of the matrix should be 

positive, or, equivalently, the determinant of the entire matrix and every principal submatrix of 
                                                 
8As indicated earlier, the CML class of estimators subsumes the usual ordinary full-information likelihood estimator 
as a special case. It is this characteristic of the CML approach that leads us to the label MACML for the estimation 
approach proposed here. Specifically, even in cross-sectional mixing distribution contexts, when our approach 
involves only the approximation of the maximum likelihood function, the MACML label is appropriate since the 
maximum likelihood function is a special case of the CML function. Of course, in a panel context or in cross-
sectional/panel contexts with spatial/social error dependencies, we use a specific pairwise (and non-ML) technique 
within the CML approach for estimation, as discussed in Sections 4 and 5.  
9The use of the MVNCD approximation (as discussed in Section 2.1) has been shown to be accurate in the context 
of evaluating single multivariate integrals. Joe (1995) indicates that the approximation has an error (even in the 
worst case of high correlations) in the third decimal place. In a companion paper, we have examined the 
performance of the MVNCD approximation in the context of estimating parameters in cross-sectional and panel 
multinomial probit models. The results indicate that the approximation provides parameter values very close to the 
“true” population parameter values in simulation experiments, with the empirical absolute percentage bias being 
smaller than that from regular simulation techniques to evaluate the MVNCD function. Thus, the MVNCD-
approximated log-likelihood function as proposed here should be close to the log-likelihood function for all 
parameters in a neighborhood of the “true” parameter values, which implies that the covariance matrix computed 
using our MACML procedure should also be an accurate approximation to the actual covariance matrix. 
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Ω  should be positive). To do so, Ω  may be reparameterized through a Cholesky matrix 

decomposition, and then these Cholesky-decomposed parameters may be estimated. 

 

4. PANEL MULTINOMIAL PROBIT MODELS 

In the discussion below, we will assume that the number of choice occasions per individual is the 

same across all individuals. We discuss the case of different numbers of choice occasions per 

individual in Section 4.2. 

 

4.1. The Panel MNP Model 

Consider the following model with ‘t’ now being an index for choice occasion: 

TtIiQqMVNU qitqit  ..., ,2 ,1  , ..., ,2 ,1  , ..., ,2 ,1  ,),(~  , ===+′= Ωbβxβ qqitq ε        (19) 

Let qitε  be IID normal over individuals, alternatives, and choice occasions with a variance of 0.5. 

We will assume that the coefficients qβ  are constant over choice situations of a given decision 

maker. 

 The traditional simulation procedures are similar to the cross-sectional case. Consider an 

individual who selects alternative tm  at the tth choice occasion. When the number of random 

coefficients K (the cardinality of the vector qβ ) is less than 2])1[( −∗− TI , as will mostly be the 

case in application, it is convenient to write the likelihood contribution of individual q as: 

[ ]{ }[ ] dβbβzβb tqim
β
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where )( tqmqittqim tt
xxz −= . Another approach is to write the likelihood contribution in terms of 

the latent utility differentials tqmqittqimtqimtqim tttt
y εεηη −=+′=  ,*

tqimq t
zβ ).( tmi ≠  These latent utility 

differentials have an TI ∗− )1(  mean vector qB  );(  ...  ,( 1mi ≠′′′ 11211 11 qImmqmq zbzbzb  

);(  ...  , 2mi ≠′′′ 22221 222 qImmqmq zbzbzb ))(  , ... , ,  ..., Tmi ≠′′′ TqImTmqTmq TTT
zbzbzb 21  and a covariance matrix 

given by 1)(ΩΣ −×+′= ITqq IDz z q
~~  where qz~  is a KIT ×−× )]1([  matrix obtained by vertically 

concatenating the transpose of the 1×K  vectors tqimt
z (i = 1, 2, …, I, i ≠ mt; t = 1, 2, …, T) (note 

that there are )1( −× IT  vectors in tqimt
z ), and 1)( −× ITID  is a block-diagonal matrix with each 
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block matrix of size )1()1( −×− II  with values of one along the diagonal and values of 0.5 on 

the off-diagonals. The likelihood contribution of individual q then takes the multidimensional 

TI ×− )1(  integral form below: 

),(),( )1( qqBb ΣΩ −= ×− TIq FL ,              (21) 

with TIF ×− )1(  being the multivariate cumulative normal distribution of TI ×− )1(  dimensions. 

 The simulation approaches for evaluating the panel likelihood function are time-

consuming. In our MACML estimation approach, we propose a combination of the 

approximation method for multivariate normal orthant probabilities and the composite marginal 

likelihood method. Specifically, based on Equation (12) and the notation defined there, the 

analyst may construct the following pairwise CML function across the choice occasions of 

individual q: 

]0  and  0[ Prob                    

),( Prob),(
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1
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1
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wwqim
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ttqim
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wqwtqt
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miymiy

mCmCL
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= +=

Ωb
        (22) 

The computational effort is reduced in the CML above because only pairwise marginal 

multivariate probabilities are being considered across choice occasions. However, each 

multivariate orthant probability above still has a dimension equal to .2)1( ×−I  But such an 

orthant probability is conveniently computed using the approximation of Section 2.1, leading to 

solely bivariate and univariate cumulative normals. This is a remarkable decomposition and 

simplification. In this approximation, the bivariate probability expression for the latent variables 

within the same time period t takes the form shown below ) ,,( gimgi t ≠≠ : 

 where, ,
)(Var

,
)(Var

]0,0[Prob
**2

*

⎥
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⎢
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Φ=<< tqigm
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ρ  are obtained from the 

following )22( ×  matrix: 
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⎥
⎦

⎤
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⎣

⎡
+′′=

15.0
5.01

)~~( igtqqigtqigt z z ΔΩΔΣ .                                   (24) 

In the equation above, igtΔ  is a selection matrix of size ])1[(2 TI ×−× . It has a value of one in 

the th])1()1[( itI +−×−  column in the first row if tmi <  or a value of one in the 

th)]1()1()1[( −+−×− itI  column in the first row if tmi > . Similarly, it has a value of one in the 

th])1()1[( gtI +−×−  column in the second row if tmi <  or a value of one in the 

th)]1()1()1[( −+−×− gtI  column in the second row if tmi > . The matrix has values of zero 

everywhere else.  

 The bivariate probability expressions for the latent variables across time periods t and w 

take the form shown below: 

 where, ,
)(Var

,
)(Var
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⎡
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10
01

)~~( igtwqqigtwqigtw z z ΔΩΔΣ .                        (26) 

In the above expression, igtwΔ  is a selection matrix of size ])1[(2 TI ×−× . This matrix has a 

value of one in the th])1()1[( itI +−×−  column in the first row if tmi <  or a value of one in the 

th)]1()1()1[( −+−×− itI  column in the first row if tmi > . Similarly, it has a value of one in the 

th])1()1[( gwI +−×−  column in the second row if wmg <  or a value of one in the 

th)]1()1()1[( −+−×− gwI  column in the second row if wmg > . The matrix has values of zero 

everywhere else. 

 The covariance matrix of the estimator may then be obtained using the inverse of the 

Godambe information matrix )),()]()[(( 1 θHθJθH −=G  where )(θH  and )(θJ  may be 
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estimated as in Equation (15) with θ ,](Vech(,[ ′′′= )Ω)b where Ω)(Vech  represents the column 

vector of upper triangle elements of Ω .  

 

4.2. The Case of Unequal Number of Choice Occasions 

In Section 4.1, we assumed the same number of choice occasions T per individual. Now, 

consider the case when there are unequal numbers of choice occasions per individual, which is 

not uncommon with panel data. Let individual q be observed to contribute Tq choice occasions. 

Then, the unweighted CML functions presented earlier will give more weight to individuals who 

have more choice occasions than those who have fewer choice occasions. To address this 

situation, a weighted CML function may be used (see Kuk and Nott, 2000, Renard et al., 2004). 

Note that, in the context of the discussion in Sections 4.1, and in the absence of any random 

coefficient effects (that is, when all elements of Ω  are zero), the correlation between all inter-

temporal pairs of utility differentials ),  ),,( **
wtwqjmtqim mgmiyy

wt
≠≠  are zero, and Equation (22) 

collapses as follows: 
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On the other hand, when there are random coefficients, the overall correlation between any inter-

temporal pair of utility differentials could fall or rise from 0.0, depending upon the nature of the 

matrix Ω  and the matrix qz . However, except in extreme cases, such as when exogenous 

variables are of opposite signs across time periods for different alternatives or for the same 

alternative, the net result of the presence of random coefficients will be an increase in the 

magnitude of correlation from the value of zero.  

In the first case discussed above (that is, the absence of random coefficients), Le Cessie 

and Van Houwelingen (1994) suggest, in their binary data context, that each individual should 

contribute about equally to the CML function. This may be achieved by power-weighting each 

individual’s likelihood contribution by a factor that is the inverse of the number of choice 

occasions minus one (in our context, this is .]1[ 1−−qT ). The net result is that the composite 

likelihood contribution of individual q collapses to the likelihood contribution of the individual 
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under the case of independence across choice occasions. In a general correlated binary data 

context, Kuk and Nott (2000) confirmed the above result for efficiently estimating the mean 

vector b in the case when the correlation is close to zero. However, their analysis suggested that 

the unweighted CML function remains superior for estimating the correlation parameters (in our 

context, this corresponds to the elements of the Ω  matrix). In a recent paper, Joe and Lee (2009) 

theoretically studied the issue of efficiency in the context of a simple random effect binary 

choice model. They indicate that the weights suggested by Le Cessie and Van Houwelingen 

(1994) and Kuk and Nott (2000) can provide poor efficiency even for the mean vector b when 

the correlation between pairs of the underlying latent variables for the repeated binary choices 

over time is moderate to high. Based on analytic and numeric analyses using a longitudinal 

binary choice model with an autoregressive correlation structure, they suggest that using a 

weight of 11 )]1(5.01[)1( −− −+− qq TT  for individual q appears to do well in terms of efficiency 

for all parameters and across varying dependency levels. Thus, our suggested composite 

likelihood contribution for individual q in the unbalanced panel case is to weight each 

individual’s composite likelihood contribution by a power factor of .)]1(5.01[)1( 11 −− −+− qq TT  

Of course, for MNP contexts where the number of choice occasions across individuals is not 

substantially different, the difference between the weighted and unweighted CML functions in 

terms of estimator efficiency may not be substantial. This is an issue that needs to be studied 

empirically, and is left as a direction for further research.  

   
4.3. Other Panel Extensions 

We now discuss the MACML estimation approach for a few more extensions of the traditional 

panel probit models. In the following discussion, we assume the same number of choice 

occasions across individuals. This will help keep the presentation streamlined. Extending the 

models below to the case of different numbers of choice occasions across individuals poses no 

substantial difficulties, since weights can be used as just discussed.  

 

4.3.1. Intra- and Cross-Temporal Random Coefficients 

Consider the following utility function: 

qitqitU ε+′= qitqt xβ                (28) 
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where qtqqt ββbβ ~~
++= , ),0(~~ ΩNqβ , )~,0(~~ ΩNqtβ , and qitε  is IID normal across 

individuals, alternatives, and choice occasions with a variance of 0.5. The above form for qtβ  

generates covariance across all the choice occasions of individual q and across alternatives i at 

any time t, due to the qβ
~  term (this is the same as the usual panel mixed model). However, there 

is an additional covariance across alternatives i at any time t due to the qtβ~  term (see Bhat and 

Castelar, 2002 and Bhat and Sardesai, 2006 for such a specification, but with a logit kernel). 

Using the same notation as earlier, the MACML estimation of this model is straightforward and 

takes the same form as Equations (22), (23), and (25) with 
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4.3.2. Autoregressive Random Coefficients Structure 

In this structure, consider an autoregressive structure of order one: 

qtqt βbβ ~
+= ,                (30) 

where qttqqt μββ += −1,
~~~ ρ , )~,0(~ ΩNμqt , 0),(Cov =qwqt μμ  for wt ≠  and ρ~  is an 

autocorrelation parameter with 1|~| <ρ  to ensure stationarity (note that ρ~  itself can be a function 

of individual-specific attributes and can be written as qρ
~ ; however, this is a trivial extension 

from a conceptual standpoint and so we will restrict the presentation to a single ρ~  parameter). 

The specification above implies that 0)~( =qtβE , 2~1

~
)~(Var

ρ−
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Ω
qtβ , and 

2

||

~1

~~
)~,~(Cov

ρ
ρ
−

=
− Ωwt

qwqt ββ . 

 For this model, the CML function is the same again as in Equations (22), (23) and (25) 

with 
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4.3.3. Individual-Constant and Autoregressive Random Coefficients Structure 

This structure takes the following form: 

qtqqt ββbβ ~~
++= , ),0(~~ ΩNqβ , and            (32) 

qt1tq,qt μββ += −
~ ~~ ρ , )~,0(~ ΩNqtμ , 0),(Cov =qwqt μμ  for wt ≠ , 1|~| <ρ .        

The CML function is as in Equations (22), (23), and (25) with 
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4.3.4. Dynamic Panel Structure 

Consider a first-order lagged dependence structure that takes the following form: 

qitqitqit UU ερ ++′= −1
~

qitxb , with 1|~| <ρ .10            (34) 

qitε  is IID normal across individuals, alternatives, and time periods with a variance of 0.5. 

Taking utility differences ( tqmqit t
UU − ) at the tth occasions (i = 1, 2, …, I, i ≠ tm ), the result is: 

tqimtqimtqim ttt
yy ηρ ++′= −−

*
1

*
1

~
tqimt

zb                              (35) 

                                                 
10 Individuals are observed making choice from t = 1. The lagged utility structure brings up the issue of initial 
conditions, since we do not observe individual choices before t = 1. Here we assume that Uqio = 0 to resolve the 
initial conditions issue, which is equivalent to assuming equal probabilities of choice for any alternative i before 
observation begins. Other ways to accommodate initial conditions are discussed in Heckman and Singer (1986). 
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The expected value and the variance of *
tqimt

y  based on the above equation may be written as 
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The MACML approach remains the same as for the panel MNP models, with the following 

bivariate probability expression for the latent variables within the same time period t: 
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The corresponding expression for the bivariate probability expression for the latent variables 

across time periods is given by ),( wt mgmi ≠≠ : 
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5. EXTENSION TO INCORPORATE SPATIAL CORRELATION 

In this section, we discuss the MACML application to multinomial probit models with spatial 

correlation, though the same procedures may be adopted to accommodate social interaction 

effects.  

Spatial correlation may exist across discrete choice alternatives (see, for example, Bolduc 

et al., 1996; Bhat and Guo, 2004; Miyamoto et al., 2004; Sener et al., 2011) or across decision-

makers (see, for example, Anselin, 2003; Fleming, 2004; Franzese and Hays, 2008; Bhat and 
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Sener, 2009). The focus here will be on spatial correlation across decision makers. Interestingly, 

in the context of spatial correlation across decision makers, almost all earlier studies have either 

focused on binary response models or ordered response models. In particular, spatial correlation 

across individuals has seldom even been discussed (let alone being studied) in the context of 

unordered-response models. On the other hand, spatial correlation in data may occur in 

unordered-response models for the same reasons (for example, diffusion effects, social 

interaction effects, and unobserved location-related effects) they have been studied extensively in 

binary and ordered-response models.  

In terms of estimation of binary and ordered-response discrete choice models with a 

general spatial correlation structure, the analyst confronts, in the familiar probit model, a multi-

dimensional integral over a multivariate normal distribution, which is of the order of the number 

of observational units in the data. While a number of approaches have been proposed to tackle 

this situation (see McMillen, 1995; LeSage, 2000; Pinkse and Slade, 1998; Fleming, 2004; Beron 

et al., 2003; Beron and Vijverberg, 2004), none of these remain practically feasible for moderate-

to-large samples. These methods are also quite cumbersome and involved.  In the context of 

unordered-response models, the situation becomes even more difficult – the likelihood function 

entails a multidimensional integral over a multivariate normal distribution, which is of the order 

of the number of observational units factored up by the number of alternatives minus one. This 

situation, however, is relatively easily handled using the MACML method, as we discuss below. 

As in Section 4, we assume the same number of alternatives across individuals to help keep the 

presentation streamlined. We also focus on a cross-section spatial formulation. The extension to 

a panel formulation is similar to the extensions from the cross-sectional to the panel structure in 

the non-spatial structures discussed earlier.  

 The next section discusses a spatial error model, while Section 5.2 presents the minor 

modifications that need to be made to handle the spatial lag model.  

 

5.1. Spatial Error Model 

Consider the following specification of utility for individual q and alternative i: 

),(~~,~  ; Ω0βxβ qqiq NbvU qqqiqi ββ+=+′=            (39) 

1|| ),,0(~  ; <+= ′
′
∑ ρξξρ ΛNvwv qiqiqiqq

q
qi . 
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In the above formulation qqw ′  is the spatial weight corresponding to individuals q and q′ , with 

0=qqw  and 1=′
′
∑ qq

q

w  for each (and all) q. We also assume that qiξ  is independent and 

identically distributed across q, but allow a general covariance structure across alternatives for 

individual q. As usual, appropriate scale and level normalization must be imposed on Λ  or 

identifiability. Specifically, only utility differentials matter in discrete choice models. Taking the 

utility differentials with respect to the first alternative, only the elements of the covariance matrix 

1Λ  of )1(~
11 ≠−= iqqiqi ξξξ  are estimable. However, the MACML inference approach proposed 

here, like the traditional GHK simulator, takes the difference in utilities against the chosen 

alternative during estimation. Thus, if individual q is observed to choose alternative qm , the 

covariance matrix 
qmΛ  is desired for the individual. However, even though different differenced 

covariance matrices are used for different individuals, they must originate in the same original 

values for Λ . To achieve this consistency, Λ is constructed from 1Λ  by adding an additional 

row on top and an additional column to the left. All elements of this additional row and 

additional column are filled with values of zeros. An additional normalization needs to be 

imposed on Λ  because the scale is also not identified. For this, we normalize the element of Λ  

in the second row and second column to the value of one. Note that these normalizations are 

innocuous and are needed for identification. The Λ  matrix so constructed is fully general.  

 Some additional notation now. Define the following: ),...,( 21 ′= qIqq UUUqU  ( 1×I  

vector), ),...,( ′= Q21 UUUU  ( 1×QI vector), ),...,( 21 ′= qIqq ξξξqξ  ( 1×I vector), 

)( ′′′′= Q21 ξ,...ξ,ξξ  ( 1×QI vector), )( ′= qIq2q1q ,...xx,xx  ( KI ×  matrix), )( ′′′′= Q21 x,...x,xx  

( KQI ×  matrix), and ( )′′′′= Q21 β,...,β,ββ ~~~~  ( 1×QK  vector) . Let EIDEN  be the identity matrix 

of size E, and E1  be a column vector of size E with all of its elements taking the value of one. 

Also, define the following matrix: 
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matrix),  (~ QKQI ×
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                      (40) 

Then, we can write Equation (39) in a compact form as: 

,~~ SξβxxbU ++=                (41) 

where [ ] matrix),()( QIQI ×⊗−= −1
IQI IDENρWIDENS  and W is the )( QQ ×  weight matrix 

with the weights qqw ′  as its elements. Let e[.]  indicate the eth element of the column vector [.], 

and let .)1( iIqdqi +−=  Equation (39) can be equivalently written using Equation (41) as: 

[ ] [ ] .~~
qiqi ddqiU Sξβxxb ++=               (42) 

Define [ ]
qidqiV xb=  and [ ] .~~

qidqi Sξβx +=ε Next, as earlier, let individual q be observed to choose 

alternative qm . Stack the latent utility differentials *
qqimy ) ,( qqmqi miUU

q
≠−=  as follows: 

) ..., , ,( **
2

*
1 ′=

qqq Imqmqmq yyy*
qy , and ) ..., , ,( ′= ′′′ *

Q
*** yyyy 21 . Thus *y  is an QI ∗− )1(  vector. Also, let 

qq qmqiqim VVH −= . The likelihood of the observed sample (i.e., individual 1 choosing alternative 

1m , individual 2 choosing alternative 2m , …, individual Q choosing alternative Qm ) may then 

be written succinctly as Prob[y* < 0]. To write this likelihood function, note that *y  has a mean 

vector B given by 

.])( ..., , ,... ; )( ..., , ,; )( ..., , ,[ 21222221111211 222111
′≠≠≠ QImQmQmQImmmImmm miHHHmiHHHmiHHH

QQQ

To obtain the covariance matrix of *y , define M as a ][)]1([ QIIQ ×−×  block diagonal matrix, 

with each block diagonal having )1( −I  rows and I columns corresponding to each individual q. 

This II ×− )1(  matrix for individual q corresponds to an )1( −I  identity matrix with an extra 

column of 1− ’s added as the qm th column. For instance, consider the case of I = 4 and Q = 2. 

Let individual 1 be observed to choose alternative 2 and individual 2 be observed to choose 

alternative 1. Then M takes the form below. 
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Finally, define the following additional matrices: 

)(~ QIQI ×⊗= ΛΛ QIDEN  matrix, 

QIQI ×′⊗= (~)(~~ xIDENx Q ΩΩ ) matrix, 

)]()[(a  ,~~ QIQI ×′= SSF Λ  matrix, and                       (44) 

)}]1({)}1([{an  ,)~~( −××−×′+= IQIQMFM ΩΣ  matrix 

Then we can write ),(~ ΣBy* MVN , and the likelihood function of the sample is: 

),()0(Prob)( )1(
* ΣByθ −=<= −× IQML FL ,                       (45) 

where θ  is the collection of parameters to be estimated: [ ] [ ] ,)Vech(;)(Vech;
′

⎥⎦
⎤

⎢⎣
⎡ ′′′= ρ,bθ ΛΩ  

with Vech(Ω ) representing the column vector of upper triangle elements of Ω . )1( −× IQF  is the 

multivariate cumulative normal distribution of )1( −× IQ  dimensions. Of course, maximizing 

the above likelihood function requires the evaluation of a )1( −× IQ integral. However, the 

MACML approach may be again used here. The pairwise likelihood function is as follows: 

]0  and  0[Prob               

),( Prob)(

*
1

1

*

1

1

1 1

qqim

Q

q
qqim

Q

qq

qqqq

Q

q

Q

qq
CML

miymiy

mCmCL

qq ′

−

= +=′

′′

−

= +=′

≠∀<≠∀<=

===

′∏ ∏

∏ ∏θ
                    (46) 

The pairwise likelihood function above is similar to the case of a panel model, except that the 

pairs correspond to the choices of two different individuals at the same point in time. Each 

multivariate orthant probability above has a dimension equal to 2)1( ×−I , which can be 
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computed using the approximation of Section 2.1. The variances and correlations in the bivariate 

and univariate cumulative normal distribution expressions in the approximation can be obtained 

as appropriate sub-matrices of Σ . The positive-definiteness of Σ  can be ensured by using a 

Cholesky-decomposition of the matrices Ω  and Λ , and estimating these Cholesky-decomposed 

parameters. 

The one important problem with the CML expression in Equation (46) is that it entails 

2/)1( −QQ  pairs of multivariate probability computations, which can be very time consuming. 

Fortunately, in a spatial case where dependency drops quickly with inter-observation distance, 

the pairs formed from the closest observations provide much more information than pairs that are 

very far away. In fact, as demonstrated by Varin and Vidoni (2009), Varin and Czado (2010), 

Bhat et al. (2010a), and Apanasovich et al. (2008) in different empirical contexts, retaining all 

2/)1( −QQ  pairs not only increases computational costs, but may also reduce estimator 

efficiency. Typically, in a spatial context, there appears to be an optimal distance for inclusion of 

observation pairs. This distance threshold may be set based on knowledge about the spatial 

process or based on testing the efficiency of estimators with varying values of the distance 

threshold. Using such a distance threshold effectively reduces the number of pairwise terms in 

the CML function.11 Let the set of observational units within the threshold distance of unit q be 

qM~ . Then, we propose dummy weights to include appropriate pairwise terms in the composite 

marginal likelihood function of Equation (45). In particular, 1=′qqω  if qMk ~∈  and 0=′qqω . The 

CML function may then be refined as follows: 

[ ] ,),( Prob)(
1

1 1

qq
qqqq

Q

q

Q

qq
CML mCmCL ′

′′

−

= +=′

===∏ ∏ ωθ            (47) 

 

                                                 
11 Note also that while we discuss the application of the MACML approach in the context of spatial dependence, the 
framework is extendable to include social and other forms of dependence too. This is because the weight matrix W 
that forms the basis for spatial dependence can be the basis for more general forms of dependence. In fact, W itself 
can be parameterized as a finite mixture of several weight matrices, each weight matrix being related to a specific 

covariate k: ,
1

kWW k

K

k
ϕ∑

=
= where kϕ  is the weight on the kth covariate in determining dependency between 

individuals ( 1
1

=∑
=

k

K

k
ϕ ), and kW  is a measure of distance between individuals on the kth covariate.  
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One final issue. As discussed earlier in Section 1.2, the spatial property that the 

correlation fades over time implies that the CML estimator will retain the properties of being 

consistent and asymptotically normal. The “bread” matrix of )(θH  in Equation (14) can be 

estimated in a straightforward manner using the Hessian of the negative of )(log θCMLL , 

evaluated at the CML estimate θ̂ . This is because the information identity remains valid for each 

pairwise term forming the composite marginal likelihood. Thus, )(θH can be estimated as: 

CML

qqCML
Q

qq

Q

q

L

θ
θθ

θ
)θ(H

ˆ

,
2

1

1

1

)(logˆˆ ⎥
⎦

⎤
⎢
⎣

⎡
′∂∂

∂
−= ′

+=′

−

=
∑∑ ,             (48) 

where .)],([)(,
qq

qqqqqqCML mCmCPL ′

′′′ === ωθ  However, the estimation of the “vegetable” 

matrix )(θJ  is more difficult; it cannot be evaluated at the convergent parameter values because 

the score function is zero at the convergence point . One cannot empirically estimate )(θJ  as the 

sampling variance of individual contributions to the composite score function (as is possible with 

panel data) because of the underlying spatial dependence in observations. But, since the spatial 

dependence fades with distance, we can use a windows resampling procedure (see Heagerty and 

Lumley, 2000) to estimate )(θJ . This procedure entails the construction of suitable overlapping 

subgroups of the original data that may be viewed as independent replicated observations. Then, 

)(θJ  may be estimated empirically. While there are several ways to implement this, one simple 

way we suggest is to overlay the spatial region under consideration with a square grid providing 

a total of Q~  internal and external nodes. Then, select the observational unit closest to each of the 

Q~  grid nodes to obtain Q~  observational units from the original Q observational units 

).~,3,2,1~( Qq …=  Next, consider the set qR~ of observational units h such that 1~ =hqω , and 

include q~  as an observational unit in this set )~,...2,1( ~qHh = . Let ∑ ∑
−

= +=′
′=

1~

1

~

1
~

~ ~q qH

h

H

hh
hhqN ω and 

∑ ∑
−

= +=′
′=

1

1 1
.~ Q

q

Q

qq
qqW ω The Q~  different sets of pairings may be considered as pseudo-independent, 
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given that they are spaced out in a grid and the spatial dependence fades rapidly with distance.12 

An empirical estimate of )(θJ  may be obtained as follows: 
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5.2. The Spatial Lag Model 

The spatial lag model structure, with random coefficients, takes the following form: 

1|| ),,0(~  ; <+′+= ′′
′
∑ ρξξρ ΛNUwU qiqiiqqq

q
qi qiq xβ ,                     (50) 

where qiξ  is independent and identically distributed across q. Using the same notation as earlier, 

the equivalent of Equation (41) in the spatial lag model is: 

[ ],~~ ξβxxbSU ++=                                                                                 (51) 

Define [ ] dqiV  Sxb=  and 
qq qmqiqim VVH −= , where qm  is the alternative chosen by individual q. 

Then stacking the utility differentials *
qqimy ) ,( qqmqi miUU

q
≠−=  as in the spatial error model 

into an )1( −× IQ  vector *y , and using the same notation as earlier, it is easy to see that *y  has 

a mean vector B . The covariance matrix is slightly different from Equation (44), though the 

expressions for ΩΛ ~and~ are the same as in Equation (44). Define the following: 

)]()[( a ,)~~(~ QIQI ×′+= SSF ΩΛ  matrix, and           (52) 

)}]1({)}1([{ an ,~ −××−×′= IQIQMFMΣ  matrix 

                                                 
12 Obviously, there needs to be a balance here between the number of sets of pairings K and the proximity of points. 
The smaller the value of K, the less proximal are the sets of observation units and more likely that the sets of 
observational pairings will be independent. However, at the same time, the value of K needs to be reasonable to 
obtain a good empirical estimate of J, since this empirical estimate is based on the score functions (computed at the 
convergent parameter values) across the K sets of observations.   
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Thus, ),(~ ΣBy* MVN , and the likelihood function is 

),()0(Prob),,( )1( ΣΛΩ By,b * −=<= −× IQML FL ρ . The pairwise likelihood function estimation 

approach is then similar to the spatial error case. 

 

6. MODEL SELECTION  

Procedures similar to those available with the maximum likelihood approach are also available 

for model selection with the MACML approach, based on results relevant to the composite 

marginal likelihood (CML) estimation approach. The statistical test for a single parameter may 

be pursued using the usual t-statistic based on the inverse of the Godambe information matrix. 

When the statistical test involves multiple parameters between two nested models, an appealing 

statistic, which is also similar to the likelihood ratio test in ordinary maximum likelihood 

estimation, is the composite likelihood ratio test (CLRT) statistic. Consider the null hypothesis 

0ττ =:0H  against 0ττ ≠:1H , where τ  is a subvector of θ  of dimension d; i.e., ),( ′′′= ατθ . 

The statistic takes the familiar form shown below: 

)],ˆ(log)ˆ([log2 0θθ CMLCML LLCLRT −=             (53) 

where 0θ̂  is the composite marginal likelihood estimator under the null hypothesis 

))(ˆ,( 00 τατ CML′′ . More informally speaking, θ̂  is the CML estimator of the unrestricted model, 

and 0θ  is the CML estimator for the restricted model. The CLRT statistic does not have a 

standard chi-squared asymptotic distribution. This is because the CML function that is 

maximized does not correspond to the parametric model from which the data originates; rather, 

the CML may be viewed in this regard as a “mis-specification” of the true likelihood function 

because of the independence assumption among the likelihood objects forming the CML 

function (see Kent, 1982, Section 3). To write the asymptotic distribution of the CLRT statistic, 

first define 1)]([ −θGτ  and 1)]([ −θHτ  as the dd ×  submatrices of 1)]([ −θG  and 1)]([ −θH , 

respectively, which correspond to the vector τ . Then, the CLRT has the following asymptotic 

distribution: 

2

1

~~ ii

d

i
WCLRT λ∑

=

,                          (54)  



32 

where 2~
iW  for i = 1, 2, …, d are independent 2

1χ  variates and dλλλ ...21 ≥≥  are the eigenvalues 

of the matrix 1)]()][([ −θGθH ττ  evaluated under the null hypothesis (this result may be obtained 

based on the (profile) likelihood ratio test for a mis-specified model; see Kent, 1982, Theorem 

3.1 and the proof therein). Unfortunately, the departure from the familiar asymptotic chi-squared 

distribution with d degrees of freedom for the traditional maximum likelihood procedure is 

annoying. Pace et al. (2011) have recently proposed a way out, indicating that the following 

adjusted CLRT statistic, ADCLRT, may be considered to be asymptotically chi-squared 

distributed with d degrees of freedom: 

CLRTADCLRT ×
′

′
= −

−−

)()]([])([
)()]()][([)]([])([

1

11

θSθHθS
θSθHθGθHθS

τττ

τττττ , (55) 

where )(θSτ  is the 1×d  submatrix of =)(θS  ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

θ
θ)(log CMLL  corresponding to the vector τ , 

and all the matrices above are computed at 0θ̂ . The denominator of the above expression is a 

quadratic approximation to CLRT, while the numerator is a score-type statistic with an 

asymptotic 2
dχ  null distribution. Thus, ADCLRT is also very close to being an asymptotic 2

dχ  

distributed under the null.  Alternatively, one can resort to parametric bootstrapping to obtain the 

precise distribution of the CLRT statistic for any null hypothesis situation. Such a bootstrapping 

procedure is rendered simple in the CML approach, and can be used to compute the p-value of 

the null hypothesis test. The procedure is as follows (see Varin and Czado, 2010): 

1. Compute the observed CLRT value as in Equation (53) from the estimation sample. Let 

the estimation sample be denoted as obsy~ , and the observed CLRT value as ).~( obsyCLRT  

2. Generate C sample data sets 
Cyyyy ~,...,~,~,~

321  using the CML convergent values under the 

null hypothesis 

3. Compute the CLRT statistic of Equation (53) for each generated data set, and label it as 

).~( cyCLRT  

4. Calculate the p-value of the test using the following expression: 

{ }
,

1

)~()~(1
1

+

≥+
=

∑
=

C

CLRTCLRTI
p

C

c
obsc yy

 where 1}{ =AI if A is true.        (56) 
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The above bootstrapping approach has been used for model testing between nested models in 

Varin and Czado (2010), Bhat et al. (2010a), and Ferdous et al. (2010).  

When the null hypothesis entails model selection between two competing non-nested 

models, the composite likelihood information criterion (CLIC) introduced by Varin and Vidoni 

(2005) may be used. The CLIC takes the following form13: 

[ ]1* )ˆ(ˆ)ˆ(ˆ)ˆ(log)ˆ(log −−= θHθJθθ trLL CMLCML                                              (57) 

The model that provides a higher value of CLIC is preferred. 

  

7. CONCLUSIONS 

It is typical to use simulation techniques to estimate multinomial probit-based models arising 

from general error covariance structures, random coefficients, panel effects, or spatial/social 

interaction effects. However, the accuracy of simulation techniques is known to degrade rapidly 

at medium-to-high dimensions, and the simulation noise increases substantially. This leads to 

convergence problems during estimation. In addition, such simulation-based approaches become 

impractical in terms of computation time as the number of dimensions of integration grows.  

In this paper, we introduce a maximum approximate composite marginal likelihood 

(MACML) estimation approach for multinomial probit models. The MACML approach 

introduced here only involves univariate and bivariate cumulative normal distribution function 

evaluations. As importantly, the approach can be applied using simple optimization software for 

likelihood estimation.  

The author is currently exploring methods to extend the MACML approach to allow a 

non-normal multivariate mixing distribution (such as non-normal random coefficients) over a 

multinomial probit kernel. Such non-normal mixing distributions may be accommodated by 

replacing them with an appropriate finite normal mixture distribution.   

 

                                                 
13 This penalized log-composite likelihood is nothing but the generalization of the usual Akaike’s Information 
Criterion (AIC). In fact, when the candidate model includes the true model in the usual maximum likelihood 
inference procedure, the information identity holds (i.e., H(θ) = J(θ)) and the CLIC in this case is exactly the AIC 
[ −= )ˆ(log θMLL (# of model parameters)]. 



34 

ACKNOWLEDGEMENTS 

The author acknowledges the helpful comments of two anonymous reviewers on an earlier 

version of the paper. The author is grateful to Lisa Macias for her help in typesetting and 

formatting this document. 



35 

REFERENCES 

Albert, J.H., Chib, S., 1993. Bayesian analysis of binary and polychotomous response 
data. Journal of the American Statistical Association 88(422), 669-679. 

Anselin, L., 2003. Spatial externalities, spatial multipliers and spatial econometrics. International 
Regional Science Review 26(2), 153-166. 

Apanasovich, T.V., Ruppert, D., Lupton, J.R., Popovic, N., Turner, N.D., Chapkin, R.S., Carroll, 
R.J., 2008. Aberrant crypt foci and semiparametric modelling of correlated binary data. 
Biometrics 64(2), 490-500. 

Bartels, R., Fiebig, D.G., van Soest, A., 2006. Consumers and experts: an econometric analysis 
of the demand for water heaters. Empirical Economics 31(2), 369-391. 

Beron, K.J., Vijverberg, W.P.M., 2004. Probit in a spatial context: A Monte Carlo analysis. In 
Advances in Spatial Econometrics: Methodology, Tools and Applications, Anselin, L., 
Florax, R.J.G.M., Rey, S.J. (eds.), Springer-Verlag, Berlin, 169-196. 

Beron, K.J., Murdoch, J.C., Vijverberg, W.P.M., 2003. Why cooperate? Public goods, economic 
power, and the Montreal protocol. Review of Economics and Statistics 85(2), 286-297. 

Bhat, C.R., 2001. Quasi-random maximum simulated likelihood estimation of the mixed 
multinomial logit model. Transportation Research Part B 35(7), 677-693. 

Bhat, C.R., 2003. Simulation estimation of mixed discrete choice models using randomized and 
scrambled Halton sequences. Transportation Research Part B 37(9), 837-855.  

Bhat, C.R., 2011. The MACML estimation of the normally-mixed multinomial logit model. 
Technical paper, Department of Civil, Architectural and Environmental Engineering, The 
University of Texas at Austin. 
http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MACML_Estim_Norm_MML_Model.pdf 

Bhat, C.R., Castelar, S., 2002. A unified mixed logit framework for modeling revealed and stated 
preferences: formulation and application to congestion pricing analysis in the San 
Francisco Bay area. Transportation Research Part B 36(7), 593-616. 

Bhat, C.R., Guo, J.Y., 2004. A mixed spatially correlated logit model: formulation and 
application to residential choice modeling. Transportation Research Part B 38(2), 147-168. 

Bhat, C.R., Sardesai, R., 2006. The impact of stop-making and travel time reliability on commute 
mode choice. Transportation Research Part B 40(9), 709-730. 

Bhat, C.R., Sener, I.N., 2009. A copula-based closed-form binary logit choice model for 
accommodating spatial correlation across observational units. Journal of Geographical 
Systems 11(3), 243-272. 

Bhat, C.R., Sidharthan, R. 2011. A Simulation Evaluation of the Maximum Approximate 
Composite Marginal Likelihood (MACML) Estimator for Mixed Multinomial Probit 
Models. Transportation Research Part B, forthcoming.  

Bhat, C.R., Eluru, N., Copperman, R.B., 2008. Flexible model structures for discrete choice 
analysis. In Handbook of Transport Modelling, 2nd edition, Chapter 5, Hensher, D.A., 
Button, K.J. (eds.), Elsevier Science, 75-104.  

Bhat, C.R., Sener, I.N., Eluru, N., 2010a. A flexible spatially dependent discrete choice model: 
formulation and application to teenagers’ weekday recreational activity participation. 
Transportation Research Part B 44(8-9), 903-921. 



36 

Bhat, C.R., Varin, C., Ferdous, N., 2010b. A comparison of the maximum simulated likelihood 
and composite marginal likelihood estimation approaches in the context of the multivariate 
ordered response model. In Advances in Econometrics: Maximum Simulated Likelihood 
Methods and Applications, Vol. 26, Greene, W.H., Hill, R.C. (eds.), Emerald Group 
Publishing Limited, 65-106. 

Bolduc, D., Fortin, B., Fournier, M., 1996. The effect of incentive policies on the practice 
location of doctors: a multinomial probit analysis. Journal of Labor Economics 14(4), 703-
732. 

Caragea, P.C., Smith, R.L., 2007. Asymptotic properties of computationally efficient alternative 
estimators for a class of multivariate normal models. Journal of Multivariate Analysis 
98(7), 1417- 1440. 

Cox, D.R., Reid, N., 2004. A note on pseudolikelihood constructed from marginal densities. 
Biometrika 91(3), 729-737. 

Craig, P., 2008. A new reconstruction of multivariate normal orthant probabilities. Journal of the 
Royal Statistical Society: Series B 70(1), 227-243. 

Dube, J-P., Chintagunta, P., Petrin, A., Bronnenberg, B., Goettler, R., Seetharam, P.B., Sudhir, 
K., Tomadsen, R., Zhao, Y., 2002. Structural applications of the discrete choice model. 
Marketing Letters 13(3), 207-220. 

Engle, R.F., Shephard, N., Sheppard, K., 2007. Fitting and testing vast dimensional time-varying 
covariance models. Finance Working Papers, FIN-07-046, Stern School of Business, New 
York University. 

Engler, D.A., Mohapatra, G., Louis, D.N., Betensky, R.A., 2006. A pseudolikelihood approach 
for simultaneous analysis of array comparative genomic hybridizations. Biostatistics 7(3), 
399-421. 

Feddag, M.-L., Bacci S., 2009 Pairwise likelihood for the longitudinal mixed Rasch model, 
Computational Statistics and Data Analysis 53(4), 1027-1037. 

Ferdous, N., Eluru, N., Bhat, C.R., Meloni, I., 2010. A multivariate ordered-response model 
system for adults’ weekday activity episode generation by activity purpose and social 
context. Transportation Research Part B 44(8-9), 922-943. 

Fiebig, D.C., Keane, M.P., Louviere, J., Wasi, N., 2010. The generalized multinomial logit 
model: accounting for scale and coefficient heterogeneity. Marketing Science 29(3), 393-
421. 

Fleming, M.M., 2004. Techniques for estimating spatially dependent discrete choice models. In 
Advances in Spatial Econometrics: Methodology, Tools and Applications, Anselin, L., 
Florax, R.J.G.M., Rey, S.J. (eds.), Springer-Verlag, Berlin, 145-168. 

Franzese, R.J., Hays, J.C., 2008. Empirical models of spatial interdependence. In The Oxford 
Handbook of Political Methodology, Box-Steffensmeier, J.M., Brady, H.E., Collier, D., 
(eds.), Oxford University Press, Oxford, 570-604. 

Gassmann, H.I., Deák, I., Szántai, T., 2002. Computing multivariate normal probabilities: A new 
look. Journal of Computational and Graphical Statistics 11(4), 920-949. 

Genz, A., Bretz, F., 1999. Numerical computation of multivariate t-probabilities with application 
to power calculation of multiple contrasts. Journal of Statistical Computation and 
Simulation 63(4), 361-378. 



37 

Godambe, V.P., 1960. An optimum property of regular maximum likelihood estimation. The 
Annals of Mathematical Statistics 31(4), 1208-1211. 

Heagerty, P.J., Lumley, T., 2000. Window subsampling of estimating functions with application 
to regression models. Journal of the American Statistical Association 95(449), 197-211. 

Heckman, J.J., Singer, B., 1986. Econometric analysis of longitudinal data. In The Handbook of 
Econometrics, Vol. 3, Griliches, Z., Intriligator, M.D., (eds), North-Holland, Amsterdam, 
1689-1766. 

Heiss, F., 2010. The panel probit model: Adaptive integration on sparse grids. In Advances in 
Econometrics: Maximum Simulated Likelihood Methods and Applications, Vol. 26, Greene, 
W.H., Hill, R.C. (eds.), Emerald Group Publishing Limited, 41-64. 

Heiss, F., Winschel, V., 2008. Likelihood approximation by numerical integration on sparse 
grids. Journal of Econometrics 144(1), 62-80. 

Hess, S., Rose, J.M., 2009. Allowing for intra-respondent variations in coefficients estimated on 
repeated choice data. Transportation Research Part B 43(6), 708-719. 

Hjort, N.L., Varin, C., 2008. ML, PL, QL in Markov chain models. Scandinavian Journal of 
Statistics 35(1), 64-82.  

Huguenin, J., Pelgrin F., Holly A., 2009. Estimation of multivariate probit models by exact 
maximum likelihood. Working Paper 0902, University of Lausanne, Institute of Health 
Economics and Management (IEMS), Lausanne, Switzerland. 

Joe, H., 1995. Approximations to multivariate normal rectangle probabilities based on 
conditional expectations. Journal of the American Statistical Association 90(431), 957-964. 

Joe, H., 2008. Accuracy of Laplace approximation for discrete response mixed models. 
Computational Statistics and Data Analysis, 52(12), 5066-5074. 

Joe, H., Lee, Y., 2009. On weighting of bivariate margins in pairwise likelihood. Journal of 
Multivariate Analysis 100(4), 670-685. 

Kent, J.T., 1982. Robust properties of likelihood ratio tests. Biometrika 69(1), 19-27. 
Kuk, A.Y.C., Nott, D.J., 2000. A pairwise likelihood approach to analyzing correlated binary 

data. Statistics and Probability Letters 47(4), 329-335. 
Le Cessie, S., Van Houwelingen, J.C., 1994. Logistic regression for correlated binary 

data. Applied. Statistics 43(1), 95-108. 
Lele, S.R., 2006. Sampling variability and estimates of density dependence: a composite-

likelihood approach. Ecology 87(1), 189-202. 
LeSage, J.P., 2000. Bayesian estimation of limited dependent variable spatial autoregressive 

models. Geographical Analysis 32(1), 19-35. 
Li, Z., Hensher, D.A., Rose, J.M., 2010. Willingness to pay for reliability in passenger transport: 

a review and some new empirical evidence. Transportation Research Part E 46(3), 384-
403.  

Lindsay, B.G., 1988. Composite likelihood methods. Contemporary Mathematics 80, 221-239. 
Luce, R., Suppes, P., 1965. Preference, utility and subjective probability. In Handbook of 

Mathematical Probability, Vol. 3, Luce, R., Bush, R., Galanter, E., (eds.), Wiley, New 
York. 



38 

Mardia, K.V., Kent, J.T., Hughes, G., Taylor, C.C., 2009. Maximum likelihood estimation using 
composite likelihoods for closed exponential families. Biometrika 96(4), 975-982.   

McCulloch, R.E., Rossi P.E., 2000. Bayesian analysis of the multinomial probit model. In 
Simulation-Based Inference in Econometrics, Mariano, R., Schuermann, T., Weeks, M.J., 
(eds.), Cambridge University Press, New York, 158-178. 

McFadden, D., 1974. Conditional logit analysis of qualitative choice behavior. In Frontiers in 
Econometrics, 105-142, Zarembka, P., (ed.), Academic Press, New York. 

McFadden, D., 1978.  Modeling the choice of residential location. Transportation Research 
Record 672, 72-77. 

McFadden, D., Train, K., 2000. Mixed MNL models for discrete response. Journal of Applied 
Econometrics 15(5), 447-470. 

McMillen, D.P., 1995. Spatial effects in probit models: A Monte Carlo investigation. In New 
Directions in Spatial Econometrics, Anselin, L., Florax, R.J.G.M. (eds.) Springer-Verlag, 
Berlin, 189-228. 

Miyamoto, K., Vichiensan, V., Shimomura, N., Páez, A., 2004. Discrete choice model with 
structuralized spatial effects for location analysis. Transportation Research Record 1898, 
183-190. 

Molenberghs, G., Verbeke, G., 2005. Models for Discrete Longitudinal Data. Springer Series in 
Statistics, Springer Science + Business Media, Inc., New York. 

Pace, L., Salvan, A., Sartori, N., 2011. Adjusting composite likelihood ratio statistics. Statistica 
Sinica 21(1), 129-148. 

Pinkse, J., Slade, M.E., 1998. Contracting in space: An application of spatial statistics to 
discrete-choice models. Journal of Econometrics 85(1), 125-154. 

Renard, D., Molenberghs, G., Geys, H., 2004. A pairwise likelihood approach to estimation in 
multilevel probit models. Computational Statistics & Data Analysis 44(4), 649-667.  

Ruud, P.A., 2007. Estimating mixtures of discrete choice model, Technical Paper, University of 
California, Berkeley.  

Small, K.A., Winston, C., Yan, J., 2005. Uncovering the distribution of motorists’ preferences 
for travel time and reliability. Econometrica 73(4), 1367-1382. 

Sener, I.N., Pendyala, R.M., Bhat, C.R., 2011. Accommodating spatial correlation across choice 
alternatives in discrete choice models: an application to modeling residential location 
choice behavior. Journal of Transport Geography 19(2), 294-303. 

Solow, A.R., 1990. A method for approximating multivariate normal orthant probabilities. 
Journal of Statistical Computation and Simulation 37(3-4), 225-229. 

Switzer, P., 1977. Estimation of spatial distribution from point sources with application to air 
pollution measurement. Bulletin of the International Statistical Institute 47(2), 123-137. 

Train, K. 2009. Discrete Choice Methods with Simulation, 2nd ed., Cambridge University Press, 
Cambridge.   

Varin, C., 2008. On composite marginal likelihoods. AStA Advances in Statistical Analysis 92(1), 
1-28. 

Varin, C., Czado, C., 2010. A mixed autoregressive probit model for ordinal longitudinal data. 
Biostatistics 11(1), 127-138. 



39 

Varin, C., Vidoni, P., 2005. A note on composite likelihood inference and model selection. 
Biometrika 92(3), 519-528. 

Varin, C. Vidoni, P., 2006. Pairwise likelihood inference for ordinal categorical time series. 
Computational Statistics and Data Analysis 51(4), 2365-2373. 

Varin, C., Vidoni, P., 2009 Pairwise likelihood inference for general state space models. 
Econometric Reviews 28(1-3), 170-185. 

Varin, C., Reid, N., Firth, D, 2011. An overview of composite marginal likelihoods. Statistica 
Sinica 21(1), 5-42. 

Zhao, Y., Joe, H., 2005. Composite likelihood estimation in multivariate data analysis. The 
Canadian Journal of Statistics 33(3), 335-356. 


