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ABSTRACT 

This paper develops a blueprint (complete with matrix notation) to apply Bhat’s (2011) 

Maximum Approximate Composite Marginal Likelihood (MACML) inference approach for the 

estimation of cross-sectional as well as panel multiple discrete-continuous probit (MDCP) 

models. A simulation exercise is undertaken to evaluate the ability of the proposed approach to 

recover parameters from a cross-sectional MDCP model. The results show that the MACML 

approach does very well in recovering parameters, as well as appears to accurately capture the 

curvature of the Hessian of the log-likelihood function. The paper also demonstrates the 

application of the proposed approach through a study of individuals’ recreational (i.e., long 

distance leisure) choice among alternative destination locations and the number of trips to each 

recreational destination location, using data drawn from the 2004-2005 Michigan statewide 

household travel survey. 

 

Keywords: Multiple discrete-continuous model, maximum approximate composite marginal 

likelihood, recreation choice. 
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1. INTRODUCTION 

Consumers often encounter two inter-related decisions at a choice instance -- which 

alternative(s) to choose for consumption from a set of available alternatives, and the amount to 

consume of the chosen alternatives. Classical discrete choice models, such as the multinomial 

logit (MNL) and probit (MNP), allow an analysis of consumer preferences in situations when 

only one alternative can be chosen for consumption from among a set of available and mutually 

exclusive alternatives. These models assume that the alternatives are perfect substitutes of one 

another. However, there are several multiple discrete-continuous (MDC) choice situations where 

consumers choose to consume multiple alternatives at the same time, along with the continuous 

dimension of the amount of consumption. Examples of such MDC contexts include, but are not 

limited to, household vehicle type holdings and usage, airline fleet mix and usage, individuals’ 

choice of recreational destination locations and number of trips to the selected locations, activity 

type choice and duration spent in different activity types, brand choice and purchase quantity, 

energy equipment choice and energy consumption, and stock selection and investment amount. 

A variety of modeling approaches have been used in the literature to accommodate MDC 

choice contexts, including (a) the use of a traditional random utility-based (RUM) single discrete 

choice models by identifying all combinations or bundles of the “elemental” alternatives and 

treating each bundle as a “composite” alternative, and (b) the use of multivariate probit (logit) 

methods (see Manchanda et al., 1999, Baltas, 2004, Edwards and Allenby, 2003, and Bhat and 

Srinivasan, 2005). However, the first approach leads to an explosion in the number of composite 

alternatives as the number of elemental alternatives increases, while the second approach 

represents more of a statistical stitching of univariate models rather being based on an explicit 

utility-maximizing framework for multiple discreteness. Besides, it is difficult to incorporate the 

continuous dimension of consumption quantity in these approaches. Another approach for MDC 

situations that is rooted firmly in the utility maximization framework assumes a non-linear (but 

increasing and continuously differentiable) utility structure to accommodate decreasing marginal 

utility (or satiation) with increasing consumption. Consumers are assumed to maximize this 

utility subject to a budget constraint. The optimal consumption quantities (including possibly 

zero consumptions of some alternatives) are obtained by writing the Karush-Kuhn-Tucker 

(KKT) first-order conditions of the utility function with respect to the consumption quantities. 

Researchers from many disciplines have used such a KKT approach, and several additively 
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separable and non-linear utility structures have been proposed in the literature (see Hanemann, 

1978, Wales and Woodland, 1983, Kim et al., 2002, von Haefen and Phaneuf, 2005, Phaneuf and 

Smith, 2005, Bhat, 2005, 2008, and Kuriyama et al., 2011). Of these, the general utility form 

proposed by Bhat (2008) subsumes other non-linear utility forms as special cases, and allows a 

clear interpretation of model parameters. In this and other more restrictive utility forms, 

stochasticity is introduced in the baseline preference for each alternative to acknowledge the 

presence of unobserved (to the analyst) factors that may impact the utility of each alternative (the 

baseline preference is the marginal utility of each alternative at the point of zero consumption of 

the alternative). Since the baseline preference has to be positive for the overall utility function to 

be valid, the baseline preference is parameterized as the exponential of a systematic component 

(capturing the effect of exogenous variables) as well as a stochastic error term. As in traditional 

discrete choice models, the most common distributions used for the stochastic error term are the 

multivariate normal (see Kim et al., 2002) and generalized extreme value distributions (see Bhat, 

2008, Pinjari and Bhat, 2011, Pinjari, 2011). The first distribution leads to an MDC probit (or 

MDCP) model structure, while the second to a closed-form MDC generalized extreme value (or 

MDCGEV) model structure (the closed-form MDC extreme value or MDCEV model structure is 

a special case of the MDCGEV model). In all these cases, the analyst can further superimpose a 

mixing random distribution structure in the baseline preference to accommodate unobserved 

taste variations across consumers in the sensitivity to relevant exogenous attributes (such as 

differential sensitivity due to unobserved factors to travel time and travel cost in a recreation 

destination choice model). All studies to date in the MDC context that we are aware of have used 

a normal mixing distribution. The mixing distribution can also be used to accommodate 

heteroscedasticity and correlations across alternatives (due to generic unobserved preferences) in 

the MDCEV and MDCGEV model structures. 

In the context of a normal mixing error distribution, the use of a GEV kernel structure 

leads to a mixing of the normal distribution with a GEV kernel (leading to the mixed MDCGEV 

model or MMDCGEV structure), while the use of a probit kernel leads back to an MDCP model 

structure (because of the conjugate nature of the multivariate normal distribution in terms of 

addition). The domain of integration (to uncondition out the unobserved mixing elements in the 

consumption probability) in the MMDCGEV structure is the entire multidimensional real space, 

while the domain of integration in the MDCP structure is a truncated (orthant) space. In both 
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these structures, the multidimensional integration does not have a closed-form solution, and so it 

is usually undertaken using simulation techniques. The MMDCGEV structure is typically 

estimated using quasi-Monte Carlo simulations in combination with a quasi-Newton 

optimization routine in a maximum simulated likelihood (MSL) inference approach (see Bhat, 

2001, 2003). The MDCP structure, on the other hand, is typically estimated using the Geweke- 

Hajivassiliou-Keane (GHK) simulator or the Genz-Bretz (GB) simulator that accommodate the 

orthant integration domain (see Bhat et al., 2010 for a detailed description of these simulators). 

Between the MMDCGEV and MDCP structures, the former structure has been the model form 

of choice in the economics and transportation fields because simulation techniques to evaluate 

multidimensional integrals are generally easier when the domain is the entire real space rather 

than orthant spaces. In any case, the consistency, efficiency, and asymptotic normality of these 

MSL-based simulation estimators is critically predicated on the condition that the number of 

simulation draws rises faster than the square root of the number of individuals in the estimation 

sample. Unfortunately, as the number of dimensions of integration increases, the computational 

cost to ensure good asymptotic estimator properties can be prohibitive and literally infeasible (in 

the context of the computation resources available, the time available for estimation, and the 

need for considering a suite of different variable specifications), especially because the accuracy 

of simulation techniques is known to degrade rapidly at medium-to-high dimensions. The 

resulting increase in simulation noise can lead to convergence problems during estimation. Also, 

since the hessian (or second derivatives) needed with the MSL approach to estimate the 

asymptotic covariance matrix of the estimator is itself estimated on a highly nonlinear and non-

smooth second derivatives surface of the log-simulated likelihood function, it can be difficult to 

accurately compute this covariance matrix (see Craig, 2008 and Bhat et al., 2010). This has 

implications for statistical inference even if the asymptotic properties of the estimator are well 

established.1 

In this paper, we propose the use of Bhat’s (2011) Maximum Approximate Composite 

Marginal Likelihood or MACML inference approach for the estimation of multiple discrete-

continuous models. This inference approach is simple, computationally very efficient, and 
                                                 
1 Bayesian simulation using Markov Chain Monte Carlo (MCMC) techniques (instead of MSL techniques) may also 
be used for the estimation of MDCGEV and MDCP model structures (for example, see Kim et al., 2002, Fang, 
2008, and Brownstone and Fang, 2010). However, these Bayesian techniques also require extensive simulation, are 
time-consuming, are not straightforward to implement, and create convergence assessment problems as the number 
of dimensions of integration increases. 
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simulation-free. While Bhat’s original MACML inference proposal was developed for the 

estimation of multinomial probit models in a traditional discrete choice setting, we show how it 

also can be gainfully employed for the estimation of MDC models. The proposed MACML 

approach for MDC models is simple to code and apply using readily available software for 

likelihood estimation. It also represents a conceptually and pedagogically simpler inference 

procedure relative to simulation techniques, and involves only univariate and bivariate 

cumulative normal distribution function evaluations in the likelihood function (in addition to the 

evaluation of a closed-form multivariate normal density function), regardless of the number of 

alternatives or the number of choice occasions per individual in a panel setting, or the nature of 

social/spatial dependence structures imposed. In the MACML inference approach, the MDCP 

model structure is much easier to estimate because of the conjugate addition property of the 

multivariate normal distribution, while the MACML estimation of the MMDCGEV structure 

models requires a normal scale mixture representation for the extreme value error terms, and 

adds an additional layer of computational effort. Given that the use of a GEV kernel or a 

multivariate normal (MVN) kernel is simply a matter of convenience, and that the MVN kernel 

allows a more general covariance structure for the kernel error terms, we will henceforth focus in 

this paper on the MDCP model structure. 

The paper is structured as follows. The next section presents the MACML inference 

approach for the cross-sectional MDCP model structure, while Section 3 illustrates the approach 

for the panel MNCP model structures. Section 4 presents details of a simulation effort to 

examine the ability of the MACML estimator to recover parameters from finite samples in a 

cross-sectional setting. Section 5 demonstrates an application to study households’ leisure travel 

choice among recreational destination locations and the number of trips to each recreational 

destination location using data drawn from the 2004-2005 Michigan statewide household travel 

survey. The final section offers concluding thoughts and directions for further research.2 

 

                                                 
2 Due to space considerations, we will not discuss the intricate technical details of the MACML inference approach 
in this paper. This inference approach involves the combination of two basic concepts – the analytic approximation 
of the multivariate normal cumulative distribution (or MVNCD) function and the use of a composite marginal 
likelihood (or CML) inference approach. Readers are referred to Bhat (2011) for technical details. 
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2. CROSS-SECTIONAL MDCP MODEL 

2.1 Model Formulation 

In the discussion in this section, we will assume that the number of consumer goods in the choice 

set is the same across all consumers. The case of different numbers of consumer goods per 

consumer poses no complications whatsoever, since the only change in such a case is that the 

dimensionality of the integration in the likelihood contribution changes from one consumer to 

the next.  

Following Bhat (2008), consider a choice scenario where a consumer q (q = 1, 2, …, Q) 

maximizes his/her utility subject to a binding budget constraint: 
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where the utility function )( qqU x  is quasi-concave, increasing and continuously differentiable, 

0≥qx  is the consumption quantity (vector of dimension K×1 with elements qkx ), and qkγ , qkα , 

and qkψ  are parameters associated with good k and consumer q. In the linear budget constraint, 

qE  is the total expenditure (or income) of consumer q, and qkp  is the unit price of good k as 

experienced by consumer q. The utility function form in Equation (1) assumes that there is no 

essential outside good, so that corner solutions (i.e., zero consumptions) are allowed for all the 

goods k. This assumption is being made only to streamline the presentation; relaxing this 

assumption is straightforward and, in fact, simplifies the analysis (see Bhat, 2008).3 The 

                                                 
3 The issue of an essential outside good is related to a complete versus incomplete demand system. In a complete 
demand system, the demands of all goods (that exhaust the consumption space of consumers) are modeled. 
However, the consideration of complete demand systems can be impractical when studying consumptions in finely 
defined commodity/service categories. In such situations, it is common to use an incomplete demand system, either 
in the form of a two stage budgeting approach or in the form of a Hicksian composite commodity approach. In the 
two stage budgeting approach, the first stage entails allocation between a limited number of broad groups of 
consumption items, followed by the incomplete demand system allocation within the broad group of interest to 
elementary commodities/services within that group (the elementary commodities/services in this broad group of 
primary interest are referred to as “inside” goods, with consumers selecting at least one of these goods for 
consumption). The plausibility of such a two stage budgeting approach, in general, requires strong homothetic 
preferences within each broad group and strong separability of preferences (see Menezes et al., 2005). In the 
Hicksian composite commodity approach, one replaces all the elementary alternatives within each broad group that 
is not of primary interest by a single composite alternative representing the broad group (one needs to assume in this 
approach that the prices of elementary goods within each broad group of consumption items vary proportionally). 
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parameter qkγ  in Equation (1) allows corner solutions for good k, but also serves the role of a 

satiation parameter. The role of qkα  is to capture satiation effects, with smaller value of qkα  

implying higher satiation for good k. qkψ  represents the stochastic baseline marginal utility; that 

is, it is the marginal utility at the point of zero consumption (see Bhat, 2008 for a detailed 

discussion). 

The utility function in Equation (1) represents a general and flexible functional form 

under the assumption of additive separable preferences (see Bhat and Pinjari, 2010 for 

modifications of the utility function to accommodate non-additiveness). It constitutes a valid 

utility function if 0>qkγ , 1≤qkα , and 0>qkψ  for all q and k. Also, as indicated earlier, qkγ  and 

qkα  influence satiation, though in quite different ways: qkγ  controls satiation by translating 

consumption quantity, while qkα  controls satiation by exponentiating consumption quantity. 

Empirically speaking, it is difficult to disentangle the effects of qkγ  and qkα  separately, which 

leads to serious empirical identification problems and estimation breakdowns when one attempts 

to estimate both parameters for each good. Thus, Bhat (2008) suggests estimating both a γ -

profile (in which 0→qkα  for all goods and all consumers, and the qkγ  terms are estimated) and 

anα -profile (in which the qkγ  terms are normalized to the value of one for all goods and 

consumers, and the qkα  terms are estimated), and choose the profile that provides a better 

statistical fit. However, in this section, we will retain the general utility form of Equation (1) to 

keep the presentation general. But, for notational simplicity, we will drop the index “q” from the 

qkγ  and qkα  terms in the rest of this paper. In practice, if a γ-profile is used, the parameter qkγ  

can be allowed to vary across consumers by parameterizing it as an exponential function of 

relevant consumer-specific variables (and interactions of consumer-specific and alternative 

attributes). The exponential function ensures that ∀>0qkγ  q and k. On the other hand, if an α-

                                                                                                                                                             
The analysis proceeds then by considering the composite goods as “outside” goods and modeling consumption in 
these outside goods as well as in the finely categorized “inside” goods representing the consumption group of main 
interest to the analyst. It is common in practice in this Hicksian approach to include a single outside good with the 
inside goods. If this composite outside good is not essential, then the consumption formulation is similar to that of a 
complete demand system. If this composite outside good is essential, then the formulation needs minor revision to 
accommodate the essential nature of the outside good (see Bhat, 2008). 
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profile is used, the parameter qkα can be parameterized as one minus the exponential function of 

relevant consumer-specific attributes (and interactions of consumer-specific and alternative 

attributes). 

To complete the model structure, stochasticity is added by parameterizing the baseline 

utility as follows:  

),exp( qkqkqqk ξψ +′= zβ  (2)

where qkz  is a D-dimensional vector of attributes that characterize good k and the consumer q 

(including a dummy variable for each good except one, to capture intrinsic preferences for each 

good except one good that forms the base), qβ  is a consumer-specific vector of coefficients (of 

dimension D×1), and qkξ  captures the idiosyncratic (unobserved) characteristics that impact the 

baseline utility of good k and consumer q. We assume that the error terms qkξ  are multivariate 

normally distributed across goods k for a given consumer q: ),(~),...,,( 21 ΛKKqKqqq MVN 0ξ ′= ξξξ , 

where ),( ΛKKMVN 0  indicates a K-variate normal distribution with a mean vector of zeros 

denoted by K0  and a covariance matrix .Λ  Further, to allow taste variation due to unobserved 

individual attributes, we consider qβ  as a realization from a multivariate normal distribution: 

),(~ Ωbβ Dq MVN . The vectors qβ  and qξ  are assumed to be independent of each other. For 

future reference, we also write qq βbβ ~
+=  , where ),0(~~ ΩDDq MVNβ . Note, however, that the 

parameters (in the qβ  vector) on the dummy variables specific to each alternative have to be fixed 

parameters in the cross-section model, since their randomness is already captured in the 

covariance matrix Λ. 

The analyst can solve for the optimal consumption allocations corresponding to Equation 

(1) by forming the Lagrangian and applying the Karush-Kuhn-Tucker (KKT) conditions. The 

Lagrangian function for the problem, after substituting Equation (2) in Equation (1) is: 
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where qλ  is the Lagrangian multiplier associated with the expenditure constraint (that is, it can 

be viewed as the marginal utility of total expenditure or income). The KKT first-order conditions 

for the optimal consumption allocations (the *
qkx  values) are given by: 

01 )~exp(
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The optimal demand satisfies the conditions above plus the budget constraint 
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 The budget constraint implies that only K–1 of the *
qkx  values need to be 

estimated, since the quantity consumed of any one good is automatically determined from the 

quantities consumed of all the other goods. To accommodate this constraint, let qm  be the 

consumed good with the lowest value of k for the qth consumer. For instance, if the choice set has 

seven goods )7( =K  and the consumer q chooses goods 2, 3 and 5, then 2=qm . The order in 

which the goods are organized does not affect the model formulation or estimation, since the 

definition of qm  only serves as a reference to compare marginal utilities (note also that the 

consumer q should choose at least one good given that 0>qE ). For the good qm , the Lagrangian 

multiplier may then be written as: 
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Substituting for qλ  from above into Equation (4) for the other goods k ( Kk ,...,2,1= ; qmk ≠ ), and 

taking logarithms, we can rewrite the KKT conditions as:  

qqq qmqmqqmqkqkqqk VV ξξ +′+=+′+ zβ~zβ~ , if 0* >qkx , Kk ,...,2,1= , qmk ≠  

qqq qmqmqqmqkqkqqk VV ξξ +′+<+′+ zβ~zβ~ , if 0* =qkx , Kk ,...,2,1= , ,qmk ≠  
(6)
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0* =
qqkmy , if 0* >qkx , Kk ,...,2,1= , qmk ≠

 
0* <

qqkmy , if 0* =qkx , Kk ,...,2,1= , .qmk ≠  
(7)

Three important identification issues need to be noted here because the KKT conditions 

above are based on differences, as reflected in the *
qqkmy  terms. First, a constant cannot be 

identified in the qkzb′  term for one of the K goods. Similarly, consumer-specific variables that do 

not vary across goods can be introduced for K–1 goods, with the remaining good being the base. 

Second, only the covariance matrix of the error differences is estimable. Taking the difference 

with respect to the first good, only the elements of the covariance matrix 1Λ  of 

11 qqkqk ξξε −= , 1≠k  are estimable. However, the KKT conditions take the difference against the 

first consumed good qm  by consumer q. Thus, in translating the KKT conditions to the 

consumption probability for consumer q, the covariance matrix 
qmΛ  is desired. Since qm  will 

vary across consumers q, 
qmΛ  will also vary across consumers. But all the 

qmΛ  matrices must 

originate in the same covariance matrix Λ  for the original error term vector qξ . To achieve this 

consistency, Λ  is constructed from 1Λ  by adding an additional row on top and an additional 

column to the left. All elements of this additional row and column are filled with values of zeros. 

qmΛ  may then be obtained appropriately for each consumer q based on the same Λ  matrix. 

Third, an additional scale normalization needs to be imposed on Λ  if there is no price variation 

across goods for each consumer q (i.e., if qkpp qqk ∀∀= and~ ). For instance, one can normalize 

the element of Λ  in the second row and second column to the value of one. But, if there is some 

price variation across goods for even a subset of consumers, there is no need for this scale 

normalization and all the K(K–1)/2 parameters of the full covariance matrix of 1Λ  are estimable 

(see Bhat, 2008 for a discussion of this scale normalization issue). 

 

2.2 Model Estimation 

The parameters to estimate include the kα  parameters (for an α-profile), the kγ  parameters (for a 

γ-profile), the b vector, and the elements of the covariance matrices Ω  and Λ . In the rest of this 

section, we will use the following key notation: ),;(. ΣμGf  for the multivariate normal density 
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function of dimension G with mean vector μ  and covariance matrix Σ , Σω  for the diagonal 

matrix of standard deviations of Σ  (with its rth element being rω ,Σ ), );(. *ΣGφ  for the 

multivariate standard normal density function of dimension G and correlation matrix *Σ , such 

that 11 −−= ΣΣ ΣωωΣ* , ),;(. ΣμGF  for the multivariate normal cumulative distribution function of 

dimension G with mean vector μ  and covariance matrix Σ , and );(. *ΣGΦ  for the multivariate 

standard normal cumulative distribution function of dimension G and correlation matrix .*Σ  

To develop the likelihood function, define qM  as an identity matrix of size K–1 with an 

extra column of “–1” values added at the th
qm  column. Also, stack qky , qkV  , and qkξ  into K×1 

vectors: )',...,,( 21 qKqqq yyy=y , )',...,,( 21 qKqqq VVV=V , and )',...,,( 21 qKqqq ξξξ=ξ  , respectively, 

and let ),...,,( 21 ′= qKqqq zzzz  be a K×D matrix of variable attributes. Then, we may write, in 

matrix notation, qqqqq ξβ~Vy ++= z  and )(1 qqKqqq MVN ΨM ,
* H~yy −= , where qqq VH M=  

and qqqqq MΛzΩzMΨ ′+′= )( . Next, partition the vector *yq  into a sub-vector *y~ NCq ,  of length 

NCqL , ×1 ( 10 , −≤≤ KL NCq ) for the non-consumed goods, and another sub-vector *y~ Cq ,  of length 

CqL , ×1 ( 10 , −≤≤ KL Cq ) for the consumed goods ( 1,, −=+ KLL CqNCq ). Let 

[ ] [ ]
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consumer q who chooses among five goods (K=5), and selects goods 2, 3, and 5 for 

consumption. Thus, 2=qm , 2, =NCqL  (corresponding to the non-consumed goods 1 and 4), and 

2, =CqL  (corresponding to the consumed goods 3 and 5, with good 2 serving as the base good 

needed to take utility differentials). Then, the re-arrangement matrix qR  (for goods 1, 3, 4, and 

5) is: 
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where the upper sub-matrix NCq ,R  corresponds to the non-consumed goods (of dimension 

)1(, −× KL NCq ) and the lower sub-matrix Cq ,R  corresponds to the consumed goods (of 

dimension )1(, −× KL Cq ). Note also that ** yy~ qNCqNCq ,, R=  and ** yy~ qCqCq ,, R= . NCq ,R  has as 

many rows as the number of non-consumed alternatives and as many columns as the number of 

alternatives minus one (each column corresponds to an alternative, except the th
qm  alternative). 

Then, for each row, NCq ,R  has a value of “1” in one of the columns corresponding to an 

alternative that is not consumed, and the value of “0” everywhere else. A similar construction is 

involved in creating the Cq,R  matrix. 

Consistent with the above re-arrangement, define qqq HH~ R=  , qNCqNCq HH~ ,, R= , 

qCqCq HH~ ,, R= , and ⎥
⎦

⎤
⎢
⎣

⎡ ′
=′=

CqCNCq

CNCqNCq
qqqq

,,,

,,,

ΨΨ
ΨΨ

RΨRΨ ~~
~~

~ , where NCqqNCqNCq ,,, RΨRΨ ′=~ , 

CqqCqCq ,,, RΨRΨ ′=~ , and CqqNCqCNCq ,,,, RΨRΨ ′=~ . Then, the likelihood function corresponding to 

the consumption quantity vector *xq  for consumer q may be obtained from the KKT conditions in 

Equation (7) as: 

( ) ,,|,)det(
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,,1
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−∞=
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NCq

Cq NCqqqLNCqKqq fL
h

dh~H~0h ΨJ  (9)

where )det( qJ  is the determinant of the Jacobian of the transformation from *yq  to the 

consumption quantities *xq  (see Bhat, 2008): 
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*

*J  , (10)

where qC  is the set of goods consumed by consumer q (including good qm ). 

Using the marginal and conditional distribution properties of the multivariate normal 

distribution, the above likelihood function can be written as: 

),;(),;()det( ,,,, ,,,, NCqNCqLLCqCqLLqq NCqNCqCqCq
FfL ΨΨJ
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where )()( ,
1

,,,,, CqCqCNCqNCqNCq H~~~H~H −+= −ΨΨ
�

, CNCqCqCNCqNCqNCq ,,
1

,,,,, )( ΨΨΨΨΨ ′−= − ~~~~�
, 

1
,

1
, ,,

−−=
CqCq CqCq ΨΨ ωΨωΨ ~~

* ~~ , and 1
,

1
, ,,

−−=
NCqNCq NCqNCq ΨΨ ωΨωΨ ��

�� * . 

The multivariate normal cumulative distribution (MVNCD) function in Equation (11) is 

of dimension NCqL , , which can have a dimensionality of up to (K–1). As indicated in Section 1, 

typical simulation-based methods to approximate this MVNCD function can get inaccurate and 

time-consuming as K increases. An alternative is to use the maximum approximate composite 

marginal likelihood (MACML) approach (Bhat, 2011), in which the multiple integrals are 

evaluated using a fast analytic approximation method. The MACML estimator is based solely on 

univariate and bivariate cumulative normal distribution evaluations, regardless of the 

dimensionality of integration, which considerably reduces computation time compared to other 

simulation techniques to evaluate multidimensional integrals (see Bhat and Sidharthan, 2011 for 

an extended simulation analysis of the ability of the MACML method to recover parameters). As 

we mentioned before, the MACML approach was proposed to estimate mixed multinomial probit 

models (MNP), but can be extended to other modeling frameworks that result in MVNCD 

function evaluations, such as the proposed MDCP modeling framework. A brief description of 

the MACML approach is discussed in the Appendix and the code for the MACML estimation of 

the MDCP model is available at http://www.caee.utexas.edu/prof/bhat/FULL_CODES.htm. 

There is one very important issue that still needs to be dealt with. This concerns the 

positive definiteness of covariance matrices. The positive-definiteness of qΨ~  in the likelihood 

function can be ensured by using a Cholesky-decomposition of the matrices Ω
 
and Λ , and 

estimating these Cholesky-decomposed parameters. Note that, to obtain the Cholesky factor for 

Λ , we first obtain the Cholesky factor for 1Λ , and then add a column of zeros as the first 

column and a row of zeros as the first row to the Cholesky factor 1Λ . 

 

3. PANEL MDCP MODEL 

3.1 Model Formulation 

In this section we consider the case of panel data or repeated observations. We will assume that 

the number of consumer goods and choice occasions are the same across all consumers. 

Extension to the case of varying number of consumer goods or choice occasions per individual is 
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straightforward. Using the notation of Section 2.1, consider the following utility maximization 

process with t ),...,2,1( Tt =  denoting the choice occasion (or time period): 

∑
= ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−⎟
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⎜
⎝

⎛
+=

K

k qtk

qtk
qtk

qtk

qtk
qtqt

qtkx
U

1

11)(max
α

γ
ψ

α
γ

x  
(12)

 

..ts  ,
1

qt

K

k
qtkqtk Exp =∑

=
 

In this formulation, the subscript t in the utility parameters implies that the parameters can 

change over time. However, we will drop the index q and t from the qtkγ  and qtkα  terms for 

notational simplicity. 

The baseline utility qtkψ  for the qth consumer ( Qq ,...,2,1= ) at choice occasion t 

),...,2,1( Tt =  for the kth good ( Kk ,...,2,1= ) is parameterized as follows: 

)exp( qtkqtkqqtk ξψ +′= zβ , (13)

where qtkz  is a D×1 column-vector of exogenous attributes that characterizes good k at choice 

occasion t for consumer q (including a dummy variable for each good to capture time-invariant 

intrinsic preference effects of consumer q for good k relative to one of the goods that serves as 

the base) and qβ  is the corresponding D×1 column vector of consumer-specific coefficients. qβ  

is assumed to be a realization from a multivariate normal distribution: qq ββ ~b+= , where 

),(~~ ΩDDq MVN 0β . qtkξ  in Equation (13) is a normal error term uncorrelated with qβ  and also 

uncorrelated across consumers. However, the terms qtkξ  may have a covariance structure across 

goods k (to capture dependencies in the baseline preference of goods due to unobserved factors) 

and/or across time t (to recognize the time-varying preferences of consumer q). For the latter, we 

assume a parsimonious first order autoregressive process: qtkkqtqtk ηδξξ += −1 , where δ  is the 

autoregressive parameter, 1|| <δ . The qtkη  terms are uncorrelated over time 0),[cov( =′ktqqtk ηη , 

q∀ , k∀ , ,, tt ′∀  ]tt ′≠  and contemporaneously correlated across goods. That is, 
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),(),...,,( 21 ΛKKqtKqtqtqt MVN 0~η ′= ηηη .4 The identification considerations for Λ  are the same 

as in the cross-sectional case. 

Following the procedure of Section 2.1, one obtains the following KKT conditions for 

consumer q at choice occasion t: 

0* =
qtqtkmy ,  if 0>*

qtkx , Kk ,...,1= , qtmk ≠
 

0* <
qtqtkmy ,  if 0=*

qtkx , Kk ,...,1= , ,qtmk ≠  
(14)

where qtm  is the consumed good with the lowest value of k for the qth consumer at the tth choice 

occasion, 
qtqt qtmqtkqtkm yyy −=*  )( qtmk ≠ , qtkqtkqqtkqtk Vy ξ+′+= zβ~ , and 

qtk
k

qtk
kqtkqtk p

x
V ln1ln)1( −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+′=

γ
α

*

zb . 

3.2 Model Estimation 

The parameters to estimate are the kα  parameters or the kγ  parameters (depending on the profile 

used for the utility function), the b  vector, the δ  scalar, and the elements of the covariance 

matrices Ω  and Λ . To develop the likelihood function, define qM  as a T(K–1)×TK block 

diagonal matrix, with each block diagonal having K–1 rows and K columns corresponding to the 
thq  consumer in the tht  choice instance. This (K–1)×K matrix for consumer q and time period t 

corresponds to a K–1 identity matrix with an extra column of “–1” values added to the th
qtm  

column. Also, stack qtky , qtkV  and qtkξ  into the K×1 vectors )',...,,( 21 qtKqtqtqt yyy=y , 

)',...,,( 21 qtKqtqtqt VVV=V  and )',...,,( 21 qtKqtqtqt ξξξ=ξ , respectively. Then define the TK×1 vectors 

)',...,,( 21 qTqqq yyyy ′′′= , ),...,,( 21 ′′′′= qTqqq VVVV , and )',...,,( 21 qTqqq ξξξξ ′′′= . The variable matrix is 

written as )',...,,( 21 qTqqq zzzz =  (matrix of dimension TK×D), where ),...,,( 21 qtKqtqtqt zzz=z  

(matrix of dimension D×K). Further, let TI  be the identity matrix of dimension T and let T1  be a 

column vector of size T with all elements taking the value of one. Now, define the T×T matrix A 

as an identity matrix of size (T–1) with an extra first row and an extra last column of zeros: 

                                                 
4 Unlike in the cross-sectional case, random coefficients can be estimated in the panel case on the parameters (in the  
βq vector) on the dummy variables specific to each alternative (except one that serves as the base). This is because 
we can disentangle consumer-specific intrinsic preferences from choice instance-specific intrinsic preferences based 
on the repeated choices made by the same consumer. 
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(15)

Using this matrix and the previous definitions, we can write qy  compactly as: 

qqqqq ηβ~Vy Sz ++= , (16)

where ( ) 1−⊗−= KTK IAIS δ  is a matrix of dimension TK×TK. Next, for each consumer q, we 

can write the vector of differences *yq  as: 

( ) qqqqqqqqqq ηβ~Vyy* SMzMMM ++== . (17)

The above vector of dimension T(K–1)×1 follows a multivariate normal distribution 

),()1( qqKTq MVN ΨH~y*
− , where qqq VH M=  and qΨ  is the T(K–1)×T(K–1) covariance matrix 

defined as ( )[ ] qTqqqq MSΛISzΩzMΨ ′′⊗+′= . 

As earlier, create a rearrangement matrix qR  to reorganize the *yq  vector such that the 

elements of *yq  corresponding to the non-consumed goods (across all choice occasions of the 

consumer) appear first, in order from the first time period to the last. For each consumer q and 

choice occasion t, let NCqtL ,  ( 10 , −≤≤ KL NCqt ) be the number of non-consumed goods, and let 

CqtL ,  ( 10 , −≤≤ KL Cqt ) be the number of consumed goods, excluding good qtm . Also, let 

∑ =
=

T

t NCqtNCq LL
1 ,,  and ∑ =

=
T

t CqtCq LL
1 ,, . For example, consider a consumer q with two choice 

occasions )2( =T  and five goods )5( =K . In the first choice occasion, the consumer chooses 

goods 2, 3, and 5 and, in the second choice occasion, the consumer selects goods 1 and 5. Thus, 

in the first choice occasion 21 =qm , 2,1 =NCqL  (corresponding to the non-consumed goods 1 and 

4), and 2,1 =CqL  (corresponding to the consumed goods 3 and 5). In the second choice occasion, 

12 =qm , 3,2 =NCqL  (non-consumed goods 2, 3, and 4), and 1,2 =CqL  (consumed good 5). Then, 

5, =NCqL  and  3, =CqL . In this case, the rearrangement matrix qR  is: 
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(18)

where the upper sub-matrix NCq ,R  (of dimension NCqL , × )1( −KT ) corresponds to the non-

consumed goods and the lower sub-matrix Cq ,R  (of dimension CqL , × )1( −KT ) corresponds to 

the consumed goods (excluding the good qtm  for each time period). Then, the re-arranged vector 

** yy~ qqq R= , and the corresponding sub-vectors of non-consumed and consumed goods are 

** yy~ qNCqNCq ,, R=  and ** yy~ qCqCq ,, R= , respectively. Consistent with this rearrangement, 

reorganize qH  and qΨ  into qqq HH~ R=  and qqqq RΨRΨ ′=
~ , and generate the corresponding 

sub-vectors and sub-matrices of non-consumed and consumed goods, as in the cross-sectional 

case. 

The likelihood function contribution of consumer q is: 

( )∫
−∞=

−==
0

,,)1(

,

,
,|,)det()(

NCq

Cq NCqqqLNCqKTqqq fPL
v

* dv~H~0vx ΨJ , (19)

where qJ  is the block diagonal Jacobian matrix (dimension )()( ,, TLTL CqCq +×+ ) with each 

block diagonal matrix (of size )1()1( ,, +×+ CqtCqt LL ) corresponding to a specific choice occasion 

t of consumer q. The block diagonality arises because 0=∂∂ ′′′
**

ktqqtkm xy
qt

 for all tt ′≠ and for all 

k and k ′ . Due to the block diagonal nature of qJ  and using Bhat’s (2008) derivation, the 

determinant of qJ  is:  
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)det(
CC α
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α *

*J  . (20)

where the subset qtC  contains the goods consumed by consumer q at time occasion t, including 

good qtm . 
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Then, using the same notation as in the cross-sectional case, the likelihood function for 

consumer q is equivalent to: 

( ) ));(());(()det( *
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,,
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where )()( ,
1

,,,,, CqCqCNCqNCqNCq H~~~H~H −+= −ΨΨ
�

, CNCqCqCNCqNCqNCq ,,
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In the likelihood function of Equation (21), CqL N,  can be large, taking a value as high as 

)1( −KT . In Bhat’s MACML approach, one maximizes a surrogate likelihood function, labeled 

as the composite marginal likelihood (CML) function, to obtain parameters (see Section 2.2 of 

Bhat, 2011 and the Appendix). Here, we suggest the use of a pairwise likelihood function for 

choice occasions t and t′  given by: 
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(22)

where all the notations are similar to earlier, but confined to the tth and t′ th choice occasions. 

 

4. SIMULATION EVALUATION 

The simulation exercises undertaken in this section examine the ability of the MACML estimator 

to recover parameters from finite samples in a cross-sectional MDCP model by generating 

simulated data sets with known underlying model parameters. To examine the robustness of the 

MACML approach to different dimensionalities of integration, we consider both a five-

alternative case as well as a ten-alternative case. 

 

4.1 Experimental Design 

In each of the five- and ten-alternative case, we consider five independent variables in the qkz  

vector in the baseline utility. The values of each of the five independent variables for the 
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alternatives are drawn from a standard univariate normal distribution. In particular, a synthetic 

sample of 5000 realizations of the exogenous variables is generated corresponding to Q=5,000 

consumers. Additionally, we generate budget amounts qE  ),...,2,1( Qq =  from a univariate 

normal distribution with mean 150, and truncated between the values of 100 and 200 (the prices 

of all goods are fixed at the value of one across all consumers). Once generated, the independent 

variable values and the total budget are held fixed in the rest of the simulation exercise. 

The coefficient vector qβ  is allowed to be random according to a multivariate normal 

distribution for the first three variables, but assumed to be fixed in the population for the 

remaining two variables. The mean vector for qβ  is assumed to be b = (0.5, –1, 1, –1, –0.5). The 

covariance matrix Ω  for the three random coefficients is specified as follows: 
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(23)

As indicated earlier, the positive definiteness of Ω  is ensured in the estimations by 

reparameterizing the likelihood function in terms of the lower Cholesky factor ΩL , and 

estimating the six associated Cholesky matrix parameters. For future reference and presentation, 

we will label these six Cholesky parameters as 9.01 =Ωl , 6.02 =Ωl , 8.03 =Ωl , 8.04 =Ωl , 

5.05 =Ωl , and 3.06 =Ωl . We will also refer to these parameters collectively as Ωl . 

Next, values for the error terms qkξ  are generated for the case of five alternatives by 

specifying the following 4×4 positive definite covariance matrix 5
1Λ for the differenced error 

terms 1qkε  (the superscript on 1Λ  stands for the 5 alternatives case): 

. 
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In the above matrix, the first element is normalized to the value of 1 because we do not allow 

price variation in the simulation experiments. There are four Cholesky matrix elements to be 

estimated in the matrix above ( 1.11 =Λl , 0.12 =Λl , 6.03 =Λl , and 8.04 =Λl ). The 

corresponding implied covariance matrix 5Λ  for the original error terms qkξ  is then as follows: 
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The error terms qkξ  are generated for the case of ten alternatives, similar to the case with 

five alternatives, by specifying the following 9×9 positive definite covariance matrix 10
1Λ  for the 

differenced error terms :1qkε  
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(26)

The parameters corresponding to 10
1Λ  to be estimated in the 10-alternative case are the same four 

Cholesky parameters as in the five-alternative case plus two additional parameters: 0.15 =Λl  and 

1.16 =Λl . 5Λl  corresponds to the square root of the variance of 1661 qqq ξξε −= , which need not 

be fixed to 1 as we did for 1221 qqq ξξε −= , and 6Λl  is the square root of the variance of 

                                                 
5 Note that while we can specify a full covariance matrix for Λ1 (except for the first element that has to be 
normalized due to no price variation), we impose a more restrictive structure to keep the parameters to be estimated 
in our simulation experiments to a reasonable number. This will also generally need to be done in real-world 
applications (especially as the number of alternatives increases) through behavioral structures on Λ that seem 
appropriate to the application context. This is needed not simply to contain the number of parameters to be 
estimated, but also to interpret the estimated covariance matrix parameters (see Train, 2009; page 113 for a similar 
discussion in the case of traditional multinomial probit models).  
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1101,10 qqq ξξε −= . The Cholesky factors corresponding to the error terms qkξ  will be referred to 

collectively as Λl  in the rest of this paper. 

The baseline utility is next computed for each consumer and alternative using Equation 

(2). In the simulations, we use a γ-profile, and set all the γ parameters to the value of one. Then, 

for each of the five-alternative and ten-alternative cases, we generate the consumption quantity 

vector *xq  for each individual, using the forecasting algorithm proposed by Pinjari and Bhat 

(2011). The above data generation process is undertaken 20 times with different realizations of 

the qβ  vector and the error term qkξ  to generate 20 different data sets each for the five-

alternative and the ten-alternative case.  

The MACML estimator is applied to each data set to estimate data specific values of b, 

Ωl , Λl , and γ. A single random permutation is generated for each individual (the random 

permutation varies across individuals, but is the same across iterations for a given individual) to 

decompose the multivariate normal cumulative distribution (MVNCD) function into a product 

sequence of marginal and conditional probabilities (see Section 2.1 of Bhat, 2011).6 The 

MACML estimator is applied to each dataset 10 times with different permutations to 

acknowledge that different permutations will lead to different parameter estimates and standard 

error estimates of parameters.  

The performance of the MACML inference approach in estimating the parameters of the 

MDCP model and their standard errors is evaluated as follows: 

(1) Estimate the MACML parameters for each data set s and for each of 10 independent sets of 

permutations for computing the approximation for the likelihood function contribution of 

each individual. Estimate the standard errors (s.e.) using the Godambe (sandwich) estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED values 

across the data sets to obtain a mean estimate. Compute the absolute percentage (finite 

sample) bias (APB) of the estimator as: 

                                                 
6 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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100
 valuetrue

 valuetrue-estimatemean 
×=APB   

(3) Compute the standard deviation for each model parameter across the data sets and across the 

10 random permutations for each data set, and label this as the finite sample standard error 

or FSEE (essentially, this is the empirical standard error). 

(4) For each data set s, compute the median s.e. for each model parameter across the 10 draws. 

Call this MSED, and then take the mean of the MSED values across the 20 data sets and 

label this as the asymptotic standard error or ASE (essentially this is the standard error of 

the distribution of the estimator as the sample size gets large). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed using 

the MACML inference approach for the finite sample size used, compute the APB associated 

with the ASE of the estimator as: 

100
FSEE

FSEE-ASE
×=APBASE  

 

4.2 Simulation Results 

Tables 1a and 1b provide the results for the five-alternative case (leading to up to four 

dimensional integration) and for the ten-alternative case (leading to up to nine dimensional 

integration), respectively. The tables provide the true value of the parameters (second column), 

followed by the parameter estimate results and the sampling standard error estimate results. 

 

4.2.1 Five-Alternative Case 

The results in Table 1a indicate that the MACML method does extremely well in recovering the 

parameters, as can be observed by comparing the mean estimate of the parameters with the true 

values (see the column titled ‘‘parameter estimates”). In fact, the absolute percentage bias (APB) 

is not higher than 4% for any parameter, with an overall mean value of 0.96% across all 

parameters, as indicated in the bottom of the table (see the row labeled ‘‘overall mean value 

across parameters’’ and the column titled ‘‘absolute percentage bias”).7 The APB values are 

generally somewhat smaller for the parameters of the Cholesky decomposition of the covariance 

                                                 
7 The APB values may not match up exactly to the true and estimated values of the parameters presented in the 
table. This is because of rounding in the estimated values. The same is the case later when computing the APBASE 
values from the finite sample standard error and asymptotic standard error values.  
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matrix associated with the error terms (i.e., the Λl  values) than for the other parameters. Also, 

there is more variation in the APB values among the parameters of the Cholesky decomposition 

of the covariance matrix associated with the random coefficients (i.e., the Ωl  values) than among 

other parameters. This is not surprising, because the covariance matrix of the random 

coefficients appears in the most non-linear fashion in the likelihood function of Equation (9) 

through the overall covariance matrix qΨ  ( qqqqq MΛzΩzMΨ ′+′= )( ; see Section 2.2), leading to 

somewhat more difficulty in accurately recovering the Ωl  parameters. The APB value is 

particularly high for the 5Ωl  and 6Ωl  parameters, though this could also be attributed to the low 

true values of these two parameters (which inflates the absolute percentage bias computations). 

The standard error estimates of the parameters indicate good empirical efficiency of the 

MACML estimator. Across all parameters, the finite sample standard error (FSEE) is about 5.3% 

of the mean estimate, while the corresponding figure for the asymptotic standard error (ASE) is 

about 5.5%. This result indicates that, for the current experimental setting and sample size, the 

asymptotic standard error is providing a good estimate of the true finite sample error. The last 

column of Table 1a presents the absolute percentage bias associated with the ASE estimator 

(APBASE). Across all parameters, the mean APBASE value is about 9.3% (see last row). The 

APBASE values for the mean parameters of the random coefficients within the qβ  vector (i.e., 

the 1b , 2b , and 3b  parameters) are markedly higher than the APBASE values for the fixed 

coefficients within the qβ  vector (i.e., the 4b  and 5b  parameters). This is to be expected because 

of the multivariate normal distribution underlying the first three coefficients in the qβ parameter 

vector rather than a degenerate distribution for the final two parameters. The APBASE values of 

Λl  is the highest among all parameters (15.7% on average). However, the associated FSEE value 

is also the lowest for these Λl  parameters relative to other sets of parameters (average value of 

FSEE of 0.013 compared to corresponding value of 0.030 across all parameters). The low values 

of FSEE for the Λl  translates to an inflation in the APBASE values. But the net difference 

between the ASE and the FSEE values even for the parameter with the highest APBASE (which 

is 4Λl ) is only 0.002, a mere 0.26% of the mean estimate of 4Λl . 
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4.2.2 Ten-Alternative Case 

The results for this case are presented in Table 1b and, as in the five-alternative case, indicate 

that the MACML method performs well in recovering the true parameter values. The maximum 

value of APB across all the parameters is 9%, with an overall mean value of 1.4%. These results 

suggest that increasing the number of alternatives does not substantially affect the ability of the 

MACML method to recover parameters (in the current exercise, the difference in APB between 

the five-alternative and ten-alternative cases is only 0.4%). As in the five-alternative case, with 

the exception of 6Λl  that has the highest APB of 8.97%, the Cholesky decomposition of the 

covariance matrix associated with the error terms (i.e., the Λl  values) are lower than for other 

parameters. In contrast, the satiation parameters (i.e., the γ  values) consistently present an APB 

value of more than 1%. This result is a reflection of somewhat greater difficulty in pinning the 

satiation parameters as the number of alternatives increases, especially since the satiation 

parameter governs the non-linearity in the utility function. However, even these APB values are 

all well below 2.5%.  

The asymptotic standard error estimates in Table 1b again indicate good efficiency of the 

MACML estimator, with the asymptotic standard error across all parameters being only about 

3% of the mean value of the parameters (3.27% for the FSEE and 3.47% for the ASE). The mean 

APBASE value across all parameters is 13.7%, slightly higher than in the five-alternative case. It 

is interesting to note the high APBASE value (64.85%) for 5b , especially because this parameter 

is a fixed parameter. But this also is because of the low finite standard error value of 0.007 for 

the parameter, which inflates the 0.005 absolute difference into the 64.85% APBASE value. 

Indeed, the discrepancy of 0.005 constitutes but 1% of the mean estimate of 5b . 

 

5. ILLUSTRATIVE APPLICATION DEMONSTRATION TO RECREATIONAL 

TRAVEL DEMAND PATTERNS 

5.1 Background 

Long distance leisure travel is an important and well embedded element of American 

households’ lifestyle.8 In 2010, three out of four long distance domestic trips, which constitute 

                                                 
8 Long-distance travel is usually defined to include travel with a one-way length that exceeds 100 miles (see 
LaMondia et al., 2008). Note also that, while a trip in an urban context refers to one-way travel, a trip in the long 
distance travel context usually to refer to the entire round travel to a primary destination and back (this is what 
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about 1.5 billion person trips annually in the United States, were taken for leisure purposes (U.S. 

Travel Association (USTA), 2011).9 The expenditure on long distance leisure travel (which we 

will refer to as recreational travel in the rest of this paper) has been estimated to generate $82 

billion in tax revenue and to have supported 5.2 million jobs in 2010 (USTA, 2011). Indeed, the 

state of the economy and fuel prices does not seem to have tempered the amount of recreational 

travel, which actually saw a steady rise from 1.40 billion person trips in 2002 to 1.47 billion 

person trips in 2005 to the 1.5 billion person trips in 2010 (Holecek and White, 2007, USTA, 

2010). Several reasons have been provided to explain this increase in recreation travel, including 

a sheer “size” effect related to the growth in US population, an increase in paid leave time, 

enhanced personal control over the travel experience, and marketing efforts to showcase cultural 

and natural heritage sites (see Alegre and Pou, 2006 and Siegel, 2011).  

Even as the total volume of recreation travel has been increasing, so has the share of 

these trips undertaken close to home in the form of day trips to recreation and entertainment 

venues (see White, 2011). That is, there has been a shift from the traditional long period 

vacations undertaken during holidays or over the summer to short period recreation travel built 

around the work weeks. This shift in recreation travel patterns is a result of multiple 

considerations, including difficulties in coordinating long vacation getaways due to multiple 

working individuals in the household, and an increase in the rich and diverse opportunities for 

recreation offered in every state of the US through programs such as the National Scenic Byways 

Program. The net result has been a shrinkage in the geographic footprint of recreational travel as 

well as a significant increase in the mode share of personal auto-based recreation trips (see 

USTA, 2011).  

The substantial and increasing amount of auto-based recreation travel over short 

distances, in turn, has important transportation air quality planning and tourism implications. 

From a transportation air quality planning standpoint, the predominantly auto-based recreation 

travel adds to intra-city urban traffic, and can lead to traffic congestion on the urban 

transportation network on holidays and weekends (see Jun, 2010 and Liu and Sharma, 2006). 

                                                                                                                                                             
would be referred to as a “tour” in an urban context). Leisure travel may be defined as “all journeys that do not fall 
clearly into the other well-established categories of commuting, business, education, escort, and sometimes other 
personal business and shopping” (Anable, 2002).  
9 The U.S. Travel Association defines a “person-trip” as one person on a trip away from home overnight in paid 
accommodations, or on a day or overnight trip to places 50 miles or more, one-way, from home. 
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Such congestion contributes to lost productivity, lost recreation time, and increased greenhouse 

gas and mobile source emissions. Understanding recreational travel flow patterns, therefore, can 

help in planning and implementing transportation control policies to reduce the negative 

externalities of such travel. From a tourism standpoint, a good understanding of recreational 

travel patterns helps provide insights into positioning and targeting strategies of services and 

attractions. States and communities have a vested interest in doing so, because tourism can 

generate much needed jobs and revenue for the economy. 

To be sure, the study of recreational travel demand has received substantial attention both 

within and outside the transportation domain, with an emphasis on understanding individuals’ 

recreational demand patterns in general (see, for example, LaMondia et al., 2010, Hailu and Gao, 

2012, Humphreys and Ruseski, 2006, Vaaraa and Materoa, 2011, and Majumdar and Zhang, 

2011) and destination choice patterns in particular (the focus of the current analysis). In the 

context of destination choice, many studies in transportation and other fields have used 

traditional random utility maximization models to analyze an individual’s choice of visiting one 

destination among a set of available destinations on a single choice instance (see, for example, 

Hilger and Hanemann, 2006, Pozsgay and Bhat, 2002, Carson et al., 2009, Boeri et al., 2012, and 

Siderelis et al., 2011). These studies characterize destination locations based on their recreational 

offerings, facility costs and infrastructure, and travel characteristics. However, such models are 

unable to accommodate the demand for recreational trips over an extended time horizon, where 

the decision context shifts from the choice of a single destination to the choice of potentially 

multiple destinations (along with a count of the number of times each destination may be 

visited). As a result, the recreation demand field has seen the increasing use of an MDC 

modeling framework accommodating for unobserved taste heterogeneity across consumers (see, 

for example, Kuriyama et al., 2010, 2011, Van Nostrand et al., 2013, von Haefen, 2007, 

Whitehead et al., 2010). However, all of these papers adopt an identical and independent extreme 

value distribution for the kernel error terms.10 

                                                 
10As in the MDC recreational demand studies just listed above, we too focus on the count of the number of times 
each recreational destination is visited. Thus, the “continuous” quantity used is actually a count, as opposed to a 
truly continuous quantity measure as required by the theoretical model. However, a study by von Haefen and 
Phaneuf (2003) suggests that treating the integer count of trips as a continuous entity (within an MDC framework) 
do not lead to substantial biases. Nevertheless, this result can be context-specific, and methods that explicitly 
formulate a multiple discrete-count model are desirable and are being pursued. Also, in the current study, we do not 
examine the duration (i.e., number of days) of each recreational trip.  
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In this study, we demonstrate the application of the proposed MACML approach for the 

flexible MDCP model by analyzing Michigan residents’ recreational travel demand and 

destination choice patterns for sites within Michigan. Covering about 57,022 square miles, the 

state of Michigan is recognized for its natural diversity, its lakes and streams, forests, beaches, 

ski areas and its variety of other recreational offerings. The recreational travel spending within 

Michigan is over $10 billion per year, which contributes more than 73% of the total visitor travel 

spending in the State of Michigan (Costa, 2009). Tourism in Michigan is a $17.5 billion industry, 

employs 200,000 people, and contributes to the economies of all 83 Michigan counties 

(Michigan Tourism Industry Planning Council (MTIPC), 2007). While the tourism industry in 

Michigan draws visitors from all over the country and the world, it is dominated by regional 

tourism, drawing about 70% of its revenues from Michigan residents (MTIPC, 2007). To 

examine this group of travelers, the Michigan Department of Transportation included a long 

distance retrospective travel survey component in the 2004-2005 Michigan statewide household 

travel survey (MSHTS), which is used as the primary data source for this study.   

 

5.2 Data Description 

5.2.1 Database 

Three data sources are used in this research. The first, as just indicated, is the 2004-2005 

MSHTS conducted between March 2004 and February 2005, which included a component that 

asked survey respondents to provide information on all trips 100 miles or longer one-way (to a 

primary destination for that trip) made up to a year prior to the survey date. The elicited 

information included the residence city of the respondent, the name of the primary destination 

city that the respondent visited on each trip, the primary reason for each trip, and the primary 

type of transportation used to reach the destination. In addition to the long distance trip 

information, the survey also obtained individual and household socio-demographic information. 

The second data source is a network level of service file that provided information on personal 

auto travel time and travel distance between each pair of the 484 origin cities within the State of 

Michigan. The third data source is a disaggregate spatial land-cover characteristics data obtained 

from the Geographic Data Library of the Michigan Department of Natural Resources.11 An 

                                                 
11 This data has land-cover characteristics available at the level of spatial pockets 900 square meters (0.2224 acres) 
in size. Each of these spatial pockets is classified into one of seven land-cover categories: urban, agricultural, bare-
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elaborate geographic information system based procedure was used in our research to extract 

information from this third data source to obtain the total land area and acreage at a county level 

in seven disaggregate land-cover categories (including urban area, agricultural area, bare-land 

area, forest area, open area, wetland area, and water area). 

 

5.2.2 Data Assembly  

The final sample was assembled in a number of steps. First, from the long distance travel survey 

dataset, only those records corresponding to adults (age ≥ 16 years) with a primary purpose of 

recreation (vacation, sightseeing and other leisure activity pursuits) were selected. Further, the 

recreation travel patterns of adults from the same household had substantial overlaps with one 

another, and so we selected only one individual from each household (the survey was individual-

focused, and provided no information on accompanying members on a recreation trip, but our 

analysis of recreation patterns of adults within the same household showed clear overlap). The 

individual selected from each household was the one who made the most number of recreation 

trips during the one-year recall period. Further, only long distance trips to primary destinations 

within the State of Michigan, and undertaken by the personal auto mode were considered. 

Second, the destination cities in Michigan were mapped to one of 83 counties, which were then 

themselves mapped into one of six aggregate destination zones considered in the current analysis 

(see Figure 1): (1) South-East Lower Peninsula (SELP), (2) South-West Lower Peninsula 

(SWLP), (3) North-East Lower Peninsula (NELP), (4) North-West Lower Peninsula (NWLP), 

(5) East Upper Peninsula (EUP), and (6) West Upper Peninsula (WUP). As the names suggest, 

the first four destination zones are located in the Lower Peninsula of Michigan, and the 

remaining two destination zones are located in the Upper Peninsula of Michigan. This 

classification into the six destination zones is the same as that used by the Michigan Economic 

Development Corporation in its tourism promotion and information campaigns, and is based on 

the geographic locations and recreational opportunities offered by the six different regions. 

Third, the total number of trips by each individual to each of the six destination zones was 

obtained by appropriate aggregation. Fourth, we obtained the total yearly in-state recreational 

travel budget for each individual as the sum of the individual’s trips to the six destination zones 

                                                                                                                                                             
land, forest, open, wetland, and water, based on rules developed by the Michigan Department of Natural Resources 
(see Pacific Meridian Resources, 2001).  
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identified above.12 Fifth, the city-to-city personal auto travel time and travel distance data were 

converted to corresponding residence city-to-destination zone data, by identifying a centroidal 

city for each of the six destination zones (these centroidal cities were at the center of multiple 

cities and attracted a majority of the travelers within the respective destination zones). Sixth, the 

county-based land-cover data were translated to a destination zone-based land-cover data by 

suitable aggregation over counties within each destination zone. Finally, individual and 

household socio-demographic information collected in the survey were appended to the long 

distance travel records.  

 

5.2.3 Summary Statistics on the Choice of Destination Zones 

The final sample included 1659 Michigan residents who reported a total of 6620 one-way 

recreational trips to one of the six Michigan destination zones in the twelve-month period prior 

to the survey. Of these travelers, 86.4% visited one destination zone, 12.2% visited two 

destination zones, and 1.5% visited three or more destination zones during the twelve month 

period of recall. On average, respondents visited slightly more than one (1.15) of the destination 

zones and made an average of almost four trips. Table 2 presents descriptive statistics by 

destination zone. The second column of the table provides information on the number (and 

percentage) of individuals who visited each destination at least once (the percentages add up to 

more than 100% across the rows of the column because some individuals visit multiple 

destination zones). The NWLP destination draws the highest percentage of individuals for a visit, 

while the WUP destination draws the lowest percentage. The NELP, SELP, and the EUP 

destinations also are popular. The third column presents statistics on the number of visits among 

those who visited each destination zone. The NELP and NWLP have, in the overall, the most 

loyal following (see the high mean values in these rows for the “number of trips among those 

                                                 
12 Our procedure does not consider those Michigan residents who did not report any in-state recreational travel 
during the one year period preceding the survey. In the terminology of Section 2.1, our empirical analysis 
corresponds to an incomplete demand system in the form of a two stage budgeting approach. The first stage may be 
viewed as the allocation of a total leisure travel budget to general non-recreation travel (i.e., non-long distance 
leisure travel, such as to local recreational spots, to local social or cultural events, or for local or long distance 
visiting) and recreation travel (i.e., long-distance leisure travel, which is the focus of the current paper). The second 
stage corresponds to the allocation of any positive count of recreation travel (as determined in the first step) among 
the six destination zones. In doing so, we are invoking an assumption of strong separability of preferences between 
non-recreation and recreation travel, which is not unreasonable given that the drivers of these two types of travel are 
very different (see, for example, LaMondia and Bhat, 2012). Also, note that the budget constraint in this empirical 
demonstration is the total number of trips, rather than the total expenditure across all trips.  This is because the 
Michigan survey did not have detailed expenditure data on trips.   
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who visited each destination”). Overall, the results suggest a relatively high baseline preference 

of Michigan travelers for the north lower peninsula. The particularly attractive year-round water-

based activities offered in this part of the state, coupled with its appealing natural diversity and 

moderate travel cost appear to be reasons for this high baseline preference (as we will note in our 

empirical estimation results). 

 

5.2.4 Utility Form and Exogenous Variable Specification 

In the empirical context under study, we estimated both a γ-profile as well as an α-profile (see 

Section 2.1). Between these, the γ-profile consistently provided a much better data fit than the α-

profile for a variety of different exogenous variable specifications, and so is the one used in the 

empirical analysis of the current paper. The exogenous variables considered in the recreation 

MDCP model, and their construction, are discussed in turn in the following paragraphs.   

The travel cost variable is specified as a function of the respondent’s reported household 

income, the estimated cost of vehicle operation ($0.149/mile), and the travel time and distance 

between the respondent’s residence city and the centroidal city of each destination location. To 

calculate the travel cost, we follow the standard approach of valuing travel time at a fixed 

proportion of one-half of the wage rate (see Hanemann et al., 2004 for a detailed discussion). 

The household income is divided by the total number of adult individuals in the household to 

estimate the individual’s wage rate. Specifically, the travel cost is computed as: 

Cost (in $) = 2 * (one-way travel distance in miles * 0.149 + one-way travel time in hours * (0.5 

* hourly wage)). 

The destination zone-based land-cover data by themselves do not provide adequate 

variation to estimate parameters (because there are only six destination zones, and the land-cover 

data values for these destination zones do not change across individuals in the sample). But we 

capture land-cover effects by interacting the land-cover in each destination zone with the travel 

time from each individual’s residence city to the centroidal city of each destination zone. To do 

so, for each combination of individual q in the sample, land-cover categories i (i = urban, 

agricultural, bare-land, forest, open, wetland, and water), and destination zone k, we compute an 

accessibility measure of the Hansen-type (Fotheringham, 1983) as qkikqik TTLCAC /= , where 

ikLC  is the area (in acres) in land-cover category i in destination zone k, and qkTT  is the travel 

time (in hours) from individual q’s residence city to the centroid of destination zone k. The 
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accessibility measures (in acres/hour) proxy the opportunities for recreational participation 

specific to each land-use category in a destination zone normalized by a measure of impedance 

(travel time) for individual q to reach those opportunities. A positive coefficient on an 

accessibility measure, say the one corresponding to “water” land-cover, implies that individuals 

are attracted toward proximal destination zones with substantial water bodies.  

In addition to travel cost and destination zone accessibility variables, several household 

attributes (such as presence of children less than 16 years, number of cars, and number of 

workers) are interacted with travel cost and the accessibility variables.  

Table 3 provides descriptive statistics of the cost-related and land-cover data for each of 

the six destination zones (we present only these destination zone statistics, rather than the 

statistics for accessibility measures and household attributes, to keep the presentation concise). 

Not surprisingly, Table 3 shows that the travel impedance measures (travel time, travel distance, 

and travel cost) are the highest for the EUP and the WUP destination zones that are well to the 

north of much of the resident population (see Figure 1), and the lowest for the SWLP and SELP 

destination zones. The NELP and NWLP destination zones have the highest percentage of land-

cover in water that should make these regions particularly attractive as destination zones. 

 

5.3 Empirical Results  

The estimation results of the Mixed MDCP model are presented in Table 4. The effects of travel 

cost and the travel cost variable interacted with the low household income dummy variable need 

to be considered together. As expected, the effect of travel cost is, on average, negative, though 

there is also a large standard error for this effect. The combination of the mean and the standard 

error estimates on the travel cost coefficient indicates that travel cost (as constructed in the 

current empirical exercise) is valued negatively by about 89% of individuals from households 

earning $30,000 or more in annual income, while about 11% of individuals in this income 

bracket prefer destination zones with higher cost (perhaps because of the recreational experience 

of travel time itself). Individuals from households with low household income (< $30,000 per 

year) particularly prefer destinations zones that are less expensive to travel to relative to 

individuals from households with high household income (≥ $30,000 per year), as reflected in 

the negative coefficient on the interaction of travel cost with the low household income dummy 
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variable. In fact, close to 96% of individuals in this low income bracket prefer lower travel costs, 

as opposed to 89% in the non-low income bracket. 

The urban land-cover accessibility effect reflects a positive disposition toward destination 

zones with high urban land-cover accessibility, particularly for individuals from households with 

no children less than 16 years of age (this latter effect is rather small in magnitude and only 

marginally significant). While there is some unobserved variation across individuals in the effect 

of the urban land-cover accessibility variable, the combination of the mean and standard error 

estimates show that the overall effect of the variable remains positive for almost all individuals. 

The covariance estimate (not shown in Table 4) between the travel cost and urban accessibility 

random coefficients was 0.044 (t-statistic of 2.17), suggesting that individuals who are less 

sensitive (more sensitive) to travel costs also prefer (dislike) urban destination zones. That is, 

individuals who prefer recreation based on man-made urban settings (amusement parks or leisure 

shopping complexes) appear not to mind spending additional time to get to their destinations, 

while those who prefer natural and pristine settings are the ones who would rather travel to close 

destinations to pursue their recreational interests. The effects of the other accessibility measures 

are intuitive. Destination zones with a relatively high water area and in close proximity are 

particularly preferred for recreational getaways, perhaps because of the natural beauty coupled 

with diverse outdoor recreational opportunities around water (such as kayaking, fishing, 

canoeing, and swimming). Finally, there is a general low baseline preference for destination 

zones with high land-covers of wetland and open areas.  

The baseline constants in the model do not have any substantive interpretations, because 

of the presence of continuous and ordinal variables in the model. They simply adjust the baseline 

preferences to fit the data after controlling for the presence of other included variables in the 

model. The values and standard errors (in parenthesis) of the baseline constants (with the SELP 

alternative being the base category) are as follows: SWLP: -0.333 (0.09), NELP: -0.322 (0.08), 

NWLP: 0.407 (0.08), EUP: 0.022 (0.13), and WUP: -0.216 (0.19). Similarly, given the baseline 

utility function, the satiation parameters fit the number of visits to each destination zone (and 

also allow corner solutions or no visits to each destination zone). These values are as follows: 

SELP: 12.471 (2.82), SWLP: 10.322 (1.86), NELP: 84.13 (46.5), NWLP: 47.33 (15.92), EUP: 

20.34 (5.99), and WUP: 98.59 (0.19). The satiation values are clearly different from the value of 

∞, implying the presence of distinct satiation effects.  
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The log-likelihood value at convergence of the final model (with an unrestricted error 

covariance model up to identifiability limits; see Section 2.1) is -3726.2. As indicated earlier, 

allowing such a general covariance matrix (with 14 parameters) enables an unrestricted 

substitution pattern, but also does not provide any interpretable information regarding variances 

and correlations in the baseline utilities of the alternatives. So, we also tested many other 

restrictive covariance patterns, but none came even close to the data fit offered by the general 

covariance structure. For instance, the model with a diagonal covariance matrix with unequal 

variances for the error terms in the baseline utility (with one of the variances being normalized to 

0.5 for identification) returned a log-likelihood value of -3787.8. The log-likelihood ratio value 

for testing this model with our general covariance structure is 123.2, which far exceeds the 

corresponding chi-squared table value with nine degrees of freedom at even the 0.0001 level of 

significance. Similar results were obtained with other (identifiable) restrictive structures, such as 

allowing separate error components for each of the south lower, north lower and upper regions of 

the state, as well as another separate error component for the east part of the state, in addition to 

unequal variances (this model returned a log-likelihood value at convergence of -3755.0 with a 

total of 9 covariance parameters, which is again soundly rejected by our general covariance 

model). Thus, we retained the general covariance structure in this paper.13 As a baseline, the log-

likelihood value at convergence for the model with only the baseline constants and the satiation 

parameters, and with an independent and identically distributed error structure for the error terms 

of the alternatives, is -4120.6. The likelihood ratio test for testing the presence of exogenous 

variable effects, random coefficients, and a general covariance structure is 788.8, which is 

substantially larger than the critical chi-squared value with 23 degrees of freedom at any 

reasonable level of significance. This clearly indicates the value of the model estimated in this 

paper to predict individuals’ recreational destination travel demand.  

The results from models such as the one in this paper may be used for compensating 

value computations and welfare analysis, since they are derived explicitly from utility 

                                                 
13 We do not present the general covariance matrix results here to conserve on space, and also because the 
covariance elements do not provide any substantive insights (the results are, however, available from the authors, as 
are the results of all the more restrictive covariance specifications).  Also, it is important to note that we are able to 
allow a general covariance matrix in our demonstration empirical exercise because the number of alternatives is only 
six. As the number of alternatives increases, the number of parameters in a general covariance matrix will explode, 
making it necessarily to impose some a priori structure.  
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maximizing principles. However, the intent in this paper is primarily to demonstrate the 

application of our proposed MACML approach to estimate the MDCP model.  

 

6. CONCLUSIONS 

The current paper develops a blueprint (complete with matrix notation to code and implement the 

method in software programs) to apply Bhat’s (2011) Maximum Approximate Composite 

Marginal Likelihood (or MACML) inference approach for the estimation of cross-sectional as 

well as panel multiple discrete-continuous (MDC) models. The MACML inference approach is 

simple, computationally efficient, simulation-free, and relatively easy to code and apply using 

readily available software for likelihood estimation. It involves only univariate and bivariate 

cumulative normal distribution function evaluations in the likelihood function (in addition to the 

evaluation of a closed-form multivariate normal density function). In the MACML approach, it is 

much easier to estimate a MDC probit (MDCP) model with normally distributed unobserved 

heterogeneity effects than normally mixed versions of the MDC generalized extreme value 

models. This is because of the conjugate addition property of the multivariate normal distribution 

to addition, which is exploited by the MACML inference approach.  

A simulation exercise is undertaken to evaluate the ability of the proposed approach to 

recover parameters from a cross-sectional MDCP model. Two cases are considered: (1) a five-

alternative case with five exogenous variables and (2) a ten-alternative case with five exogenous 

variables. For both cases, the coefficients of the first three exogenous variables are assumed to be 

randomly distributed according to a trivariate normal distribution, while the coefficients on the 

last two variables are fixed. The Cholesky matrix associated with the differenced error terms are 

estimated for the simulated data. The results show that our proposed approach does very well in 

recovering the parameters in the MDCP model. In addition, the Hessian of the likelihood 

function also appears to be computed accurately, as evidenced by the closeness of the asymptotic 

standard error estimates with the finite sample standard errors.  

The paper demonstrates the application of the proposed approach through a study of 

individuals’ recreational (i.e., long distance leisure) choice among alternative destination 

locations and the number of trips to each recreational destination location, using data drawn from 

the 2004-2005 Michigan statewide household travel survey. The MDCP model estimates provide 

insights into the influence of travel cost, destination land-cover specific accessibility factors, and 
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interactions of these with individual sociodemographics. The results indicate statistically 

significant observed and unobserved heterogeneity in response to travel cost as well as land-

cover accessibility measures. The estimated flexible covariance matrix rejects the often-invoked 

independently and identically distributed error structure for the kernel error terms in the baseline 

utilities of the alternatives.  

Overall, it is remarkable that the MACML approach is able to accurately recover the 

parameters of the cross-sectional MDCP model, as well as the standard errors of the parameter 

estimates. Of course, continued exploration of the performance of the MACML inference 

approach and other alternative approaches is needed through simulation exercises with 

alternative covariance structures, different numbers of alternatives (such as 15, 20, and more), 

and different sample sizes to assess parameter recoverability and estimator efficiency in finite 

sample sizes. Also, future studies should examine the ability of the MACML approach to recover 

parameters in a panel model. But we hope that the proposed MACML procedure for MDCP 

models will spawn empirical research into behaviorally rich model specifications within the 

MDC choice modeling context. 
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Appendix: The basics of the MACML approach 
 

There are two fundamental concepts in the MACML approach to estimate MDCP models. The 
first is an approximation method to evaluate the multivariate standard normal cumulative 
distribution (MVNCD) function. The second is the composite marginal likelihood (CML) 
approach to estimation. For cross-sectional MDCP models, only the MVNCD approximation is 
involved. In panel MDCP models, both the MVNCD approximation as well as the CML 
approach are involved. The discussion below is drawn from Bhat (2011), and provided in this 
paper for completeness following a recommendation by one of the reviewers of the paper.  
 
2.1. Multivariate Standard Normal Cumulative Distribution (MVNCD) Function    
In the MACML inference approach, an analytic approximation method is used to evaluate the 
MVNCD function. Unlike Monte-Carlo simulation approaches, even two to three decimal places 
of accuracy in the analytic approximation is generally adequate to accurately and precisely 
recover the parameters and their covariance matrix estimates because of the smooth nature of the 
first and second derivatives of the approximated analytic log-likelihood function. The analytic 
approximation used is based on decomposition of the MVNCD function into a product of 
conditional probabilities. To describe the approximation, let ) ,..., , ,( 321 IWWWW  be a multivariate 
normally distributed random vector with zero means, variances of 1, and a correlation matrix Σ .  
Then, interest centers on approximating the following orthant probability: 

)  ..., ,  ,  ,( Pr)( Pr 332211 II wWwWwWwW <<<<=< wW .       (A.1) 

The above joint probability may be written as the product of a bivariate marginal probability and 
univariate conditional probabilities as follows (I ≥ 3): 
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Next, define the binary indicator iI~  that takes the value 1 if ii wW <  and zero otherwise. Then 

)()~( ii wIE Φ= , where (.)Φ  is the univariate normal standard cumulative distribution function. 
Also, we may write the following: 
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where ijρ  is the ijth element of the correlation matrix Σ . With the above preliminaries, consider 
the following conditional probability: 
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The right side of the expression may be approximated by a linear regression model, with iI~  

being the “dependent” random variable and )~,...~,~(~
121 −< = iIIIiI  being the independent random 

variable vector. In deviation form, the linear regression for approximating Equation (A.4) may be 
written as: 

η~)]~(~[)~(~ +−′=− << ii IIα EIEI ii ,           (A.5) 

where α  is the least squares coefficient vector and η~  is a mean zero random term. In this form, 
the usual least squares estimate of α  is given by: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

−−−−−

−

−

−

<<<

)~,~(Cov)~,~(Cov)~,~(Cov)~,~(Cov

)~,~(Cov)~,~(Cov),(Cov)~,~(Cov
)~,~(Cov)~,~(Cov)~,~(Cov)~,~(Cov
)~,~(Cov)~,~(Cov)~,~(Cov)~,~(Cov

),(Cov

11312111

13332313

12322212

11312111

iiiii

i

i

i

IIIIIIII

IIIIIIII
IIIIIIII
IIIIIIII

"
#

"
"
"

iii IIΩ , and  

 (A.7) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

−

<<

)~,~(Cov

)~,~(Cov
)~,~(Cov
)~,~(Cov

),(Cov

1

3

2

1

ii

i

i

i

II

II
II
II

#
iiii II,Ω . 

Finally, putting the estimate of α̂  back in Equation (A.5), and predicting the expected value of 

iI~  conditional on 1=< iI~  (i.e., )1~  ,1~  ,1~
121 === −iIII , we get the following approximation for 

Equation (A.4): 
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This conditional probability approximation can be plugged into Equation (A.2) to approximate 
the multivariate orthant probability in Equation (A.1). The resulting expression for the 
multivariate orthant probability comprises only univariate and bivariate standard normal 
cumulative distribution functions. 
 
 One remaining issue is that the decomposition of Equation (A.1) into conditional 
probabilities in Equation (A.2) is not unique. Further, different permutations (i.e., orderings of 
the elements of the random vector ) ,..., , ,( 321 IWWWW=W ) for the decomposition into the 
conditional probability expression of Equation (A.2) will lead, in general, to different 
approximations. In the case when the approximation is used for model estimation (where the 
integrand in each individual’s log-likelihood contribution is a parameterized function of the β  
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and Σ  parameters), even a single permutation of the W vector per choice occasion should 
typically suffice (though the single permutation must vary across choice occasions).  
 
2.2. The Composite Marginal Likelihood (CML) Estimator 
The composite marginal likelihood (CML) estimation approach is a relatively simple approach 
that can be used when the full likelihood function is practically infeasible to evaluate due to 
underlying complex dependencies.  
 

The CML approach, which belongs to the more general class of composite likelihood 
function approaches, is based on maximizing a surrogate likelihood function that compounds 
much easier-to-compute, lower-dimensional, marginal likelihoods (see Varin et al., 2011 for 
recent reviews of the CML method). The CML approach works as follows. Assume that the data 
originate from a parametric underlying model based on a D × 1 vector random variable Y with 
density function ),( θyf , where θ  is an unknown K~ -dimensional parameter vector. Suppose 
that ),( θyf  is difficult or near infeasible to evaluate in reasonable time with the computational 
resources at hand, so that the corresponding likelihood function from a sampled (observed) 
vector for Y (say ),,,( 321 ′= Dmmmm …m ) given by ),)( θmmθ; (f L =  is difficult. However, 
suppose evaluating the likelihood functions of a set of E~  observed marginal events (each 
observed marginal event being a subset of the observed joint event m ) is easy and/or 
computationally expedient. Let these observed marginal events be characterized by 
( )( ..., ,)( ,)( ~21 mmm EAAA ). For instance, )(1 mA  may represent the marginal event that the 
observed values in the sample for the first two elements of the vector Y are )',( 21 mm  , )(2 mA  
may represent the marginal event that the observed values for the first and third elements of the 
vector Y are )',( 31 mm , and so on.  Let each event )(meA  be associated with a likelihood object 

[ ])();( mθ;mθ ee ALL = , which is based on a lower-dimensional marginal joint density function 
corresponding to the original high-dimensional joint density of Y. Then, the general form of the 
composite marginal likelihood function is as follows: 

[ ] [ ]∏∏
==

==
E

e
e

E

e
eCML

ee ALLL
~

1

~

1

)(;();(),( ωω mθmθmθ , (9) 

where eω  is a power weight to be chosen based on efficiency considerations. If these power 
weights are the same across events, they may be dropped. The CML estimator is the one that 
maximizes the above function (or equivalently, its logarithmic transformation). The CML class 
of estimators subsumes the usual ordinary full-information likelihood estimator as a special case.  
 
   The properties of the general CML estimator may be derived using the theory of 
estimating equations. Under usual regularity conditions (these are the usual conditions needed 
for likelihood objects to ensure that the logarithm of the CML function can be maximized by 
solving the corresponding score equations), the maximization of the logarithm of the CML 
function in Equation (9) is achieved by solving the composite score equations given by 
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~
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=
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eeCMLCML sLs mθmθmθ ω  where ).;(log),( mθmθ ee Ls ∇=  Since these 

equations are linear combinations of valid likelihood score functions associated with the event 
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probabilities forming the composite log-likelihood function, they immediately satisfy the 
requirement of being unbiased. Further, if q independent observations on the vector Y are 
available (say ),,,, Q321 mmmm … , as would be the case when there are several individuals q (q 
= 1, 2, 3,…, Q) with panel data or repeated choice data, then, in the asymptotic scenario that 

∞→Q  with D  fixed, a central limit theorem and a first-order Taylor series expansion can be 
applied in the usual way (see, for example, Godambe, 1960) to the resulting mean composite 

score function ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

),(1
1

,
qmθ

Q

q
qCMLs

Q
to obtain consistency and asymptotic normality of the 

CML estimator: 
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where )(θG  is the Godambe information matrix defined as )]([)]()[( 1 θHθJθH − .  )(θH  and 
)(θJ  take the following form: 
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These may be estimated in a straightforward manner at the CML estimate CMLθ̂  as follows: 
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Table 1: MDCP Model Estimation Results for the Simulated Data 
 

Table 1a: Simulation results for the five-alternative case 

Parameter True 
value 

Parameter estimates Standard error estimates 

Mean 
estimate 

Absolute 
percentage 
bias (APB) 

Finite sample 
standard 

error (FSE) 

Asymptotic 
standard 

error (ASE) 

Absolute percentage 
bias asymptotic 
standard error 

(APBASE) 
Mean values of the qβ   vector (b) 

1b   0.500  0.494 1.133 % 0.021 0.019 12.332 % 
2b  -1.000 -0.987 1.279 % 0.021 0.025 20.169 % 
3b   1.000  1.007 0.659 % 0.022 0.025 11.225 % 
4b  -1.000 -0.997 0.299 % 0.013 0.013   1.833 % 
5b  -0.500 -0.505 0.934 % 0.012 0.012   3.051 % 

Cholesky parameters characterizing the covariance matrix of the qβ  vector ( Ωl ) 

1Ωl   0.900  0.898 0.192 % 0.019 0.017   6.142 % 
2Ωl   0.600  0.605 0.839 % 0.032 0.035   7.831 % 
3Ωl   0.800  0.794 0.733 % 0.032 0.033   5.798 % 
4Ωl   0.800  0.791 1.186 % 0.034 0.032   5.181 % 
5Ωl   0.400  0.415 3.794 % 0.045 0.049 10.282 % 
6Ωl   0.300  0.291 3.127 % 0.105 0.116 10.913 % 

Cholesky parameters characterizing the covariance matrix of the qξ vector ( Λl ) 

1Λl   1.100  1.095 0.487 % 0.017 0.019 15.793 % 
2Λl   1.000  0.995 0.484 % 0.012 0.013   7.849 % 
3Λl   0.600  0.596 0.713 % 0.018 0.016 10.679 % 
4Λl   0.800  0.797 0.400 % 0.007 0.009 28.653 % 

Satiation parameters (γ ) 

1γ   1.000  1.002 0.224 % 0.036 0.036   0.405 % 
2γ   1.000  1.007 0.689 % 0.044 0.039 11.310 % 
3γ   1.000  1.016 1.598 % 0.038 0.040   6.161 % 
4γ   1.000  1.004 0.374 % 0.041 0.037   8.996 % 
5γ   1.000  1.001 0.051 % 0.037 0.037   0.881 % 
Overall mean value 
across parameters 0.566 0.960 % 0.030 0.031   9.274 % 
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Table 1b: Simulation results for the ten-alternative case 

Parameter True 
value 

Parameter estimates Standard error estimates 

Mean 
estimate 

Absolute 
percentage 
bias (APB)

Finite 
sample 

standard 
error (FSE) 

Asymptotic 
standard 

error (ASE) 

Absolute percentage 
bias asymptotic 
standard error 

(APBASE) 
Mean values of the qβ  vector (b) 

1b    0.500   0.494 1.218 % 0.017 0.016   5.201 % 
2b  -1.000 -1.006 0.646 % 0.028 0.025 10.658 % 
3b    1.000   0.986 1.450 % 0.028 0.025 10.565 % 
4b  -1.000 -1.000 0.048 % 0.013 0.013   1.303 % 
5b  -0.500 -0.502 0.414 % 0.007 0.012 64.850 % 

Cholesky parameters characterizing the covariance matrix of the qβ  vector ( Ωl ) 

1Ωl    0.900   0.900 0.049 % 0.017 0.015 13.255 % 
2Ωl    0.600   0.602 0.342 % 0.030 0.031   2.412 % 
3Ωl    0.800   0.800 0.028 % 0.035 0.032   7.280 % 
4Ωl    0.800   0.810 1.244 % 0.028 0.029   2.310 % 
5Ωl    0.400   0.401 0.288 % 0.036 0.046 27.111 % 
6Ωl    0.300   0.284 5.275 % 0.075 0.093 24.057 % 

Cholesky parameters characterizing the covariance matrix of the qξ vector ( Λl ) 

1Λl    1.100 1.099 0.099 % 0.011 0.011   0.330 % 
2Λl    1.000 1.004 0.376 % 0.008 0.009 9.005 % 
3Λl    0.600 0.605 0.870 % 0.013 0.010 20.751 % 
4Λl    0.800 0.796 0.444 % 0.006 0.007 15.982 % 
5Λl    1.000 1.002 0.173 % 0.011 0.011   4.323 % 
6Λl    1.100 1.199 8.970 % 0.025 0.030 23.001 % 

Satiation parameters (γ ) 

1γ    1.000   1.012 1.222 % 0.028 0.022 19.877 % 
2γ    1.000   1.010 1.049 % 0.032 0.030   6.650 % 
3γ    1.000   1.021 2.071 % 0.028 0.032 12.803 % 
4γ    1.000   1.016 1.630 % 0.034 0.026 23.893 % 
5γ    1.000   1.018 1.822 % 0.029 0.026   9.422 % 
6γ    1.000   1.013 1.298 % 0.028 0.028   0.117 % 
7γ    1.000   1.018 1.786 % 0.036 0.028 23.741 % 
8γ    1.000   1.015 1.520 % 0.023 0.027 17.473 % 
9γ    1.000   1.016 1.572 % 0.029 0.026 11.032 % 
10γ    1.000   1.020 1.974 % 0.032 0.031   2.225 % 
Overall mean value 
across parameters   0.690 1.403 % 0.025 0.026 13.690 
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Table 2: Recreational Travel Destination Choice and Number of Trips 

Destination Zone Total number (%) of individuals 
visiting each destination 

Number of trips among those who visit each destination 

Mean Min. Max. Std. Dev. 

South-East Lower Peninsula (SELP) 353 (21.3%) 3.05 1 50 4.89 
South-West Lower Peninsula (SWLP) 253 (15.3%) 2.86 1 45 4.39 
North-East Lower Peninsula (NELP) 366 (22.1%) 4.16 1 40 5.78 
North-West Lower Peninsula (NWLP) 445 (26.8%) 4.17 1 60 6.67 
East Upper Peninsula (EUP) 337 (20.3%) 2.73 1 40 3.94 
West Upper Peninsula (WUP)                 158   (9.5%) 3.29 1 32 5.10 

 

Table 3: Destination Zone Characteristics 

  
South-East 

Lower Peninsula 
(SELP) 

South-West 
Lower Peninsula 

(SWLP) 

North-East 
Lower Peninsula 

(NELP) 

North-West 
Lower Peninsula 

(NWLP) 

East Upper 
Peninsula 

(EUP) 

West Upper 
Peninsula 

(WUP) 
Level of Service Variables (Std. Dev.) 

Travel Time (hours)     2.7     (2.1) 2.9 (2.2)   3.2 (1.2)    3.3 (1.4)    5.1 (1.4) 7.2 (2.3) 
Travel Distance (miles) 153.5 (120.0) 162.2 (118.4) 185.7 (65.7) 184.2 (74.1) 290.4 (89.7) 396.1 (134.9) 
Cost ($)   97.4   (78.6)    105.7 (82.3) 123.4 (60.6) 124.9 (66.6) 194.9 (94.6) 272.4 (139.7) 

Land cover percentage 

Urban 10.8   6.9  2.6  2.9  1.5  2.2 
Water   1.3   1.7  3.6  3.8  2.8  3.0 
Open Land   9.4   9.6           16.0 17.1  7.0  5.4 
Wetland   6.0   5.9  8.0  3.7 19.5  5.1 
Agricultural 49.3 47.2  7.4 13.7  3.7  2.8 
Sparsely Vegetated   0.2   0.4  0.4  0.7  0.6  0.6 
Forest 23.0 28.3           62.0 58.1 64.9 80.9 
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Table 4: MDCP Model Estimation Results 

Variable 
 Mean  Standard Deviation 

Estimate t-stat Estimate t-stat 
Travel Cost ($/10) and interactions            
    Travel cost -0.850 -8.39 0.706 3.74 
    Travel cost interacted with low income household (<$30,000 per year) -0.398 -3.72 - - 
Land cover accessibility measure specific to            
    Urban (/6*104)  0.384  8.59 0.108 2.79 
    Urban (/6*104) interacted with presence of children < 16 years -0.027 -1.43 - - 
    Water (/6*104)  0.764  4.07 - - 
    Wetland (/6*104) -0.305 -8.16 - - 
    Open land (/6*104) -0.316 -5.81 - - 

Log-Likelihood at Convergence -3726.30 

 

 

 


