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Other forecasting methods 

Another approach, in addition to the one described in the main manuscript, is to repeat steps 1 

through 3 for the first method for many sets of realizations. Count the number of times each of the 

possible (2 1)K R   combinations of discrete consumption of the inside goods appear as the chosen 

combination. Also, estimate the probability nP  of each discrete consumption combination n as the 

number of times it appears as the chosen combination relative to the total number of sets of 

realizations. Next, for each combination n (n=1,2,…,N, N= 2 1),K R   compute the mean value *
knx  

of the continuous consumption values across the many realizations. Finally, forecast the 

continuous amount of consumption for each inside alternative k as * * .k n kn
n

x P x  This approach 

will provide more accurate aggregate-level predictions (that is, predictions of consumption 

quantities across multiple individuals) than the first approach with small forecasting samples. But, 

for a given individual, given enough number of sets of realizations, it will always forecast a 

positive value of consumption for each and every alternative.  

A third approach is to first compute the discrete probability nP  for each combination n, 

then use the usual discrete probability-to-deterministic choice procedure (used in traditional 

simulation approaches) to determine the most likely market basket of consumption, and forecast 

the consumption quantities for this single market basket. Specifically, the procedure is as follows. 

 Step 1: Compute the discrete consumption probability for each possible consumption bundle 

n as follows: 
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where 1 2( , ,..., )R R K   f  represents the multivariate density function (pdf) of the random 

variates 1 2, ,...,R R K    . The above expression may be written as:  

 
1 2 1 1

| |
1 2 | | 1 2

{ 1,..., 1, },| | 1

( 1, 1, 1, 0, 0, 0)

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ,... ) ( 1) ( , ,... , ),

R R R M R M K K

D
M R R R M M D R R R M D

D R M K K D

P d d d d d d

S S     

     

      
    

     

  

 


                  

where DS (.) for any dimension D is the multivariate survival distribution function given by 

Equation (11), D represents a specific combination of the non-consumed goods (there are a 

total of 2 1K M R    possible combinations of the non-consumed goods), |D| is the cardinality 

of the specific combination D, and ˆ
D  is a vector of utility elements drawn from 

1 1
ˆ ˆ ˆ{ ,... , }R M K K      that belong to the specific combination D. The discrete consumption 

probability for the case of none of the inside goods being consumed is already provided in 

Equation (21), while the discrete consumption probability for the case of all the inside goods 

being consumed is given by: 
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 Step 2: Order the combinations from 1 to N in an arbitrary order (but retain this from hereon), 

and, for each combination n up to the penultimate combination (n=1,2,…,N–1), obtain the 

cumulative probability from combination 1 to combination n as 
1

.
n

n d
d

CP P


   

 Step 3: Partition the 0-1 line into N segments (each corresponding to a specific combination n) 

using the (N–1) nCP  values. Draw a random uniformly distributed realization from {0,1} and 

superimpose this value over the 0-1 line with the N segments.  Identify the segment where the 

realization falls, and declare the combination corresponding to that line segment as the 

deterministic discrete event of consumption for the individual.  

 Step 4: For the specific combination declared as the discrete bundle of consumption from Step 

3, forecast the continuous consumption as follows. Draw R independent realizations of k

from EV(0,1) for the outside goods ( 1,2,..., )k R  and compute an estimate of k̂ for each 

inside good.  For each of the consumed goods in the bundle, draw a realization of k (say )k  
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from EV(0, )̂  truncated from below at ˆ ˆ ˆ ˆ(that is,such that ).k k k k k       Predict the 

continuous consumption value for the consumed goods as:   * ˆ ˆ ˆˆ exp 1k k k k kx          
 

and set * 0kx   for the non-consumed goods. A variant of this step (4) would be to repeat step 

(4) multiple times with different sets of realizations, and take the mean across the resulting *ˆkx  

predictions.    


