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ABSTRACT 

Many consumer choice situations are characterized by the simultaneous demand for multiple 

alternatives that are imperfect substitutes for one another. A simple and parsimonious Multiple 

Discrete-Continuous Extreme Value (MDCEV) econometric approach to handle such multiple 

discreteness was formulated by Bhat (2005) within the broader Kuhn-Tucker (KT) multiple 

discrete-continuous economic consumer demand model of Wales and Woodland (1983). In this 

chapter, the focus is on presenting the basic MDCEV model structure, discussing its estimation 

and use in prediction, formulating extensions of the basic MDCEV structure, and presenting 

applications of the model. The paper examines several issues associated with the MDCEV model 

and other extant KT multiple discrete-continuous models. Specifically, the paper discusses the 

utility function form that enables clarity in the role of each parameter in the utility specification, 

presents identification considerations associated with both the utility functional form as well as 

the stochastic nature of the utility specification, extends the MDCEV model to the case of price 

variation across goods and to general error covariance structures, discusses the relationship 

between earlier KT-based multiple discrete-continuous models, and illustrates the many 

technical nuances and identification considerations of the multiple discrete-continuous model 

structure. Finally, we discuss the many applications of MDCEV model and its extensions in 

various fields. 

 

Keywords: Discrete-continuous system, Multiple discreteness, Kuhn-Tucker demand systems, 

Mixed discrete choice, Random Utility Maximization. 
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1. INTRODUCTION 

Several consumer demand choices related to travel and other decisions are characterized by the 

choice of multiple alternatives simultaneously, along with a continuous quantity dimension 

associated with the consumed alternatives.  Examples of such choice situations include vehicle 

type holdings and usage, and activity type choice and duration of time investment of 

participation.  In the former case, a household may hold a mix of different kinds of vehicle types 

(for example, a sedan, a minivan, and a pick-up) and use the vehicles in different ways based on 

the preferences of individual members, considerations of maintenance/running costs, and the 

need to satisfy different functional needs (such as being able to travel on weekend getaways as a 

family or to transport goods).  In the case of activity type choice and duration, an individual may 

decide to participate in multiple kinds of recreational and social activities within a given time 

period (such as a day) to satisfy variety seeking desires.  Of course, there are several other travel-

related and other consumer demand situations characterized by the choice of multiple 

alternatives, including airline fleet mix and usage, carrier choice and transaction level, brand 

choice and purchase quantity for frequently purchased grocery items (such as cookies, ready-to-

eat cereals, soft drinks, yoghurt, etc.), and stock selection and investment amounts.  

There are many ways that multiple discrete situations, such as those discussed above, 

may be modeled. One approach is to use the traditional random utility-based (RUM) single 

discrete choice models by identifying all combinations or bundles of the “elemental” 

alternatives, and treating each bundle as a “composite” alternative (the term “single discrete 

choice” is used to refer to the case where a decision-maker chooses only one alternative from a 

set of alternatives). A problem with this approach, however, is that the number of composite 

alternatives explodes with the number of elemental alternatives. Specifically, if J is the number 

of elemental alternatives, the total number of composite alternatives is ( J2 –1). A second 

approach to analyze multiple discrete situations is to use the multivariate probit (logit) methods 

of Manchanda et al. (1999), Baltas (2004), Edwards and Allenby (2003), and Bhat and 

Srinivasan (2005). In these multivariate methods, the multiple discreteness is handled through 

statistical methods that generate correlation between univariate utility maximizing models for 

single discreteness. While interesting, this second approach is more of a statistical “stitching” of 

univariate models rather than being fundamentally derived from a rigorous underlying utility 

maximization model for multiple discreteness.  The resulting multivariate models also do not 
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collapse to the standard discrete choice models when all individuals choose one and only one 

alternative at each choice occasion.  A third approach is the one proposed by Hendel (1999) and 

Dube (2004). These researchers consider the case of “multiple discreteness” in the purchase of 

multiple varieties within a particular product category as the result of a stream of expected (but 

unobserved to the analyst) future consumption decisions between successive shopping purchase 

occasions (see also Walsh, 1995).  During each consumption occasion, the standard discrete 

choice framework of perfectly substitutable alternatives is invoked, so that only one product is 

consumed.  Due to varying tastes across individual consumption occasions between the current 

shopping purchase and the next, consumers are observed to purchase a variety of goods at the 

current shopping occasion.   

In all the three approaches discussed above to handle multiple discreteness, there is no 

recognition that individuals choose multiple alternatives to satisfy different functional or variety 

seeking needs (such as wanting to relax at home as well as participate in out-of-home recreation). 

Thus, the approaches fail to incorporate the diminishing marginal returns (i.e., satiation) in 

participating in a single type of activity, which may be the fundamental driving force for 

individuals choosing to participate in multiple activity types.1 Finally, in the approaches above, it 

is very cumbersome, even if conceptually feasible, to include a continuous choice into the model 

(for example, modeling the different activity purposes of participation as well as the duration of 

participation in each activity purpose).  

Wales and Woodland (1983) proposed two alternative ways to handle situations of 

multiple discreteness based on satiation behavior within a behaviorally-consistent utility 

maximizing framework. Both approaches assume a direct utility function U(x) that is assumed to 

be quasi-concave, increasing, and continuously differentiable with respect to the consumption 

quantity vector x.2 Consumers maximize the utility function subject to a linear budget constraint, 

which is binding in that all the available budget is invested in the consumption of the goods; that 

                                                 
1 The approach of Hendel and Dube can be viewed as a “vertical” variety-seeking model that may be appropriate for 
frequently consumed grocery items such as carbonated soft drinks, cereals, and cookies.  However, in many other 
choice occasions, such as time allocation to different types of discretionary activities, the true decision process may 
be better characterized as “horizontal” variety-seeking, where the consumer selects an assortment of alternatives due 
to diminishing marginal returns for each alternative.  That is, the alternatives represent inherently imperfect 
substitutes at the choice occasion.  
2 The assumption of a quasi-concave utility function is simply a manifestation of requiring the indifference curves to 
be convex to the origin (see Deaton and Muellbauer, 1980, page 30 for a rigorous definition of quasi-concavity). The 
assumption of an increasing utility function implies that U(x1) > U(x0) if x1 > x0. 
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is, the budget constraint has an equality sign rather than a ‘≤’ sign. This binding nature of the 

budget constraint is the result of assuming an increasing utility function, and also implies that at 

least one good will be consumed. The difference in the two alternative approaches proposed by 

Wales and Woodland (1983) is in how stochasticity, non-negativity of consumption, and corner 

solutions (i.e., zero consumption of some goods) are accommodated, as briefly discussed below 

(see Wales and Woodland, 1983 and Phaneuf et al., 2000 for additional details). 

The first approach, which Wales and Woodland label as the Amemiya-Tobin approach, is 

an extension of the classic microeconomic approach of adding normally distributed stochastic 

terms to the budget-constrained utility-maximizing share equations. In this approach, the direct 

utility function U(x) itself is assumed to be deterministic by the analyst, and stochasticity is 

introduced post-utility maximization. The justification for the addition of such normally 

distributed stochastic terms to the deterministic utility-maximizing allocations is based on the 

notion that consumers make errors in the utility-maximizing process, or that there are 

measurement errors in the collection of share data, or that there are unknown factors (from the 

analyst’s perspective) influencing actual consumed shares. However, the addition of normally 

distributed error terms to the share equations in no way restricts the shares to be positive and less 

than 1. The contribution of Wales and Woodland was to devise a stochastic formulation, based 

on the earlier work of Tobin (1958) and Amemiya (1974), that (a) respects the unit simplex 

range constraint for the shares, (b) accommodates the restriction that the shares sum to one, and 

(c) allows corner solutions in which one or more alternatives are not consumed. They achieve 

this by assuming that the observed shares for the (K-1) of the K alternatives follow a truncated 

multivariate normal distribution (note that since the shares across alternatives have to sum to 

one, there is a singularity generated in the K-variate covariance matrix of the K shares, which can 

be accommodated by dropping one alternative).  However, an important limitation of the 

Amemiya-Tobin approach of Wales and Woodland is that it does not account for corner 

solutions in its underlying behavior structure.  Rather, the constraint that the shares have to lie 

within the unit simplex is imposed by ad hoc statistical procedures of mapping the density 

outside the unit simplex to the boundary points of the unit simplex. 

The second approach suggested by Wales and Woodland, which they label as the Kuhn-

Tucker approach, is based on the Kuhn Tucker or KT (1951) first-order conditions for 

constrained random utility maximization (see Hanemann, 1978, who uses such an approach even 
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before Wales and Woodland). Unlike the Amemiya-Tobin approach, the KT approach employs a 

more direct stochastic specification by assuming the utility function U(x) to be random (from the 

analyst’s perspective) over the population, and then derives the consumption vector for the 

random utility specification subject to the linear budget constraint by using the KT conditions for 

constrained optimization. Thus, the stochastic nature of the consumption vector in the KT 

approach is based fundamentally on the stochastic nature of the utility function. Consequently, 

the KT approach immediately satisfies all the restrictions of utility theory, and the stochastic KT 

first-order conditions provide the basis for deriving the probabilities for each possible 

combination of corner solutions (zero consumption) for some goods and interior solutions 

(strictly positive consumption) for other goods. The singularity imposed by the “adding-up” 

constraint is accommodated in the KT approach by employing the usual differencing approach 

with respect to one of the goods, so that there are only (K-1) interdependent stochastic first-order 

conditions. 

Among the two approaches discussed above, the KT approach constitutes a more 

theoretically unified and behaviorally consistent framework for dealing with multiple 

discreteness consumption patterns. However, the KT approach did not receive much attention 

until relatively recently because the random utility distribution assumptions used by Wales and 

Woodland led to a complicated likelihood function that entails multi-dimensional integration. 

Kim et al. (2002) addressed this issue by using the Geweke-Hajivassiliou-Keane (or GHK) 

simulator to evaluate the multivariate normal integral appearing in the likelihood function in the 

KT approach. Also, different from Wales and Woodland, Kim et al. used a generalized variant of 

the well-known translated constant elasticity of substitution (CES) direct utility function (see 

Pollak and Wales, 1992; page 28) rather than the quadratic direct utility function used by Wales 

and Woodland. In any case, the Kim et al. approach, like the Wales and Woodland approach, is 

unnecessarily complicated because of the need to evaluate truncated multivariate normal 

integrals in the likelihood function. In contrast, Bhat (2005) introduced a simple and 

parsimonious econometric approach to handle multiple discreteness, also based on the 

generalized variant of the translated CES utility function but with a multiplicative log-extreme 

value error term. Bhat’s model, labeled the multiple discrete-continuous extreme value 

(MDCEV) model, is analytically tractable in the probability expressions and is practical even for 

situations with a large number of discrete consumption alternatives. In fact, the MDCEV model 



 5

represents the multinomial logit (MNL) form-equivalent for multiple discrete-continuous choice 

analysis and collapses exactly to the MNL in the case that each (and every) decision-maker 

chooses only one alternative.  

Independent of the above works of Kim et al. and Bhat, there has been a stream of 

research in the environmental economics field (see Phaneuf et al., 2000; von Haefen et al., 2004; 

von Haefen, 2003; von Haefen, 2004; von Haefen and Phaneuf, 2005; Phaneuf and Smith, 2005) 

that has also used the KT approach to multiple discreteness. These studies use variants of the 

linear expenditure system (LES) as proposed by Hanemann (1978) and the translated CES for the 

utility functions, and use multiplicative log-extreme value errors. However, the error 

specification in the utility function is different from that in Bhat’s MDCEV model, resulting in a 

different form for the likelihood function.  

In this chapter, the focus is on presenting the basic MDCEV model structure, discussing 

its estimation and use in prediction, formulating extensions of the basic MDCEV structure, and 

presenting applications of the model. Accordingly, the rest of the chapter is structured as follows. 

The next section formulates a functional form for the utility specification that enables the 

isolation of the role of different parameters in the specification. This section also identifies 

empirical identification considerations in estimating the parameters in the utility specification. 

Section 3 discusses the stochastic form of the utility specification, the resulting general structure 

for the probability expressions, and associated identification considerations. Section 4 derives the 

MDCEV structure for the utility functional form used in the current paper, and extends this 

structure to more general error structure specifications. For presentation ease, Sections 2 through 

4 consider the case of the absence of an outside good. In Section 5, we extend the discussions of 

the earlier sections to the case when an outside good is present. Section 6 provides an overview 

of empirical applications using the model. The final section concludes the paper. 

 

2. FUNCTIONAL FORM OF UTILITY SPECIFICATION 

We consider the following functional form for utility in this paper, based on a generalized variant 

of the translated CES utility function: 
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where U(x) is a quasi-concave, increasing, and continuously differentiable function with respect 

to the consumption quantity (Kx1)-vector x (xk ≥ 0 for all k),  and kψ , kγ  and kα  are parameters 

associated with good k. The function in Equation (1) is a valid utility function if kψ > 0 and kα  ≤ 

1 for all k.  Further, for presentation ease, we assume temporarily that there is no outside good, 

so that corner solutions (i.e., zero consumptions) are allowed for all the goods k (this assumption 

is being made only to streamline the presentation and should not be construed as limiting in any 

way; the assumption is relaxed in a straightforward manner as discussed in Section 5). The 

possibility of corner solutions implies that the term kγ , which is a translation parameter, should 

be greater than zero for all k.3 The reader will note that there is an assumption of additive 

separability of preferences in the utility form of Equation (1), which immediately implies that 

none of the goods are a priori inferior and all the goods are strictly Hicksian substitutes (see 

Deaton and Muellbauer, 1980; page 139). Additionally, additive separability implies that the 

marginal utility with respect to any good is independent of the levels of all other goods.4 

 The form of the utility function in Equation (1) highlights the role of the various 

parameters kψ , kγ  and kα , and explicitly indicates the inter-relationships between these 

parameters that relate to theoretical and empirical identification issues. The form also assumes 

weak complementarity (see Mäler, 1974), which implies that the consumer receives no utility 

from a non-essential good’s attributes if s/he does not consume it (i.e., a good and its quality 

attributes are weak complements, or Uk = 0 if xk = 0, where Uk is the sub-utility function for the 

kth good). The reader will also note that the functional form proposed by Bhat (2008) in 

Equation (1) generalizes earlier forms used by Hanemann (1978), von Haefen et al. (2004), 

Herriges et al. (2004), Phaneuf et al. (2000) and Mohn and Hanemann (2005). Specifically, it 

should be noted that the utility form of Equation (1) collapses to the following linear expenditure 

system (LES) form when kk   0∀→α :  

                                                 
3 As illustrated in Kim et al. (2002) and Bhat (2005), the presence of the translation parameters makes the 
indifference curves strike the consumption axes at an angle (rather than being asymptotic to the consumption axes), 
thus allowing corner solutions. 
4 Some other studies assume the overall utility to be derived from the characteristics embodied in the goods, rather 
than using the goods as separate entities in the utility function. The reader is referred to Chan (2006) for an example 
of such a characteristics approach to utility. Also, as we discuss later, recent work by Vasquez and Hanemann 
(2008) relaxes the assumption of additive separability, but at a computational and interpretation cost.  
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2.1 Role of Parameters in Utility Specification 

2.1.1 Role of kψ  

The role of kψ  can be inferred by computing the marginal utility of consumption with respect to 

good k, which is: 
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It is obvious from above that kψ  represents the baseline marginal utility, or the marginal utility 

at the point of zero consumption. Alternatively, the marginal rate of substitution between any 

two goods k and l at the point of zero consumption of both goods is 
l

k

ψ
ψ

. This is the case 

regardless of the values of kγ  and kα . For two goods i and j with same unit prices, a higher 

baseline marginal utility for good i relative to good j implies that an individual will increase 

overall utility more by consuming good i rather than j at the point of no consumption of any 

goods. That is, the consumer will be more likely to consume good i than good j. Thus, a higher 

baseline kψ  implies less likelihood of a corner solution for good k. 

 

2.1.2 Role of kγ  

An important role of the kγ  terms is to shift the position of the point at which the indifference 

curves are asymptotic to the axes from (0,0,0…,0) to ),...,,,( 321 Kγγγγ −−−− , so that the 

indifference curves strike the positive orthant with a finite slope. This, combined with the 

consumption point corresponding to the location where the budget line is tangential to the 

indifference curve, results in the possibility of zero consumption of good k.  To see this, consider 

two goods 1 and 2 with 1ψ  = 2ψ  = 1, 1α  = 2α  = 0.5, and 2γ  = 1. Figure 1 presents the profiles 

of the indifference curves in this two-dimensional space for various values of 1γ ( 1γ  > 0). To 

compare the profiles, the indifference curves are all drawn to go through the point (0,8). The 
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reader will also note that all the indifference curve profiles strike the y-axis with the same slope. 

As can be observed from the figure, the positive values of 1γ  and 2γ  lead to indifference curves 

that cross the axes of the positive orthant, allowing for corner solutions. The indifference curve 

profiles are asymptotic to the x-axis at y = –1 (corresponding to the constant value of 2γ  = 1), 

while they are asymptotic to the y-axis at 1γ−=x .  

Figure 1 also points to another role of the kγ  term as a satiation parameter. Specifically, 

the indifference curves get steeper in the positive orthant as the value of 1γ  increases, which 

implies a stronger preference (or lower satiation) for good 1 as 1γ  increases (with steeper 

indifference curve slopes, the consumer is willing to give up more of good 2 to obtain 1 unit of 

good 1). This point is particularly clear if we examine the profile of the sub-utility function for 

alternative k. Figure 2 plots the function for alternative k for 0→kα  and kψ  = 1, and for 

different values of kγ . All of the curves have the same slope kψ  = 1 at the origin point, because 

of the functional form used in this paper. However, the marginal utilities vary for the different 

curves at kx  > 0. Specifically, the higher the value of kγ , the less is the satiation effect in the 

consumption of kx .  

 

2.1.3 Role of kα  

The express role of kα  is to reduce the marginal utility with increasing consumption of good k; 

that is, it represents a satiation parameter. When kα  = 1 for all k, this represents the case of 

absence of satiation effects or, equivalently, the case of constant marginal utility. The utility 

function in Equation (1) in such a situation collapses to ∑
k

kk xψ , which represents the perfect 

substitutes case as proposed by Deaton and Muellbauer (1980) and applied in Hanemann (1984), 

Chiang (1991), Chintagunta (1993), and Arora et al. (1998), among others. Intuitively, when 

there is no satiation and the unit good prices are all the same, the consumer will invest all 

expenditure on the single good with the highest baseline (and constant) marginal utility (i.e., the 



 9

highest kψ  value). This is the case of single discreteness.5 As kα  moves downward from the 

value of 1, the satiation effect for good k increases. When 0→kα , the utility function collapses 

to the form in Equation (2), as discussed earlier. kα  can also take negative values and, when 

−∞→kα , this implies immediate and full satiation. Figure 3 plots the utility function for 

alternative k for kγ  = 1 and kψ  = 1, and for different values of kα . Again, all of the curves have 

the same slope kψ  = 1 at the origin point, and accommodate different levels of satiation through 

different values of kα  for any given kγ  value.  

 

2.2 Empirical Identification Issues Associated with Utility Form 

The discussion in the previous section indicates that kψ  reflects the baseline marginal utility, 

which controls whether or not a good is selected for positive consumption (or the extensive 

margin of choice). The role of kγ  is to enable corner solutions, though it also governs the level 

of satiation. The purpose of kα  is solely to allow satiation. Thus, for a given extensive margin of 

choice of good k, kγ  and kα  influence the quantity of good k consumed (or the intensive margin 

of choice) through their impact on satiation effects. The precise functional mechanism through 

which kγ  and kα  impact satiation are, however, different; kγ  controls satiation by translating 

consumption quantity, while kα  controls satiation by exponentiating consumption quantity. 

Clearly, both these effects operate in different ways, and different combinations of their values 

lead to different satiation profiles. However, empirically speaking, it is very difficult to 

disentangle the two effects separately, which leads to serious empirical identification problems 

and estimation breakdowns when one attempts to estimate both kγ  and kα  parameters for each 

good. In fact, for a given kψ  value, it is possible to closely approximate a sub-utility function 

profile based on a combination of kγ  and kα  values with a sub-utility function based solely on 

kγ  or kα  values. In actual application, it would behoove the analyst to estimate models based on 

                                                 
5 If there is price variation across goods, one needs to take the derivative of the utility function with respect to 
expenditures (ek) on the goods. In the case that αk= 1 for all k, U = 

k
Σ ψk(ek / pk), where ψk is the unit price of good k. 

Then ∂U / ∂ek = ψk / pk. In this situation, the consumer will invest all expenditures on the single good with the highest 
price-normalized marginal (and constant) utility ψk / pk. 
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both the kα -profile and the kγ -profile, and choose a specification that provides a better 

statistical fit.6  

 

3. STOCHASTIC FORM OF UTILITY FUNCTION 

The KT approach employs a direct stochastic specification by assuming the utility function U(x) 

to be random over the population. In all recent applications of the KT approach for multiple 

discreteness, a multiplicative random element is introduced to the baseline marginal utility of 

each good as follows: 

kezz kkk
εψεψ ⋅= )(),( ,                (4) 

where kz  is a set of attributes characterizing alternative k and the decision maker, and kε  

captures idiosyncratic (unobserved) characteristics that impact the baseline utility for good j.  

The exponential form for the introduction of the random term guarantees the positivity of the 

baseline utility as long as 0)( >kzψ . To ensure this latter condition, )( kzψ  is further 

parameterized as )exp( kzβ ′ , which then leads to the following form for the baseline random 

utility associated with good k: 

)exp(),( kkkk zz εβεψ +′= .                (5) 

The kz  vector in the above equation includes a constant term. The overall random utility 

function of Equation (1) then takes the following form: 
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From the analyst’s perspective, the individual is maximizing random utility subject to the 

binding linear budget constraint that Ee
K

k
k =∑

=1
, where E is total expenditure or income (or some 

other appropriately defined total budget quantity), kkk xpe = , and kp  is the unit price of good k.  

 
                                                 
6 Alternatively, the analyst can stick with one functional form a priori, but experiment with various fixed values of 
αk for the γk-profile and γk for the αk-profile. 
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3.1 Optimal Expenditure Allocations 

The analyst can solve for the optimal expenditure allocations by forming the Lagrangian and 

applying the Kuhn-Tucker (KT) conditions.7  The Lagrangian function for the problem is: 
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where λ  is the Lagrangian multiplier associated with the expenditure constraint (that is, it can be 

viewed as the marginal utility of total expenditure or income).  The KT first-order conditions for 

the optimal expenditure allocations (the *
ke  values) are given by: 
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 The optimal demand satisfies the conditions in Equation (8) plus the budget constraint 

Eek

K
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*

1
.  The budget constraint implies that only K-1 of the *

ke  values need to be estimated, 

since the quantity consumed of any one good is automatically determined from the quantity 

consumed of all the other goods.  To accommodate this constraint, designate activity purpose 1 

as a purpose to which the individual allocates some non-zero amount of consumption (note that 

the individual should participate in at least one of the K purposes, given that E > 0).  For the first 

good, the KT condition may then be written as: 
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Substituting for λ  from above into Equation (8) for the other activity purposes (k = 2,…, K), and 

taking logarithms, we can rewrite the KT conditions as: 

                                                 
7 For reasons that will become clear later, we solve for the optimal expenditure allocations ek for each good, not the 
consumption amounts xk of each good. This is different from earlier studies that focus on the consumption of goods. 
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11 εε +=+ VV kk  if 0* >ke  (k = 2, 3,…, K) 

11 εε +<+ VV kk  if 0* =ke  (k = 2, 3,…, K), where           (10) 
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Also, note that, in Equation (10), a constant cannot be identified in the kzβ′  term for one of the K 

alternatives (because only the difference in the kV  from 1V  matters).  Similarly, individual-

specific variables are introduced in the kV ’s for (K-1) alternatives, with the remaining alternative 

serving as the base.8  

 

3.2 General Econometric Model Structure and Identification 

To complete the model structure, the analyst needs to specify the error structure. In the general 

case, let the joint probability density function of the kε  terms be f( 1ε , 2ε , …, Kε ). Then, the 

probability that the individual allocates expenditure to the first M of the K goods is: 
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where J is the Jacobian whose elements are given by (see Bhat, 2005): 
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The probability expression in Equation (11) is a (K-M+1)-dimensional integral. The expression 

for the probability of all goods being consumed is one-dimensional, while the expression for the 

probability of only the first good being consumed is K-dimensional. The dimensionality of the 

                                                 
8 These identification conditions are similar to those in the standard discrete choice model, though the origin of the 
conditions is different between standard discrete choice models and the multiple discrete-continuous models. In 
standard discrete choice models, individuals choose the alternative with highest utility, so that all that matters is 
relative utility. In multiple discrete-continuous models, the origin of these conditions is the adding up (or budget) 
constraint associated with the quantity of consumption of each good that leads to the KT first order conditions of 
Equation (10). 
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integral can be reduced by one by noticing that the KT conditions can also be written in a 

differenced form. To do so, define 11
~ εεε −= kk , and let the implied multivariate distribution of 

the error differences be )~,...,~,~( 13121 Kg εεε . Then, Equation (11) may be written in the equivalent 

(K-M)-integral form shown below: 
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The equation above indicates that the probability expression for the observed optimal 

expenditure pattern of goods is completely characterized by the (K-1) error terms in difference 

form. Thus, all that is estimable is the (K-1)x(K-1) covariance matrix of the error differences. In 

other words, it is not possible to estimate a full covariance matrix for the original error terms 

),...,,( 21 Kεεε  because there are infinite possible densities for f(.) that can map into the same g(.) 

density for the error differences (see Train, 2003, page 27, for a similar situation in the context of 

standard discrete choice models). There are many possible ways to normalize f(.) to account for 

this situation. For example, one can assume an identity covariance matrix for f(.), which 

automatically accommodates the normalization that is needed. Alternatively, one can estimate 

g(.) without reference to f(.).  

 In the general case when the unit prices kp  vary across goods, it is possible to estimate 

2/)1( −∗ KK  parameters of the full covariance matrix of the error differences, as just discussed 

(though the analyst might want to impose constraints on this full covariance matrix for ease in 

interpretation and stability in estimation). However, when the unit prices are not different among 

the goods, an additional scaling restriction needs to be imposed. To see this, consider the case of 

independent and identically distributed error terms for the kε  terms, which leads to a (K-1)x(K-

1) covariance matrix for 1
~

kε  (k = 2,3,…,K) with diagonal elements equal to twice the value of 

scale parameter of the kε  terms and off-diagonal elements equal to the scale parameter of the kε  

terms. Let the unit prices of all goods be the same (see Bhat, 2005; Bhat and Sen, 2006; Bhat et 

al., 2006 and Bhat et al., 2009 for examples where the weights or prices on the goods in the 

budget constraint are equal). Consider the utility function in Equation (6) and another utility 

function as given below: 
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The scale of the error terms in the utility function in the above expression is σ  times the scale of 

the error terms in Equation (6). Let ( ) 11* +−= kk ασα , where kα  is the satiation parameter in the 

original Equation (6).9 The KT conditions for optimal expenditure for this modified utility 

function can be shown to be: 

1
*

1
* σεσε +=+ VV kk  if 0* >ke  (k = 2, 3,…, K) 

1
*

1
* σεσε +<+ VV kk  if 0* =ke  (k = 2, 3,…, K), where          (15) 
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If the unit prices are not all the same (i.e., the unit prices of at least two of the K goods are 

different), the KT conditions above are different from the KT conditions in Equation (10).   

 

4. SPECIFIC MODEL STRUCTURES 

4.1 The MDCEV Model Structure  

Following Bhat (2005, 2008), consider an extreme value distribution for kε  and assume that kε  

is independent of kz  (k = 1, 2, …, K) .  The kε ’s are also assumed to be independently 

distributed across alternatives with a scale parameter of σ  (σ  can be normalized to one if there 

is no variation in unit prices across goods).  Let kV  be defined as follows: 

used. is profile-  when the), 3,..., 2, 1,( ln1ln
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        (16) 

                                                 
9 Note that *

kα  is less than or equal to 1 by definition, because kα  is less than or equal to 1 and the scale σ should be 
non-negative. 



 15

As discussed earlier, it is generally not possible to estimate the kV  form in Equation (10), 

because the kα  terms and kγ  terms serve a similar satiation role.  

From Equation (11), the probability that the individual allocates expenditure to the first M 

of the K goods (M ≥ 1) is:                               
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where λ  is the standard extreme value density function and Λ  is the standard extreme value 

cumulative distribution function. The expression in Equation (17) simplifies to a remarkably 

simple and elegant closed-form expression. Bhat derived the form of the Jacobian for the case of 

equal unit prices across goods, which however can be extended in a simple fashion to 

accommodate the more general case of different unit prices. The resulting form for the 

determinant of the Jacobian has a compact structure given by: 
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The integration in Equation (17) also collapses to a closed form expression providing the 

following overall expression: 
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In the case when M = 1 (i.e., only one alternative is chosen), there are no satiation effects ( kα =1 

for all k) and the Jacobian term drops out (that is, the continuous component drops out, because 

all expenditure is allocated to good 1). Then, the model in Equation (19) collapses to the standard 

                                                 
10 It is important to note that this compact Jacobian form is independent of the assumptions regarding the density and 
correlation structure of the error terms. 



 16

MNL model. Thus, the MDCEV model is a multiple discrete-continuous extension of the 

standard MNL model.11 

 The expression for the probability of the consumption pattern of the goods (rather than 

the expenditure pattern) can be derived to be: 
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where kV  is as defined earlier (see Equation 16) and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
ii

i
i x

f
γ
α

*
1 .  The expression in Equation 

(20) is, however, not independent of the good that is used as the first one (see the 1/p1 term in 

front). In particular, different probabilities of the same consumption pattern arise depending on 

the good that is labeled as the first good (note that any good that is consumed may be designated 

as the first good). In terms of the likelihood function, the 1/p1 term can be ignored, since it is 

simply a constant in each individual’s likelihood function. Thus, the same parameter estimates 

will result independent of the good designated as the first good for each individual, but it is still 

awkward to have different probability values for the same consumption pattern. This is 

particularly the case because different log-likelihood values at convergence will be obtained for 

different designations of the first good.  Thus, the preferred approach is to use the probability 

expression for expenditure allocations, which will provide the same probability for a given 

expenditure pattern regardless of the good labeled as the first good. However, in the case that the 

first good is an outside numeraire good that is always consumed (see Section 5), then 11 =p  and 

one can use the consumption pattern probability expression or the expenditure allocation 

probability expression. 

 

                                                 
11 Note that when αk = 1 for all k, Vk = β'zk – ln pk. Even if M = 1, when Equation (19) collapses to the MNL form, 
the scale σ is estimable as long as the utility takes the functional form Vk = β'zk – ln pk and there is price variation 
across goods. This is because the scale is the inverse of the coefficient on the ln pk term (see Hanemann, 1984). 
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4.2 The Multiple Discrete-Continuous Generalized Extreme-Value (MDCGEV) Model 

Structure 

Thus far, we have assumed that the kε  terms are independently and identically extreme value 

distributed across alternatives k. The analyst can extend the model to allow correlation across 

alternatives using a generalized extreme value (GEV) error structure.  The remarkable advantage 

of the GEV structure is that it continues to result in closed-form probability expressions for any 

and all expenditure patterns. However, the derivation is tedious, and the expressions get 

unwieldy. Pinjari and Bhat (2008) formulate a special two-level nested case of the MDCGEV 

model with a nested extreme value distributed structure that has the following joint cumulative 

distribution: 

th
1 2

1 n e s t

( , , . . , ) e x p e x p
KS

i
K

i

F
θ

εε ε ε
θ= ∈

⎡ ⎤⎧ ⎫⎛ ⎞⎪ ⎪⎢ ⎥= − −⎨ ⎬⎜ ⎟
⎢ ⎥⎪ ⎪⎝ ⎠⎩ ⎭⎣ ⎦
∑ ∑

s

ss s
 (21) 

In the above expression, s ( 1,2,..., )KS= is the index to represent a nest of alternatives, KS  is the 

total number of nests the K alternatives belong to, and (0 1; 1,2,..., )KSθ θ< ≤ =s s s  is the 

(dis)similarity parameter introduced to induce correlations among the stochastic components of 

the utilities of alternatives belonging to the ths nest.12  

Without loss of generality, let 1,2,..., MS be the nests the M chosen alternatives belong to, 

and let 1 2, ,...,
MSq q q  be the number of chosen alternatives in each of the SM nests (thus, 

1 2 ...
MSq q q M+ + + = ). Using the nested extreme value error distribution assumption specified in 

Equation (21) (and the above-identified notation), Pinjari and Bhat (2008) derived the following 

expression for the multiple discrete-continuous nested extreme value (MDCNEV) model: 

                                                 
12 This error structure assumes that the nests are mutually exclusive and exhaustive (i.e., each alternative can belong 
to only one nest and all alternatives are allocated to one of the SK nests). 
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In the above expression, ( )rsum X s is the sum of elements of a row matrix rX s (see Appendix A 

for a description of the form of the matrix rX s ). 

As indicated in Pinjari and Bhat (2008), the general expression above represents the 

MDCNEV consumption probability for any consumption pattern with a two-level nested extreme 

value error structure. It may be verified that the MDCNEV probability expression in Equation 

(22) simplifies to Bhat’s (2008) MDCEV probability expression when each of the utility 

functions are independent of one another (i.e., when 1and 1 , and Mq S Mθ = = ∀ =s s s ).  

  

4.3 The Mixed MDCEV Model 

The MDCGEV structure is able to accommodate flexible correlation patterns. However, it is 

unable to accommodate random taste variation, and it imposes the restriction of equal scale of 

the error terms. Incorporating a more general error structure is straightforward through the use of 

a mixing distribution, which leads to the Mixed MDCEV (or MMDCEV) model. Specifically, 

the error term, kε , may be partitioned into two components, kζ  and kη . The first component, 

kζ , can be assumed to be independently and identically Gumbel distributed across alternatives 

with a scale parameter of σ . The second component, kη , can be allowed to be correlated across 

alternatives and to have a heteroscedastic scale. Let ),...,,( 21 ′= Kηηηη , and assume that η  is 

distributed multivariate normal, ~ (0, )Nη Ω .13 

                                                 
13 Other distributions may also be used for η. Note that the distribution of η can arise from an error components 
structure or a random coefficients structure or a combination of the two, similar to the case of the usual mixed logit 
model (see Bhat, 2007). 
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For given values of the vector η , one can follow the discussion of the earlier section and 

obtain the usual MDCEV probability that the first M of the k goods are consumed. The 

unconditional probability can then be computed as: 
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         (23) 

where F is the multivariate cumulative normal distribution (see Bhat, 2005; Bhat and Sen, 2006; 

and Bhat et al., 2006).  

The model in Equation (23) can be extended in a conceptually straightforward manner to 

also include random coefficients on the independent variables kz , and random-effects (or even 

random coefficients) in the kα  satiation parameters (if the α  profile is used) or the kγ  

parameters (if the γ  profile is used). 

 

 

4.3.1 Heteroscedastic structure within the MMDCEV framework 

Consider the case where there is price variation across the alternatives, and the overall errors kε  

are heteroscedastic, but not correlated.  Assuming a 4-alternative case for ease in presentation, 

the heteroscedastic structure may be specified in the form of the following covariance matrix for 
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where the first component on the right side corresponds to the IID covariance matrix of 

),,,( 4321 ζζζζζ =  and the second component is the heteroscedastic covariance matrix of η . The 

covariance of error differences with respect to the first alternative is: 
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An inspection of the matrix above shows only four independent equations (the rank condition), 

implying that at most four parameters are estimable14. There are two ways to proceed with a 

normalization, as discussed below. 

 The first approach is to normalize σ  and estimate the heteroscedastic covariance matrix 

of η  (i.e., 1ω , 2ω , 3ω , and 4ω ). Assume that σ  is normalized to σ~ , and let the corresponding 

values of kω  be kω
~  (k = 1, 2, 3, 4). Then, the following equalities should hold, based on 

Equation (25), for any normalization of σ  to σ~  (q = π2 / 6 below): 
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1
222
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22
1

22
1
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kqq

qq

kk σωωσωω
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                      (26) 

The above equalities can be rewritten as: 

)4 ,3 ,2 ,1(   ~~ 2222 =−+= kqqkk σσωω                         (27) 

The normalized variance terms 2~
kω  must be greater than or equal to zero, which implies that the 

following conditions should hold: 

)4 ,3 ,2 ,1(   ~222 =≥+ kqqk σσω                         (28) 

Intuitively, the above condition implies that the normalization on σ~  must be set low enough so 

that the overall “true” variance of each error term )( 22 σω qk +=  is larger than 2~σq . For example, 

setting σ  to 1 would be inappropriate if the “true” variance of one or more alternatives is less 

than 6/2π . Since the “true” variance is unknown, the best the analyst can do is to normalize σ  

to progressively smaller values and statistically examine the results. 

 The second approach is to normalize one of the kω  terms instead of the σ  term. In this 

case, from Equation (25), we can write: 

                                                 
14 Strictly speaking, one can estimate all the five parameters (σ, ω1, ω2, ω3, and ω4) because of the difference in the 
extreme value distributions used for ζk and the normal distributions used for ηk (see Walker, 2002). However, the 
model will be near singular, and it is important to place the order/rank constraint. 
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After some manipulations, the above equation may be rewritten as: 

. 4 ,3 ,2  ;~~ 2
1

2
1

22 =−+= kkk ωωωω                                    (30) 

Next, imposing the condition that the normalized terms 2~
kω  must be greater than or equal to zero 

implies the following: 

. )4 ,3 ,2(  ~ 22
1

2
1 =−≥ kkωωω                                     (31) 

The above condition is automatically satisfied as long as the first alternative is the minimum 

variance alternative. An associated convenient normalization is 0~2
1 =ω , since the resulting model 

nests the MDCEV model. The minimum variance alternative can be determined by estimating an 

unidentified model with all the k kω  terms, and identifying the alternative with the minimum 

variance (see Walker et al., 2004, for an equivalent procedure for a heteroscedastic specification 

within the mixed multinomial logit model). 

 The above discussion assumes there is price variation across goods. In the case of no 

price variation, the scale σ  is not identifiable. In this case, the easiest procedure is to normalize 

σ  to 1 and the 2
kω  value for the minimum variance alternative k to zero. 

 

4.3.2 The general error covariance structure within the MMDCEV framework 

Appropriate identification normalizations will have to placed on σ  and the covariance matrix of 

η  when the analyst is estimating an error-components structure to allow correlation in 

unobserved factors influencing the baseline utility of alternatives, since only a (K-1)x(K-1) 

covariance of error differences is identified. This can be accomplished by imposing a structure 

based on a priori beliefs or intuitive considerations. However, the analyst must ensure that the 

elements of the assumed restricted covariance structure can be recovered from the (K-1)x(K-1) 

covariance of error differences that is actually estimable. 

In the most general error covariance structure, and when there is price variation, one way 

to achieve identification is the following: (1) Normalize the scale parameter σ  to be a small 

value such that the variance of the minimum variance alternative exceeds 6/22σπ  (since this 
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variance is not known, the analyst will have to experiment with alternative fixed σ  values), (2) 

Normalize kω  for the minimum variance alternative k to zero, and (3) Normalize all correlations 

of this minimum variance alternative with other alternatives to zero. Together, these 

normalizations leave only 2/)1( −KK  parameters to be estimated, and are adequate for 

identification. In the case of no price variation, an additional restriction will have to be imposed. 

One approach would be to set 1
2

2 =∑
=

K

k
kω  to set the scale in the covariance matrix of η . 

 

4.4 The Joint MDCEV-Single Discrete Choice Model 

The MDCEV model and its extensions discussed thus far are suited for the case when the 

alternatives are imperfect substitutes, as recognized by the use of a non-linear utility that 

accommodates a diminishing marginal utility as the consumption of any alternative increases. 

However, there are many instances where the real choice situation is characterized by a 

combination of imperfect and perfect substitutes (perfect substitutes correspond to the case 

where consumers prefer to select only one discrete alternative at any choice occasion; see 

Hanemann, 1984). The MDCEV model needs to be modified to handle such a combination of a 

multiple discrete-continuous choice among alternatives, as well as a single choice of one sub-

alternative within one or more of the alternatives. We do not discuss this case here due to space 

constraints, but the reader is referred to Bhat et al. (2009) and Bhat et al. (2006).  

 

4.5. The Non-Additive MDCEV Model Structure 

Vasquez and Hanemann (2008) have recently proposed an extension of Bhat’s additively 

separable linear Box-Cox utility functional form (Equation 1) to incorporate a non-additively 

separable quadratic Box-Cox functional form. Using more flexible non-additive utility structures 

allows the analyst to handle both complementarity as well as substitution among goods. To write 

this general non-additive form, define kμ as: 
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Then, a non-additively separable functional form may be written as: 
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This is very general, and collapses to Bhat’s additively separable form when 0=kmθ for all k and 

m. It collapses to the translog functional form when 0→kα  for all k, and to Wales and 

Woodland’s quadratic form when 1=kα for all k. The interpretation of the parameters is not as 

straightforward as in Bhat’s MDCEV and the probability expressions for the consumption of the 

goods and the Jacobian do not have simple forms. But the gain is that the marginal utility of 

consumption of a good is not only dependent on the amount of that good consumed, but also the 

amount of other goods consumed.  

 

5. THE MODEL WITH AN OUTSIDE GOOD 

Thus far, the discussion has assumed that there is no outside numeraire good (i.e., no essential 

Hicksian composite good). If an outside good is present, label it as the first good which now has 

a unit price of one. Also, for identification, let 1),( 11
εεψ ex = . Then, the utility functional form 

needs to be modified as follows: 
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In the above formula, we need 01 ≤γ , while 0>kγ for k > 1. Also, we need .011 >+ γx The 

magnitude of 1γ  may be interpreted as the required lower bound (or a “subsistence value”) for 

consumption of the outside good. As in the “no-outside good” case, the analyst will generally not 

be able to estimate both kα  and kγ  for the outside and inside goods. The analyst can estimate 

one of the following five utility forms: 
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The third functional form above is estimable because the constant α  parameter is obtaining a 

“pinning effect” from the satiation parameter for the outside good. The analyst can estimate all 

the five possible functional forms and select the one that fits the data best based on statistical and 

intuitive considerations. The identification considerations discussed for the “no-outside good” 

case carries over to the “with outside good” case. The probability expression for the expenditure 

allocation on the various goods (with the first good being the outside good) is identical to 

Equation (19), while the probability expression for consumption of the goods (with the first good 

being the outside good) is 
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The expressions for V in Equation (19) and Equation (34) are as follows for each of the five 

utility forms in Equation (33): 

First form -  kkkkk pxzV ln)1ln()1( * −+−+′= αβ  (k ≥ 2); ( ) )ln(1 *
111 xV −= α   

Second form - k
k

k
kk pxzV ln)1ln(

*

−+−′=
γ

β  (k ≥ 2); ( ) )ln(1 *
111 xV −= α                                   (35) 

Third form -  k
k

k
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11 xV −= α  
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Fourth form -  kkkkk pxzV ln)1ln()1( * −+−+′= αβ  (k ≥ 2); )ln( 1
*
11 γ+−= xV   

Fifth form - k
k

k
kk pxzV ln)1ln(

*

−+−′=
γ

β  (k ≥ 2); )ln( 1
*
11 γ+−= xV       

  

6. APPLICATIONS  

The MDCEV model framework has been employed in modeling a number of choice situations 

that are characterized by multiple-discreteness. These can be broadly categorized into the 

following research areas: (1) activity time-use analysis (adults and children), (2) household 

vehicle ownership, (3) household expenditures and (4) Angler’s site choice.15  

 

6.1 Activity Time-Use Analysis 

The MDCEV model that assumes diminishing marginal utility of consumption provides an ideal 

platform for modeling activity time-use decisions. The different studies on activity time-use are 

described chronologically below. 

 Bhat (2005) demonstrated an application of the MDCEV model to individual time use in 

different types of discretionary activity pursuits on weekend days. The modeling exercise 

included different kinds of variables, including household demographics, household location 

variables, individual demographics and employment characteristics, and day of week and season 

of year. Bhat et al. (2006) formulate a unified utility-maximizing framework for the analysis of a 

joint imperfect-perfect substitute goods case. This is achieved by using a satiation-based utility 

structure (MDCEV) across the imperfect substitutes, but a simple standard discrete choice-based 

linear utility structure (MNL) within perfect substitutes. The joint model is applied to analyze 

individual time-use in both maintenance and leisure activities using weekend day time-use. 

 Kapur and Bhat (2007) specifically modeled the social context of activity participation by 

examining the accompaniment arrangement (i.e., company type) in activity participation. Sener 

and Bhat (2007) also examined participation and time investment in in-home leisure as well as 

out-of-home discretionary activities with a specific emphasis on the accompanying individuals in 

                                                 
15 The summary of all the studies discussed in this chapter are compiled in the form of a table with information on 
the application focus, the data source used for the empirical analysis, the number and labels of discrete alternatives, 
the continuous component in the empirical context and the MDCEV model type employed. The table is available to 
the readers at: http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MDCEV_BookChapter_Table1.pdf 
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children’s activity engagement. Copperman and Bhat (2007) formulated a comprehensive 

framework to consider participation, and levels of participation, in physically passive and 

physically active episodes among children on weekend days. 

 LaMondia et al. (2008) focused their attention on vacation travel in USA. Specifically, 

the paper examined how households decide what vacation travel activities to participate in on an 

annual basis, and to what extent, given the total annual vacation travel time that is available at 

their disposal.  

 The models presented in Sener et al. (2008) offer a rich framework for categorizing and 

representing the activity-travel patterns of children within larger travel demand model systems. 

The paper provides a taxonomy of child activities that explicitly considers the spatial and 

temporal constraints that may be associated with different types of activities. 

 Pinjari et al. (2009) presented a joint model system of residential location and activity 

time-use choices. The model system takes the form of a joint mixed Multinomial Logit–Multiple 

Discrete-Continuous Extreme Value (MNL–MDCEV) structure that (a) accommodates 

differential sensitivity to the activity-travel environment attributes due to both observed and 

unobserved individual-related attributes, and (b) controls for the self selection of individuals into 

neighborhoods due to both observed and unobserved individual-related factors.  

 Spissu et al. (2009) formulated a panel version of the Mixed Multiple Discrete 

Continuous Extreme Value (MMDCEV) model that is capable of simultaneously accounting for 

repeated observations from the same individuals (panel), participation in multiple activities in a 

week, durations of activity engagement in various activity categories, and unobserved individual-

specific factors affecting discretionary activity engagement including those common across pairs 

of activity category utilities. 

 Pinjari and Bhat (2008) proposed the MDCNEV model that captures inter-alternative 

correlations among alternatives in mutually exclusive subsets (or nests) of the choice set, while 

maintaining the closed-form of probability expressions for any (and all) consumption pattern(s). 

The model estimation results provide several insights into the determinants of non-workers’ 

activity time-use and timing decisions. 

 Rajagopalan et al. (2009) predicted workers’ activity participation and time allocation 

patterns in seven types of out-of-home non-work activities at various time periods of the day. 

The knowledge of the activities (and the corresponding time allocations and timing decisions) 
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predicted by this model can be used for subsequent detailed scheduling and sequencing of 

activities and related travel in an activity-based microsimulation framework.  

  

6.2 Household Vehicle Ownership 

The MDCEV framework, with its capability to handle multiple-discreteness, lends itself very 

well to model household vehicle ownership by type. 

 Bhat and Sen (2006) modeled the simultaneous holdings of multiple vehicle types 

(passenger car, SUV, pickup truck, minivan and van), as well as determined the continuous miles 

of usage of each vehicle type. The model can be used to determine the change in vehicle type 

holdings and usage due to changes in independent variables over time. As a demonstration, the 

impact of an increase in vehicle operating costs, on vehicle type ownership and usage, is 

assessed. Ahn et al. (2008) employed conjoint analysis and the MDCEV framework to 

understand consumer preferences for alternative fuel vehicles. The results indicate a clear 

preference of gasoline-powered cars among consumers, but alternative fuel vehicles offer a 

promising substitute to consumers. Bhat et al. (2009) formulated and estimated a nested model 

structure that includes a multiple discrete-continuous extreme value (MDCEV) component to 

analyze the choice of vehicle type/vintage and usage in the upper level and a multinomial logit 

(MNL) component to analyze the choice of vehicle make/model in the lower nest.  

  

6.3 Household Expenditures 

The MDCEV framework provides a feasible framework to analyze consumption patterns. 

Ferdous et al. (2008) employed a MDCNEV structure to explicitly recognize that people choose 

to consume multiple goods and commodities. Model results show that a range of household 

socio-economic and demographic characteristics affect the percent of income or budget allocated 

to various consumption categories and savings. Rajagopalan and Srinivasan (2008) explicitly 

investigated transportation related household expenditures by mode. Specifically, they examined 

the mode choice and modal expenditures at the household level. The model results indicate that 

mode choice and frequency decisions are influenced by prior mode choice decisions, and the 

user’s perception of safety and congestion.  
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6.4 Angler’s Site Choice 

Vasquez and Hanemann (2008) formulate the non-additive MDCEV model structure to study 

angler site choice. In this study, they employ individual level variables such as skill, leisure time 

available, and ownership status (of cabin, boat or RV). Further, they undertake the computation 

of welfare measures using a sequential quadratic programming method.  

 

7. CONCLUSIONS 

Classical discrete and discrete-continuous models deal with situations where only one alternative 

is chosen from a set of mutually exclusive alternatives.  Such models assume that the alternatives 

are perfectly substitutable for each other.  On the other hand, many consumer choice situations 

are characterized by the simultaneous demand for multiple alternatives that are imperfect 

substitutes or even complements for one another.   

This book chapter discusses the multiple discrete-continuous extreme value (MDCEV) 

model and its many variants. Recent applications of the MDCEV type of models are presented 

and briefly discussed. This overview of applications indicates that the MDCEV model has been 

employed in many different empirical contexts in the transportation field, and also highlights the 

potential for application of the model in several other fields. The overview also serves to 

highlight the fact that the field is at an exciting and ripe stage for further applications of the 

multiple discrete-continuous models. At the same time, several challenges lie ahead, including 

(1) Accommodating more than one constraint in the utility maximization problem (for example, 

recognizing both time and money constraints in activity type choice and duration models; see 

Anas, 2006 for a recent theoretical effort to accommodate such multiple constraints), (2) 

Incorporating latent consideration sets in a theoretically appropriate way within the MDCEV 

structure (the authors are currently addressing this issue in ongoing research), (3) Using more 

flexible utility structures that can handle both complementarity as well as substitution among 

goods, and that do not impose the constraints of additive separability (Vasquez and Hanemann, 

2008 provide some possible ways to accommodate this), and (4) Developing easy-to-apply 

techniques to use the model in forecasting mode. 
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Appendix A 
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order, and of size 1q −s and 2r −s , respectively): 

( 1)(1 ) ( 2)(1 ) ( 3)(1 ) 3(1 ) 2(1 ) 1(1 )
, , , ..., , ,q

q q q
A

θ θ θ θ θ θ
θ θ θ θ θ θ

⎧ ⎫− − − − − − − − −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

s
s s s s s s s s s

s s s s s s
{ }2, 3, 4,...,3,2,1rA r r r= − − −s s s s . 

Choose any 2r −s  elements (other than the last element,
1 θ
θ
− s
s

) of the matrix qA s and arrange 

them in the descending order into another matrix iqA s . Note that we can form 2

2

q

r

−⎡ ⎤
⎢ ⎥

−⎣ ⎦s
s number of 

such matrices. Subsequently, form another matrix .irq iq rA A A= + ss s  Of the remaining elements in 

the qA s matrix, discard the elements that are larger than or equal to the smallest element of the 

iqA s matrix, and store the remaining elements into another matrix labeled irqB s . Now, an element 

of rX s  (i.e., irqx s ) is formed by performing the following operation: 

Product Sum(( ) )irq irq irqBx A Χ=s s s ; that is, by multiplying the product of all elements of the matrix 

irqA s with the sum of all elements of the matrix irqB s . Note that the number of such elements of 

the matrix rX s  is equal to 2

2

q

r

−⎡ ⎤
⎢ ⎥

−⎣ ⎦s
s . 

 



 35

LIST OF FIGURES 

Figure 1. Indifference Curves Corresponding to Different Values of 1γ   

Figure 2. Effect of kγ Value on Good k’s Subutility Function Profile 

Figure 3. Effect of kα Value on Good k’s Subutility Function Profile 

 

 



 36

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Indifference Curves Corresponding to Different Values of 1γ  
 

-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

-2 -1 0 1 2 3 4 5 6

Consumption Quantity of Good 1

C
on

su
m

pt
io

n 
Q

ua
nt

ity
 o

f G
oo

d 
2

1 2

1 2

2

1
0.5

1

ψ ψ
α α
γ

= =
= =
=

-0.25 1 5γ =

1 2γ =

1 1γ =

1 0.25γ =



 37

 
Figure 2. Effect of kγ Value on Good k’s Subutility Function Profile 
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