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ABSTRACT 

This paper proposes a new econometric formulation and an associated estimation method for 

multivariate count data that are themselves observed conditional on a participation selection 

system that takes a multiple discrete-continuous model structure. This leads to a joint model 

system of a multivariate count and a multiple discrete-continuous selection system in a hurdle-

type model. The model is applied to analyze the participation and time investment of households 

in out-of-home activities by activity purpose, along with the frequency of participation in each 

selected activity. The results suggest that the number of episodes of activities as well as the time 

investment in those activities may be more of a lifestyle- and lifecycle-driven choice than one 

related to the availability of opportunities for activity participation. 

 

Keywords: multivariate count data, generalized ordered-response, multiple discrete-continuous 

models, hurdle model system, endogeneity. 
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1. INTRODUCTION 

In this paper, we develop a new econometric formulation and an associated estimation method 

for multivariate count data that are themselves observed based on a participation selection 

system. The participation selection system may be potentially endogenous to the multivariate 

count data in a hurdle-type model, which then leads to a joint count model system and 

participation selection system. The important feature of our proposed model is that the 

participation selection system itself takes a multiple discrete-continuous formulation in which 

multiple discrete states (with associated continuous intensities) may be simultaneously chosen 

for participation. A defining feature of our model is, therefore, that decision agents jointly 

choose one or more discrete alternatives and determine a continuous outcome as well as a count 

outcome for each discrete alternative. Further, if the decision agent does not choose a discrete 

alternative, there is no continuous or count outcome observed for this discrete alternative. Many 

empirical contexts in different fields conform to such a decision framework and can benefit from 

our proposed model. For instance, consider an individual’s daily engagement in non-work 

activities, an issue of substantial interest in the time-use and transportation fields. The individual 

chooses to participate in different activity types (such as shopping, visiting, and recreation), and 

jointly determines the amount of time to invest in each activity type and the number of episodes 

of each activity type to participate in. Of course, should an individual choose not to participate in 

a specific activity type, there is no issue of time investment and number of episodes associated 

with that activity type. Another example from the transportation and energy fields would be the 

case of a household’s choice and use of motorized vehicles. Here, a household may choose to 

own different numbers of various body types of vehicles (such as a compact sedan and/or a pick-

up truck), and put different mileages on the different vehicles. Again, the count and mileage are 

not relevant for body types not chosen by the household. Econometrically speaking, the 

potentially inter-related nature of the choices in these situations originates from common 

unobserved factors. For instance, underlying household factors such as environmental 

consciousness may make a household more likely to own multiple compact sedans and use 

compact sedans for much of the household’s travel needs. These same unobserved factors can 

potentially also reduce the likelihood of the household owning one or more pick-ups and putting 

mileage on the pick-up(s).  
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Our formulation for the joint model combines a multiple discrete-continuous (MDC) 

model system with a multivariate count (MC) model system. The MDC system takes a MDC 

probit (MDCP) form in our formulation, while the MC system is quite general and takes the form 

of a multivariate generalized ordered-response probit (MGORP) model. In particular, we use 

Castro, Paleti, and Bhat’s (CPB’s) (2011) recasting of a univariate count model as a restricted 

version of a univariate GORP model. This GORP system provides flexibility to accommodate 

high or low probability masses for specific count outcomes without the need for cumbersome 

treatment (especially in multivariate settings) using zero-inflated mechanisms. The error terms in 

the underlying latent continuous variables of the univariate GORP-based count models for each 

discrete alternative also provide a convenient mechanism to tie the counts of different 

alternatives together in a multivariate framework. Further, these error terms form the basis for 

tying the MC model system with the MDCP model system using a comprehensive correlated 

latent variable structure. Overall, the model system extends extant models for count data with 

endogenous participation (for example, see Greene, 2009) that have focused on the simpler 

situation of a binary choice selection model and a corresponding univariate count outcome 

model.  

The frequentist inference approach we use in the paper to estimate the joint MDCP-MC 

system is based on an analytic (as opposed to a simulation) approximation of the multivariate 

normal cumulative distribution (MVNCD) function. Bhat (2011) discusses this analytic 

approach, which is based on earlier works by Solow (1990) and Joe (1995). The approach 

involves only univariate and bivariate cumulative normal distribution function evaluations in the 

likelihood function (in addition to the evaluation of the closed-form multivariate normal density 

function).  

The paper is structured as follows. The next section presents the modeling frameworks 

for the two individual components of the overall model system—the MDCP model and the MC 

model. This sets the stage for the joint model system formulated in this paper and presented in 

Section 3. Section 4 develops a simulation experiment design and evaluates the ability of the 

proposed estimation approach to recover the model parameters. Section 5 focuses on an 

illustrative application of the proposed model to the analysis of households’ daily activity 

participation. Finally, Section 6 concludes the paper by summarizing the important findings and 

contributions of the study.  
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2. THE INDIVIDUAL MODEL COMPONENTS 

The use of the MDCP model in the current paper, rather than the MDC extreme value (MDCEV) 

model (Bhat, 2005, 2008) is motivated by the need to tie the MDC model with the MC model. 

For the MC model, as discussed in the previous section, we use a latent variable representation 

with normal error terms that also facilitates the tie with the MDCP model.  

 
2.1 The MDCP model 

Without loss of generality, we assume that the number of consumer goods in the choice set is the 

same across all consumers. Following Bhat (2008), consider a choice scenario where a consumer 

maximizes his/her utility subject to a binding budget constraint (for ease of exposition, we 

suppress the index for consumers): 
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where the utility function )(xU  is quasi-concave, increasing and continuously differentiable, 

0x  is the consumption quantity (vector of dimension K×1 with elements kx ), and k , k , and 

k  are parameters associated with good k. In the linear budget constraint, E  is the total 

expenditure (or income) of the consumer )0( E , and kp  is the unit price of good k as 

experienced by the consumer. The utility function form in Equation (1) assumes that there is no 

essential outside good, so that corner solutions (i.e., zero consumptions) are allowed for all the 

goods k (though at least one of the goods has to be consumed, given a positive E). The 

assumption of the absence of an essential outside good is being made only to streamline the 

presentation; relaxing this assumption is straightforward and, in fact, simplifies the analysis.1 

                                                 
1 The issue of an essential outside good is related to a complete versus incomplete demand system. In a complete 
demand system, the demands of all goods (that exhaust the consumption space of consumers) are modeled. 
However, the consideration of complete demand systems can be impractical when studying consumptions in finely 
defined commodity/service categories. In such situations, it is common to use an incomplete demand system in the 
form of a Hicksian composite commodity approach. In this approach, one replaces all the elementary alternatives 
within each broad group that is not of primary interest to the analyst by a single composite alternative representing 
the broad group (one needs to assume in this approach that the prices of elementary goods within each broad group 
of consumption items vary proportionally). The analysis proceeds then by considering the composite goods as 
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The parameter k  ( 0k ) in Equation (1) allows corner solutions for good k, but also serves the 

role of a satiation parameter. The role of k )1( k  
is to capture satiation effects, with a smaller 

value of k  implying higher satiation for good k. k )0( k
 
represents the stochastic baseline 

marginal utility; that is, it is the marginal utility at the point of zero consumption (see Bhat, 2008 

for a detailed discussion). 

Empirically speaking, it is difficult to disentangle the effects of k  and k  separately, 

which leads to serious empirical identification problems and estimation breakdowns when one 

attempts to estimate both parameters for each good. Thus, Bhat (2008) suggests estimating both a 

 -profile (in which 0k  for all goods and all consumers, and the k  
terms are estimated) 

and an -profile (in which the k  terms are normalized to the value of one for all goods and 

consumers, and the k  terms are estimated), and choose the profile that provides a better 

statistical fit. However, in this section, we will retain the general utility form of Equation (1) to 

keep the presentation general.  

To complete the model structure, stochasticity is added by parameterizing the baseline 

utility as follows:  

),exp( kkk ξ zβ  (2)

where kz  is a D-dimensional column vector of attributes that characterize good k (including a 

dummy variable for each good except one, to capture intrinsic preferences for each good except 

one good that forms the base), β  is a corresponding vector of coefficients (of dimension D×1), 

and k  captures the idiosyncratic (unobserved) characteristics that impact the baseline utility of 

good k. We assume that the error terms k  are multivariate normally distributed across goods k: 

),(~),...,,( 21 Λ0ξ KKK MVN  , where ),( Λ0 KKMVN  indicates a K-variate normal 

distribution with a mean vector of zeros denoted by K0  and a covariance matrix .Λ   

                                                                                                                                                             
“outside” goods and modeling consumption in these outside goods as well as in the “inside” goods representing the 
consumption group of main interest to the analyst. It is common in practice in this Hicksian approach to include a 
single outside good with the inside goods. If this composite outside good is not essential, then the utility formulation 
in Equation (1) applies. If this composite outside good is essential, then the formulation needs minor revision to 
accommodate the essential nature of the outside good, as we will discuss later (see also Bhat, 2008). 
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The analyst can solve for the optimal consumption allocation vector ),...,,( **
2

*
1 Kxxx*x

 
corresponding to Equation (1) by forming the Lagrangian and applying the Karush-Kuhn-Tucker 

(KKT) conditions. To do so, let’s say that m is the consumed good with the lowest value of k for 

the consumer.2 The order in which the goods are organized does not affect the model formulation 

or estimation, though the labeling of the goods must remain the same across consumers. Also, 

define ,ln1ln)1(
*

k
k
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kkk p
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
zβ  kkk VU  , and mkkm UUu * . Then, following 

Bhat (2008), the KKT conditions may be written as: 

0* kmu , if 0* kx , Kk ,...,2,1 , mk 
 

0* kmu , if 0* kx , Kk ,...,2,1 , .mk   

(3)

For later use, stack kU , kV  , and kξ  into K×1 vectors: )',...,,( 21 KUUUU , 

)',...,,( 21 KVVVV , and )',...,,( 21 Kξ  , respectively, and let )(  K21 ,...,, zzzz  be a K×D 

matrix of variable attributes. Then, we may write, in matrix notation, ξzβξVU   and 

).,(~ 1 ΛVU KMVN  Also, for later use, define ),,( 21
*  Kmmmm uuu u

 
as a (K-1)×1 vector, and 

)',...,,( 21 Kγ  and )',...,,( 21 Kα . As already indicated, only one of the vectors γ or α

will be estimated.  

Three important identification issues need to be noted here because the KKT conditions 

above are based on differences, as reflected in the *
kmu  terms. First, a constant coefficient cannot 

be identified in the β  term for one of the K goods. Similarly, consumer-specific variables that do 

not vary across goods can be introduced for K–1 goods, with the remaining good being the base. 

Second, only the covariance matrix of the error differences is estimable. Taking the difference 

with respect to the first good, only the elements of the covariance matrix 1Λ  of 11   kk ,

1k  are estimable. However, the KKT conditions take the difference against the first 

consumed good m for the consumer. Thus, in translating the KKT conditions in Equation (3) to 

the consumption probability, the covariance matrix mΛ
 
is desired. Since m will vary across 

                                                 
2 The consumer has to consume at least one of the alternatives, because the alternatives are goods and E > 0 in 
Equation (1).  
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consumers, mΛ
 
will also vary across consumers. But all the mΛ  matrices must originate in the 

same covariance matrix  Λ  for the original error term vector ξ . To achieve this consistency, Λ  

is constructed from 1Λ  by adding an additional row on top and an additional column to the left. 

All elements of this additional row and column are filled with values of zeros. mΛ  may then be 

obtained appropriately for each consumer based on the same Λ  matrix. Third, an additional 

scale normalization needs to be imposed on Λ  if there is no price variation across goods for each 

consumer (i.e., if kppk  ~ for all consumers). For instance, one can normalize the element of 

Λ  in the second row and second column to the value of one. But, if there is some price variation 

across goods for even a subset of consumers, there is no need for this scale normalization and all 

the K(K–1)/2 parameters of the full covariance matrix of 1Λ  are estimable (see Bhat, 2008).  

 
2.2 The MC model 

Let ky  be the index for the count for discrete alternative k, and let kl  be the actual count value 

observed for the alternative. In this section, we develop the basics of the multivariate count 

model, without any hurdle based on the MDC model. 

Consider the recasting of the count model for each discrete alternative using a 

generalized ordered-response probit (GORP) structure as follows: 

        kky * , kk ly   
kk lkklk yif ,

*
1,    , 
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 , where kk sς  ek .  

In the above equation, *
ky  is a latent continuous stochastic propensity variable associated with 

alternative k that maps into the observed count kl  
through the kψ vector (which is itself a 

vertically stacked column vector of thresholds ) ,..., ,,( 2,1,0, kkk  ).  This variable, which is 

equated to kη  in the GORP formulation above, is a standard normal random error term.3  kς  is a 

                                                 
3 The use of the standard normal distribution rather than a non-standard normal distribution for the error term ηk is 
an innocuous normalization (see McKelvey and Zavoina, 1975; Greene and Hensher, 2010). Note also that any other 
proper continuous error distribution may be assumed for the ηk error terms, such as the logistic distribution or the 
extreme value distribution. However, for our purpose of tying the counts across the discrete alternatives as well as 
accommodating the endogeneity of the MDC model, the normal distribution is convenient. 
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vector of parameters (of dimension 1
~ C ) corresponding to the conformable vector of 

observables ks (including a constant).  

The threshold terms satisfy the ordering condition (i.e., < ),....21,0,  kkk   as 

long as  < .....2,1,0,  kkk  4 The presence of these φ terms provides flexibility to 

accommodate high or low probability masses for specific count outcomes without the need for 

cumbersome treatment using zero-inflated or related mechanisms. For identification, we set 

,1, kk   and kk  00, . In addition, we identify a count value *
ke  ......}),2 ,1,0{( * ke

above which ......}),2 ,1,0{(, eek is held fixed at *, kek
 ; that is, *,,

kekek    if ,*
kk ee   where the 

value of *
ke  can be based on empirical testing. With such a specification of the threshold values, 

the GORP model in Equation (4) is a flexible count model that can predict the probability of an 

arbitrary count.  1  in the threshold function of Equation (4) is the inverse function of the 

univariate cumulative standard normal. For later use, let ),,( *,2,1, 
klkkkk  φ  ( 1* kl matrix), 

and )',','( 21  Kφφφφ   ( 1* 







k

kl vector). 5 

The 
k  terms may be correlated across different alternatives because of unobserved 

factors. Formally, define )'.,,,,(= 321 Kηηηη η  Then η is assumed to be multivariate 

standard normally distributed: ),(~ Γ0η KKMVN , where Γ  is a correlation matrix. For later use, 

define the following vectors and matrices. Let )′ ..., . , ,(= **
2

*
1

*
Kyyyy (K×1 vector), 

)′ ..., . , ,(= 21 Kλλλλ  (K×1 vector), and )′ ..., . , ,(= 21 Kθθθθ  (K×1 vector). Define s  as a 

)
~

( CKK   block diagonal matrix, with each block-diagonal  occupied by a )
~

( C1  vector ks′  

(organized so that 1s appears in the first row, 2s  appears in the second row, and so on). Let 

)′′ ..., . , ′,′(= K21 ςςςς  ( 1
~ CK  vector). Then, ηy =* , and  ).,(~* Γ0y KKMVN Also, using an 

                                                 
4 The non-linear nature of the functional form for the non-φ component of the thresholds satisfies the ordering 
conditions by construction. 
5 The specification of the GORP-based count model in Equation (4) provides a flexible mechanism to model count 
data. It subsumes the traditional count models as specific and restrictive cases. In particular, if all elements of the   
φk vector are zero, the result is the Poisson count model (see CPB). 
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extension of conventional matrix notation so that the exponent of a matrix returns a matrix of the 

same size with the exponent of each element of the original matrix, we write ).exp(= sςλ  

 
3. THE JOINT MODEL SYSTEM AND ESTIMATION APPROACH 

An important feature of the proposed joint model system is that ky  (the count corresponding to 

discrete k) is observed only if there is some positive consumption of the alternative k as 

determined in the MDC model. That is, ky  is observed only if 0* kx , and 0ky  in this case (

ky  is not observed if 0* kx ). Thus, the proposed model resembles the typical hurdle model used 

in the count literature, but with three very important differences that make the proposed model 

much more general. First, the hurdle is set by an MDC model, as opposed to a simple binary 

model of participation (if the MDC model has only two alternatives, and individuals choose only 

one of the two alternatives, the satiation parameter k =1 for all k and the MDC model can be 

shown to collapse to a simple binary probit model). Second, there are multiple hurdles, each 

hurdle corresponding to a discrete alternative k. To the extent that the stochastic elements in kU  

are allowed to be correlated, the hurdle conditions also get correlated. This leads to a 

multivariate truncation system. Third, we allow correlation in the counts across discrete 

alternatives, and also allow a fully general covariance structure between the MDC and MC 

models in a joint framework. As a result, the estimation approach involves the joint estimation of 

the MDC and MC model components.  

 Our joint model is based on the KKT conditions of the MDC model from Equation (3),  

supplemented by the following revised mechanism (from that discussed in the previous section) 

for observing counts for each alternative k: 

        kky * , kk ly   
kk lkklk y ,

*
1,if    , ky observed only if  0* kx        (5)  
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Note that there is truncation present in the system above, since we are confining attention to 

positive values of the counts. Thus, there needs to be a scaling undertaken so that the 

probabilities of the positive count outcomes sum to one; this is achieved by restricting the region 

of *
ky  to not include the range from –inf to   ;1 ke  that is, to not include
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 key kk
  1

0,
* .

 
Of course, to the extent that there is correlation in the *

ky  values across 

the discrete alternatives, this truncation itself takes a multivariate form, as considered later in the 

estimation section.  

To proceed, define a 1)(2 K -dimensional vector  






  *, yUG . Let )′′,′(= K0VH

 
and 

let Ξ be the covariance between the vectors U and .*y
  
Then, ),,(~ 2 ΣHG KMVN  where 
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and 1Λ  is as defined in Section 2.1. Next, define M as an identity matrix of size 2K–1 with an 

extra column added at the thm  column of the consumer (thus, M
 
is a matrix of dimension 

)2()12( KK  . This thm  column of M has the value of ‘-1’ in the first )1( K  rows and the 

value of zero in the remaining K rows. Then,   ),
~

,
~

(~,
~

12
* ΣHyuG 







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 KMVN*
m  with *

mu  

defined in Section 2.1, and HMH ~
 and MΣMΣ  

~
 (G

~
 is a  11)(2 -K vector). Next, stack 

the lower thresholds  Kk
klk  ..., ,2 ,11, 

 
in the MC model into a )1( K  vector lowψ

 and the 

upper thresholds  Kk
klk  ..., ,2 ,1,   into another vector upψ . If a specific discrete alternative is 

not consumed, place a zero value in the corresponding row of both lowψ  and upψ  (technically, 

any value can be assigned to these non-consumption alternatives in the thresholds, since the 

likelihood expression derived later will not involve these entries in the thresholds). Also, stack 

the thresholds  Kkk  ..., ,2 ,10,   into a )1( K  vector 0ψ . The vectors lowψ , and upψ  are 

functions of the vectors λ , θ , and  , while the vector 0ψ  is a function of the vectors λ  and θ . 

Next, re-arrange the elements of the vector G
~

 so that the elements in *
mu  that 

correspond to the consumed discrete alternatives (but not including alternative m) appear first 

and the elements of *
mu  that correspond to the non-consumed discrete alternatives appear later. 

Let CL  ( 10  KLC ) be the number of consumed goods ( 0* kx  for these goods), but 
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excluding the alternative m). Let NCL  ( 10  KLNC ) correspondingly be the number of non-

consumed goods ( 0* kx  for these goods) ( 1 KLL CNC ). Also, from the *y component 

vector of G
~

, select out only those elements *
ky  that correspond to the consumed alternatives 

(including the element corresponding to alternative m). Both the re-arrangement of the elements 

of *
mu as well as the selection of those elements of *y corresponding to the consumed 

alternatives may be accomplished using a matrix R of dimension ( CL + NCL + CL +1=

)12()  KKLC  ) so that GRG
~

=


. For example, consider a consumer who chooses among 

five goods (K=5), and selects goods 2, 3, and 5 for consumption. Thus, 2m , 2CL  

(corresponding to the consumed goods 3 and 5, with good 2 serving as the base good needed to 

take utility differentials), 2NCL  (corresponding to the non-consumed goods 1 and 4). Then, the 

re-arrangement matrix R is: 
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







































y

NCC

y

NC

C

R

R

R
R

R

R

R

R

R
 

     (7) 

where the sub-matrix CR  corresponds to the consumed goods excluding m (of dimension 

)1(2  KLC ), the sub-matrix CNR  corresponds to the non-consumed goods (of dimension 

)1(2N  KL C ), and the sub-matrix *y
R corresponds to the elements of the vector *y associated 

with the consumed alternatives including alternative m (of dimension )1(2)1(  KLC ).  

Consistent with the above re-arrangement, define GRGC

~
C


 , ,GRGNC

~
NC


 

GRG *y

~~
*y




, and )
~~  *yNC2 G,G(GRG


, so that )),(  2CyNCC G,G(GG,GG *


. In 

addition, let HR=H
~

, HR=H CC

~
, HR=H

~
NCNC


, ,

~
= ** HRH

yy


, )′,′(=

~~
= *yNC HHHRH


2 , and 
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






 






















22

2

,,

,,

,,

***

*

*

~
ΘΘ

ΘΘ

ΘΘΘ

ΘΘΘ

ΘΘΘ

RΣRΘ
C

CC

yyNCyC

yNCNCNCC

yCNCCC

, where CCC RΣRΘ  ~
, 











*,

,

2

~~~

yC

NCC

CC Θ

Θ
RΣRΘ , and .

~~~
**

*

,

,
2 







 


yyNC

yNCNC

ΘΘ

ΘΘ
RΣR  Also, let ]12:[.,*  KK

y
RT

; that is, T  is a KLC  )1(  sub-matrix of *y
R with all rows of *y

R  included, but only the Kth 

through (2K-1)th columns of *y
R  Now, define [ ]′)′(=~

lowlow ψTψ , where lowψ~  is a  1)1( CL

column vector. Similarly, define [ ]′)′(=~
upψTψup  , where upψ~  is again a  1)1( CL column 

vector. Finally, define [ ]′)′(=~
00 ψTψ . 

In the rest of this section, we will use the following key notation: );(. Δ,μEf  for the 

multivariate normal density function of dimension E with mean vector μ and covariance matrix 

Δ, ω  for the diagonal matrix of standard deviations of Δ (with its rth element being rω , ), 

);(. *ΔE  for the multivariate standard normal density function of dimension E and correlation 

matrix *Δ , such that 11* 



 ωΔωΔ , ),;(. ΔμEF

 
for the multivariate normal cumulative 

distribution function of dimension E with mean vector μ and covariance matrix Δ, and );(. *ΔE  

for the multivariate standard normal cumulative distribution function of dimension E and 

correlation matrix *Δ . 

Defining ,),,, ,(  Σφςαγβω or  where Σ represents the vector of upper triangle 

elements of Σ , the likelihood function contribution of the individual may be obtained from the 

KKT conditions in Equation (3) and from Equation (5) as: 

,
)~~

,,P(

)~~~,,(
),()det()(

0y

upylow

*

*

ψG0G0G

ψGψ0G0G
0G0GJω

NCC

NCC

NCC

LL

LL

LL 




NCC

NCC

NCC

P
PL 




(8)

and )det( J  is the determinant of the Jacobian of the transformation from *
mu  to the consumption 

quantity vector )′,,(= 21 Kxxx*x  (corresponding to the consumed alternatives; see Bhat, 2008): 















































 
 CC k m

k

k

kk

k kk

k

p

px

x 





1

1
)det(

*

*
J              (9) 
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with C  being the set of alternatives consumed by the individual (including good m). 

Using the marginal and conditional distribution properties of the multivariate normal 

distribution, we can write the second component in the likelihood function of Equation (8) as: 

∫
][

,),;();(                     

),(

NCL

C

NCC

0

G

NCCL

LL

GΘHGΘ,H0

0G0G

NCLNC

C NCNCNCNCCL

NCC

ff

P













d
 (10) 

The numerator of the third component in the likelihood can be written as follows: 

NC2KCL

NCC

ff

P

NCLNC

up

low

C
GGΘHGGΘ,H0

ψGψ0G0G

**

NCL

*y

C

NCC

yyNC

0

G

ψ

ψG

CL

LL






dd

upylow *

~
),;

~
,();(                   

                      

)~~~,,(

2

~

~~
∫ ∫

][ 





 (11) 

The denominator of the third component in the likelihood can be written as follows: 

NC2KCL

NCC

ff
NCLNC

CL

C
GGΘHGGΘ,H0

ψG0G0G

**

NCL

*y

C

NCC

yyNC

0

G ψG

CL

LL






dd

0y*

~
),;

~
,();(                   

)~~
,,P(

2
~~

∫ ∫
][

]1[

0











 (12) 

Substituting expressions from Equations (10), (11) and (12), we can write Equation (8) as given 

below: 

,
~

),;
~

,(

~
),;

~
,(

                                           

),;();()det()(

2
~~

2

~

~~

∫ ∫

∫ ∫

∫

][

]1[

0

][

][

NC2K

NC2K

NCNCNCNCCL

f

f

ffL

NCLNC

CL

NCLNC

up

low

NCLNC

C

GGΘHGG

GΘHGG

GΘHGΘ,H0Jω

**

NCL

*y

**

NCL

*y

NCL

C

yyNC

0

G ψG

yyNC

0

G

ψ

ψG

0

G

NCCL













dd

Gdd

d







 








       (13) 

where  )()( 1
CHΘΘHH CNCC,


 NCNC , NCC,CNCC,NCNC ΘΘΘΘΘ  1)(


,  

)()( 1
CHΘΘHH CC2


 22 , C2CC222 ΘΘΘΘΘ  1)(


, ][LNC

   is an  )1( NCL column 

vector of negative infinity values, and ]1[ 
CL  is a  1)1( CL column vector of infinity values. 

Let h be an index that takes a value between 1 and )1( CL . Let [ ]
hh lowψψ ~=,0


, [ ] ,~=,1 hh upψψ

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[ ] ,~=,0 hh 0ψψ


 and [ ]
hLh C ]1+[,1 ∞=ψ


. Also, let 11* 





CC CC ωΘωΘ , 1
2

1*
2

22





 

ωΘωΘ , and 

11* 





NCNC
NCNC

 ωΘωΘ . The three integrals in Equation (13) maybe written as: 

    *
NCΘ

ΘHωΘ,H0
NC


 ;; 1

1 NCNC  
KNCLKNUM NC

FL           (14) 

  

   ∑∑ ∑

∑∑ ∑
2

1

2

1
1,12,11,1

1
2

1

2

1

2

1
1,12,11,1

2

1
2

1 2

121

1

121

1 2

121

1

121

;),,,()1(

;),,,()1(

 








 






















a a
LaaaLK

a

aaa

a a
LaaaLK

a

aaa

NUM

CCLNC

CL

CL

CCLNC

CL

CL FL

*
2Θ

2

ΘH0ω

Θ,H0

2










2

2

ψψψ

ψψψ

   (15) 

The integral in the denominator may be written as: 

  

   ∑∑ ∑

∑∑ ∑
2

1

2

1
1,12,11,1

1
2

1

2

1

2

1
1,12,11,1

2

1

1 2

121

1

121

1 2

121

1

121

;),,()1(

;),,,()1(

 








 






















a a
LaaaLK

a

aaa

a a
LaaaLK

a

aaa

DEN

CCLNC

CL

CL

CCLNC

CL

CL

,

FL

*
2Θ

2

ΘH0ω

Θ,H0

2










2

2

ψψψ

ψψψ

    (16) 

The expressions 1NUML , 2NUML and DENL  may be computed using simulation-based 

methods or an analytic approximation approach to approximate the MVNCD functions. Typical 

simulation-based methods can get inaccurate and time-consuming as the dimensionality 

increases. On the other hand, the analytic approximation approach of Joe (1995) and Bhat (2011) 

is based solely on univariate and bivariate cumulative normal distribution evaluations, regardless 

of the dimensionality of integration, which considerably reduces computation time compared to 

other simulation techniques to evaluate multidimensional integrals. This is the approach used in 

the current paper.  The accuracy and stability of the analytic approximation approach for the 

MVNCD function has already been evaluated for the multinomial probit model (Bhat and 

Sidharthan, 2011). These results indicate that the approximation provides parameter values very 

close to the “true” population parameter values in simulation experiments, with the empirical 

absolute percentage bias being smaller than that from simulation-based techniques to evaluate 

the MVNCD function. Further, the time to convergence using the analytic approximation is an 

order less than the time to convergence using simulation-based approaches. Recently, Bhat et al. 

(2013) have demonstrated the ability of the analytic approximation to recover parameters very 

accurately even for MDCP models. They also noted that, for the typical size of samples 

employed in discrete model estimation, the asymptotic standard errors computed using the 
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second derivatives of the analytic approximation-based likelihood function provides a very good 

estimate of the true finite sample error. This is not surprising, because the MVNCD-

approximated log-likelihood function is close to the log-likelihood function for all parameters in 

a neighborhood of the “true” parameter values, which implies that the covariance matrix 

computed using the analytic approximation should be accurate for the actual covariance matrix. 

Here, we extend the use of the analytic approximation to estimate the joint MDC-MC model of 

this paper.  

The likelihood contribution of the individual in Equation (8) collapses to the expression 

given below: 

 
DEN

NUM
NUMCCL

L

g L

L
LL

CC

C

gC

2
1

*1

1

1

)),(()det()(
,









 






 ΘHωJ


                                              (17)

 

Several constrained versions of the model just discussed may be obtained. If the error covariance 

matrices *, yC
Θ and *,yNC

Θ  are matrices with all elements being zeros (that is, if there is no 

dependence between the marginal utility vector U  in the MDCP model and the latent variable 

vector *y  underlying the count outcomes), then the likelihood function of Equation (17) can be 

easily shown to collapse to an independent MDCP model and an independent multivariate hurdle 

count model (with the hurdle for the count of alternative k being whether or not the consumer 

consumes some amount of the alternative k, as determined in the MDCP model). Further, if *y
Θ  

is a diagonal matrix, then the multivariate hurdle count model collapses to independent hurdle 

count models for each discrete alternative k. However, note that the resulting independent hurdle 

count model structure for each discrete alternative is still more general than the traditional 

Poisson hurdle count model structure. Specifically, only if all elements of the vectors ς  and φ 

are identically zero will the structure collapse to a traditional Poisson hurdle count model.  

An estimation consideration that needs to be dealt with is that the matrix Θ  for any 

individual must be positive definite. The simplest way is to ensure that the matrix Σ
~

 for each 

individual is positive definite, which can be guaranteed by using a Cholesky-decomposition of 

the matrix Σ . Note that, to obtain the Cholesky factor for Σ , we first obtain the Cholesky factor 

for 1Σ  (see Equation 6), and then add a column of zeros as the first column and a row of zeros as 

the first row to obtain the Cholesky factor of 1Σ . However, the top diagonal element of 1Σ  has 
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to be normalized to one if there is no price variation across goods for each consumer (as 

discussed earlier in Section 3). Also, the matrix Γ , which is embedded in 1Σ , is a correlation 

matrix. These restrictions need to be recognized when using the Cholesky factor of 1Σ . To do so, 

consider the lower triangular Choleski matrix L


 of the same size as 1Σ . Whenever a diagonal 

element (say the aath element) of 1Σ  is to be normalized to one, the corresponding diagonal 

element of L


 is written as 





1

1

21
a

j
ajd , where the ajd  elements are the Cholesky factors that are 

to be estimated. With this parameterization, 1Σ  obtained as LL ′


 is positive definite and adheres 

to the scaling conditions.  

Thus far, the discussion has assumed that there is no essential outside numeraire good 

(i.e., no essential Hicksian composite good). If an outside good is present, label the outside good 

as the first good which now has a unit price of one (i.e., )11 p . This good, being an essential 

good, serves as a convenient base alternative to take utility differences off (that is, in our earlier 

notation, m=1 for all consumers). The utility functional form of Equation (4) now needs to be 

modified as follows: 


 
























K

k k

k
k

k

k

k

x
xU

2
111

1

11)(
1

)(max 1











x  (18) 

In the above formula, we need 01  , while 0k  for k > 1. Also, we need 011  x . The 

magnitude of 1  may be interpreted as the required lower bound (or a “subsistence value”) for 

consumption of the outside good (Bhat, 2008). As in the “no-outside good” case, the analyst will 

generally not be able to estimate both k  and k  for the outside and inside goods. For 

identification purposes, we assume (without loss of generality) that ).exp( 11   Corresponding 

to the utility function above,  1
*
111 ln)1(   xV , k

k

k
kkk p

x
V ln1ln)1(

*












zβ  for  

k>1, kkk VU   for all k, and ,*
mkkm UUu  where m=1 now. All other notations remain the 

same. In the case in which the outside good does not have a count associated with it (such as 

when the outside good is “in-home time” in a model of out-of-home time investments in 

different activity purposes and corresponding number of out-of-home episodes), everything 
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remains the same as earlier except for minor modifications to the re-arrangement matrix and 

related matrices so that there are no count parameters to estimate for this outside good.  

 
4. SIMULATION EVALUATION 

The simulation exercise undertaken in this section examines the ability of the analytic 

approximation to recover parameters from finite samples in a joint MDCP-MC model by 

generating simulated data sets with known underlying model parameters. In addition, the 

exercise examines the effects of imposing a restrictive independence assumption between the 

MDCP and the MC components, when the true data generating process is a joint MDCP-MC 

process.   

 
4.1 Simulation Design and Evaluation 

Consider a three-alternative MDCP model, and the case when all alternatives may have corner 

solutions (that is, the case with no essential outside good). We specify a single independent 

variable in the kz  vector in the baseline utility of the three alternatives. The values of this 

variable for each of the three alternatives are drawn from standard univariate normal 

distributions, and a synthetic sample of 2000 realizations of the exogenous variables is 

generated, corresponding to a simulated data set of Q=2000 observations. The coefficient on this 

variable (labeled as β) is set to the value of 1. In the simulations, we use a γ-profile, and set all 

the γ parameters to the value of one (so, )(1,1,1)',,( 321  γ ). 

 The covariance matrix that generates the jointness among the baseline utilities of the 

MDCP alternatives as well as the error terms in the count variables is specified as follows (see 

Section 3):

 
  where,

0
0








 



















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ΞΛ0

00
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
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




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

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


























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
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





















878.0000.0000.0000.0000.0

293.0880.0000.0000.0000.0

380.0475.0843.0000.0000.0

000.0000.0360.0000.1000.0

000.0000.0400.0600.0000.1

878.0293.0380.0000.0000.0

000.0880.0475.0000.0000.0

000.0000.0843.0360.0400.0

000.0000.0000.0000.1600.0

000.0000.0000.0000.0000.1

000.1438.0320.0000.0000.0

438.0000.1400.0000.0000.0

320.0400.0000.1600.0400.0

000.0000.0600.0360.1600.0

000.0000.0400.0600.0000.1

11 ΣΣ

1

LL

Σ



 

As indicated earlier, the positive definiteness of 1Σ  is ensured in the estimations by 

reparameterizing the likelihood function in terms of the lower Cholesky factor 
1Σ

L


, and 

estimating the six associated Cholesky matrix parameters (note that the Cholesky parameters 

corresponding to fixed normalization values of 1.000 in the covariance matrix 1Σ  are not 

estimated, but are obtained from the other elements in that row): 600.01, 1Σ
l , 000.12, 

1Σ
l , 

400.03, 
1Σ

l , 360.04, 
1Σ

l , .47505, 
1Σ

l , 803.06, 
1Σ

l , and 932.07, 
1Σ

l  We will also refer to 

these parameters collectively as 
1Σ

l . 

For the count components, we consider a single exogenous variable in the ks vector for 

the count model for each discrete alternative (embedded in the threshold function). This 

exogenous variable (for the count model corresponding to each discrete alternative) is generated 

from a standard univariate distribution. The corresponding coefficient vector (labeled as 

)),,(  321 ςςςς  is set to .)50.0,25.0,50.0(   For the )′,,(= *,2,1,
kekkkk φφφ φ  vector, we set 

,1* kek   so that only one threshold 1,kφ  is to be estimated for the count model corresponding 

to each discrete alternative k. In the data generation, we set  .)′75.0,5.0,1(=)′,,(= 1,31,21,1 φφφφ   

Using the parameters specified above, we first compute the vector H (see Section 3). 

Then, given H and Σ, we have the distribution of the vector  






  *, yUG . Then, for each of 

the 2000 observations, we draw a realization of G from its multivariate truncated normal 

distribution. Next, using a γ-profile and the corresponding “true” values of the γ vector, and the 
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realization of the U  vector, we generate the consumption quantity vector *xq  for each individual, 

using the forecasting algorithm proposed by Pinjari and Bhat (2011). Similarly, using the values 

of 1,kφ (k=1,2,3), the ς vector values, and the realizations of the exogenous variable in the ks

vector, we compute the threshold values (the 
klk , values in Equation 5) and translate the 

realization of the *y vector to a multivariate count value (across alternatives). The above data 

generation process is undertaken 50 times with different realizations of the G vector to generate 

50 different data sets, each with 2000 observations. The MACML estimator is applied to each 

data set to estimate data-specific values of the 17x1 column vector 

).,,,,,,,,,,( 1,31,21,1321321 1Σ
lβ  A single random permutation is generated for each 

individual (the random permutation varies across individuals, but is the same across iterations for 

a given individual) to decompose the MVNCD function into a product sequence of marginal and 

conditional probabilities (see Section 2.1 of Bhat, 2011). The estimator is applied to each dataset 

10 times with different permutations to obtain the approximation error. 

The performance of the proposed inference approach in estimating the parameters of the 

proposed model and the corresponding standard errors is evaluated as follows: 

(1) Estimate the parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) 

estimator.  

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED 

values across the data sets to obtain a mean estimate. Compute the absolute percentage 

(finite sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
APB 6 

(3) Compute the standard deviation of the MED values across data sets, and label this as the 

finite sample standard error or FSSE (essentially, this is the empirical standard error). 

(4) For each data set, compute the mean s.e. for each model parameter across the 10 draws. 

Call this MSED, and then take the mean of the MSED values across the 50 data sets and 

                                                 
6 If the true parameter value is zero, the APB value is computed by dividing the mean estimate by the value of 1 in 
the denominator, and multiplying by 100. 
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label this as the asymptotic standard error or ASE (essentially this is the standard error 

of the distribution of the estimator as the sample size gets large). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed 

using the inference approach for the finite sample size used, compute a relative 

efficiency (RE) value as: 

FSSE

ASE
RE  

Relative efficiency values in the range of 0.8-1.2 indicate that the ASE, as computed 

using the Godambe matrix in the CML method, does provide a good approximation of 

the FSSE. In general, the relative efficiency values should be less than 1, since we 

expect the asymptotic standard error to be less than the FSSE. But, because we are using 

only a limited number of data sets to compute the FSSE, values higher than one can also 

occur. The more important point is to examine the closeness between the ASE and 

FSSE, as captured by the 0.8-1.2 range for the relative efficiency value. 

(6) Compute the standard deviation of the parameter values around the MED parameter value 

for each data set, and take the mean of this standard deviation value across data sets; label 

this as the approximation error (APERR). 

 

4.2 Comparison with Restrictive Independent Model 

The main purpose of the methodology proposed here is to accommodate the jointness in the 

MDC and the MC decisions, while ensuring that there is a positive count in a certain discrete 

category only if there is some positive continuous consumption in that category. To examine the 

implication of ignoring this jointness when it is actually present, we estimate a restrictive model 

on the 50 data sets generated as per the design discussed in the previous section. Then, we 

estimate an independent model that ignores the jointness between the MDC and MC dimensions 

by specifying the covariance matrix 1Σ  as follows: 
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878.0000.0000.0000.0000.0

293.0880.0000.0000.0000.0

380.0475.0843.0000.0000.0

000.0000.0000.0000.1000.0

000.0000.0000.0600.0000.1

878.0293.0380.0000.0000.0

000.0880.0475.0000.0000.0

000.0000.0843.0000.0000.0

000.0000.0000.0000.1600.0

000.0000.0000.0000.0000.1

000.1438.0320.0000.0000.0

438.0000.1400.0000.0000.0

320.0400.0000.1000.0000.0

000.0000.0000.0360.1600.0

000.0000.0000.0600.0000.1

11 ΣΣ

1

LL

Σ



 

In the above specification, we restrict 3,1Σ
l  and 4,1Σ

l  to zero, and examine the APB values for the 

other parameters in the resulting independent model relative to the joint model. We also compare 

the independent and joint models based on a likelihood ratio test (LRT).  

 For the comparison between the independent and joint models, we use a single replication 

per data set (the replication is the same one for both models; that is, we use a single permutation 

per individual that varies across individuals but is held fixed across the two models). We do so 

rather than run 10 replications for each of the models (as done for evaluating recovery of 

parameters in the joint model) because, as we will present in the next section, the approximation 

error in the parameters is negligible for any given data set. The LRT statistic needs to be 

computed for each data set separately, and compared with the chi-squared table value with two 

degrees of freedom. In this paper, we identify the number of times (corresponding to the 50 

model runs, one run for each of the 50 data sets) that the LRT value rejects the independent 

model in favor of the joint model.   

 
4.3 Simulation Results 

4.3.1 Recoverability of Parameters in the Joint MDC-MC Model 

The results of the simulation exercise to evaluate the ability of the MACML approach to recover 

the parameters of the joint model are presented in Table 1. The table shows that the average 

estimates of parameters are close to their true values used in the data generation process. The 

overall APB value across parameters is just 5.8% (see the last row of the table under the column 

“APB”); however, the APB does vary across parameters.  The β parameter of the baseline utility 

of the MDCP component of the model is recovered quite well with an APB of only 6.1%. The 
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translation parameters in the γ  vector of the MDCP component of the model has an average 

APB of 9.8%, but the APB of the first and third alternative is on the relatively high side with an 

APB value of 15.6% and 11.5%. This is not surprising, because the satiation parameters enter the 

utility function rather non-linearly (see Equation 1). As a consequence, it becomes difficult to pin 

down the γ  parameter vector, because a range of values of the γ  parameter vector produce a 

similar value for the probability of the MDC choice. The elements of the parameter vector ς 

embedded in the thresholds of the count model is recovered very well (with an average APB 

value of 3.9%), as are the elements of the threshold offset parameter φ (with an average APB 

across parameters of 4.3%). Finally, the average APB for the elements of the Cholesky of the 

covariance matrix Σ1 is 5.4%, with all APB values less than 10%.  

The finite sample standard errors (FSSE) are also quite small, averaging only about 0.049 

in absolute value. When compared with the true values of the parameters, the FSSE turns out to 

be, on average, only about 9.9% of the true values. These results indicate good empirical 

efficiency of the proposed estimator. Among the non-covariance parameters, the FSSE estimates 

(as a percentage of the true value) are generally higher for the ς vector elements of the count 

model (20.3%) compared to the other parameters (5.3%). This is to be expected since the ς 

vector affects the count thresholds in a non-linear fashion, and a whole range of values of the ς 

vector elements around the true value lead to similar probability values for the counts.  In the set 

of Cholesky elements, the FSSE of the MDCP-associated terms ( 600.01, 1Σ
l , 000.12, 

1Σ
l ) are 

much lower than the FSSE for the other Cholesky elements. This is due to the fact that the 

MDCP error covariance matrix is associated with both the discrete and continuous elements of 

choice, and so is more easily pinned down than the count model error covariance matrix that is 

associated with the count element of choice.  

 A comparison of the finite sample standard errors and the asymptotic standard errors 

reveals that these error values are very close, with the relative efficiency (RE) being between 

0.9-1.1 for all but four parameters. All efficiency values are within the 0.8-1.2 range. Overall, 

across all parameters, the average relative efficiency is 1.01, indicating that there is effectively 

no difference between the finite sample size standard errors and the approximation to these finite 

sample standard errors as computed by the asymptotic formula for the standard errors. That is, 

the asymptotic assumptions are working well for the dataset size used in our simulation 
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experiment (which also is quite typical for model estimation in the transportation and other 

fields).  

 Finally, the last column of Table 1 presents the approximation error (APERR) for each of 

the parameters, because of the use of different permutations in the analytic approximation 

method in the MVNCD evaluation. These entries indicate that the APERR is of the order of 

0.015 or less. More importantly, the approximation error (as a percentage of the FSSE or the 

ASE), averaged across all the parameters, is of the order of 9% of the sampling error. This is 

clear evidence that even a single permutation (per observation) of the analytic approximation 

provides adequate precision, in the sense that the convergent values are about the same for a 

given data set regardless of the permutation used for the decomposition of the multivariate 

probability expression.  

 
4.3.2 Effects of Ignoring Jointness in the MDCP and MC Model Systems  

This section presents the results of the estimation when the endogeneity in the participation 

selection system from the MDCP model in the estimation of the MC data system (in a hurdle-

type model) is ignored. As discussed earlier in Section 4.2, this is tantamount to restricting 3,1Σ
l  

and 4,1Σ
l  to zero. A comparison of the resulting independent model with the joint model 

proposed in this paper provides a sense of the biases that may accrue because of using a 

restrictive specification.  

Table 2 presents the results of the estimations of the restrictive independent model and 

the proposed joint model.  As expected, the results clearly show a deterioration in the APB 

values of the estimates in the independent model. The overall APB is 8.9% in the independent 

model compared to 6.1% in the joint model. However, even this is deceiving because it considers 

both the parameters of the MDCP and the MC models. The MDCP model parameters are likely 

to be less affected by ignoring jointness, as also indicated by the relatively similar APB values 

for the 2,1,321 ,,,,,
11 ΣΣ landlβ   parameters (all these parameters are exclusive to the MDCP 

model; the average APB for these parameters in the joint model is 7.4%  relative to 7.5% in the 

independent model). The real difference shows up in the parameters associated with the MC 

model. Indeed, the average APB for the nine parameters in the MC model ( 321 ςςς ,, , 1,31,21,1 ,,  ,

,5,1Σ
l ,6,1Σ

l and 7,1Σ
l ) for the joint model is 5.1% compared to 9.8% in the independent model. 
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The APB of the ,5,1Σ
l ,6,1Σ

l and 7,1Σ
l parameters, in particular, shoot up to over 15% in the 

independent model. The superiority of the joint model is further reinforced by the LRT with two 

degrees of freedom. The table chi-squared value with two degrees of freedom is 5.99 at the 95% 

confidence level, and the LRT value between the joint and independent models exceeds this 

value for each of the 50 data sets used in our simulation. In fact, the LRT rejects the independent 

model in favor of the joint model at even the 99% confidence level for each of the 50 data sets 

(the mean value of the test statistic is 137).  

           Overall, the simulation results show that the estimator recovers the parameters of the 

proposed joint model well. The estimator also seems to be quite efficient based on the low FSSE 

estimates. Further, the asymptotic standard error formula estimates the FSSE quite well, and the 

approximation error due to the use of the analytic approximation is very small. Additionally, the 

results clearly highlight the bias in estimates if the endogeneity of the MDC model is ignored.  

 

5. ILLUSTRATIVE APPLICATION TO HOUSEHOLD ACTIVITY PARTICIPATION, 
TIME USE, AND NUMBER OF EPISODES 

5.1 Background 

The multivariate hurdle count data model with an endogenous MDC selection system proposed 

in this paper can be applied to several empirical problems. In this section, we demonstrate the 

application of the proposed model to analyze the participation of household members in each of 

several activity purposes during the day, along with the amount of time invested in each activity 

purpose and the number of distinct episodes of each activity purpose.  

In our empirical demonstration, we use the household as the unit of analysis rather than 

an individual. This is because, as argued by Bhat et al. (2013), household members are likely to 

act as a collective decision-making unit in activity time-use choices and be influenced by the 

preferences of other individuals in the household (even if they participate individually in specific 

activity purposes).  

 
5.2 Data Source and Sample Formation 

The data used in the analysis is drawn from the 2000 Post-Census household travel survey, 

conducted by the Southern California Association of Governments. The survey obtained 

information from about 17,000 households, and recorded all travel and out-of-home activity 

episodes undertaken by each household member for a pre-specified survey day. In addition, the 
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survey also collected detailed socio-demographic and employment-related characteristics. The 

survey area comprised the six-county Los Angeles region of California.  

 The sample formation included the following steps. The activity diaries for weekends, 

Mondays, and Fridays were excluded, leaving only the midweek days (Tuesday, Wednesday, and 

Thursday). The work and work-related episodes of individuals were then removed, because work 

and work-related decisions (employment decisions, number of hours of work, and work timings) 

usually tend to be made on a relatively longer term basis compared to the day-to-day planning 

and scheduling of non-work activity episodes (Rajagopalan et al., 2009, Horner and O’Kelly, 

2007, and Saleh and Farrell, 2005). Next, we collapsed the remaining 23 category non-work-

related activity purpose taxonomy into four activity purposes: (1) shopping (including grocery 

shopping, clothes shopping, window shopping, purchasing gas, quick stop for coffee/newspaper 

maintenance), (2) social activities (including dining out, visiting friends and family, community 

meetings, political/civic event, public hearing, occasional volunteer work, church, temple and 

religious meeting), (3) recreation (including watching sports or attending a sports event, going to 

the movies/opera, going dancing, visiting a bar, going to the gym, playing sports, bicycling, 

walking, and camping), and (4) personal activities (including ATM and other banking, visiting 

post office, banking, paying bills, and medical/doctor visits).7 The activity episodes of each 

household member were then assigned to one of the four activity purposes identified above. The 

durations of episodes were aggregated by purpose to obtain the total weekday duration in each 

activity purpose for each household member. At the same time, a count of the number of 

episodes of each activity purpose was also obtained at the individual level. Next, the individual-

level durations and episode counts by activity purpose were aggregated across all individuals in 

the household to obtain household-level durations and episode counts by activity purpose, which 

formed the dependent variables in the study. Finally, a random sample of 2,110 households was 

selected.  

                                                 
7 There is obviously some subjectivity in the activity purpose classification adopted here, though the overall 
consideration was to accommodate differences between the activity purposes along such contextual dimensions as 
location of participation, physical intensity level, duration of participation, amount of structure in activity planning, 
and company type of participation (see Srinivasan and Bhat, 2005).  
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5.3 Construction of Accessibility Measures 

In addition to the 2000 SCAG survey data set, several other secondary data sets were used to 

obtain residential neighborhood accessibility measures that may influence household-level 

activity participation behavior. The secondary data sources included geo-coded block group and 

block data within the SCAG region obtained from the Census website, roadway network skims 

from SCAG, the employment data from the Census Transportation Planning Package (CTPP) 

and Dun & Bradstreet (D&B), the 2000 Public-Use Microdata Samples (PUMS) from Census 

2000, and the marginal distributions (population and household summary tables) from SCAG.  

Two types of accessibility measures were constructed in the current analysis. The first set 

of accessibility measures represents opportunity-based indicators that measure the number of 

activity opportunities by twelve different industry types that can be reached within 10 minutes 

(on the highway network) from the centroid of the home block during the morning peak period 

(6am to 9am). The reader is referred to Chen et al. (2011) for details. These may be viewed as 

local accessibility measures. In addition to these activity opportunity local accessibility 

measures, we also computed a travel opportunity local accessibility measure as the length of 

freeways (in thousands of kilometers) accessible within 10 minutes from the centroid of the 

home block during the morning period. The second set of accessibility indicators corresponds to 

Hansen type zonal-level regional accessibility measures (Bhat and Guo, 2007), which take the 

following form: 



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
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
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where i is the index for zone,  t~ is the index for the time period, and N is the total number of 

zones in the study region (four time periods were used in our analysis: AM peak (6:30 am-9 am), 

midday (9 am-4 pm), PM peak (4 pm-6:30 pm), and evening (6:30 pm-6:30am)). t~ij,Impedance  

is the composite impedance measure of travel between zones i and j at time period t~ and is 

obtained as: tijtij CostIVTT ~,~,t~ij,Impedance  , where tijIVTT ~,  and tijCost ~,  are the auto travel 

time (in minutes) and auto travel cost (in cents), respectively, between zones i and j in time 

period t~ , and   is the inverse of the money value of travel time. We used = 0.0992 in the 

current study, which corresponds to about $6 per hour of implied money value of travel time. For 
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the zonal size measure in the accessibility formulation, we considered four variables -- retail 

employment, retail and service employment, total employment, and population. Finally, the time 

period-specific accessibility measures computed as discussed above were weighted by the 

durations of each time period, and a composite daily accessibility measure (for each size 

measure) was computed for each traffic analysis zone, and appended to sample households based 

on the residence TAZs of households.8   

 

5.4 Sample Description 

Table 3 presents a descriptive summary of the demographics of the sample. About 28% of the 

sample has a single person, which is slightly higher than the 22% of single person households 

reported in the 2000 Census for the Los Angeles/Riverside/Orange County (LRO) metropolitan 

statistical area (MSA). Similarly, the percentage of households that are couple households 

(without children) is about 29% in the sample, compared to 24% in the 2000 Census data (in the 

rest of this paper, a child will be defined as an individual of age 15 years or younger, who is a 

son or daughter of an adult in the household). On the other hand, a little over 3% of the sample 

corresponds to single-parent households, which is an underestimate relative to the percentage of 

single-parent households as reported in the 2000 Census. The remaining households are 

categorized as “other” households and mainly correspond to nuclear family households 

(representing a heterosexual union with one or more children 15 years or younger in the 

household). Overall, however, the sample is not unreasonable in terms of representing the 

population household structure in the LRO MSA. The table also shows the distribution of 

household income in the sample. Nearly 50% of the households in the sample has an income 

lower than $50,000, which is close to the percentage of households in that income range in the 

NHTS 2001 data for LRO MSA. The mean household income in the sample is $62,000.  

The descriptive statistics of other demographics, including household race and ethnicity, 

housing type and tenure, bicycle ownership, household size-related attributes (number of 

children, number of adults, and number of workers), and other household attributes (number of 

motorized vehicles and accessibility measures) are also provided in Table 3, and indicate the 

diverse and high vehicle-owning nature of households in the LRO MSA.  

                                                 
8 Future studies would benefit from exploring alternate forms of accessibility as well as the consideration of transit 
and non-motorized mode network skims (in addition to the highway network skims used here). The transit and non-
motorized mode skims were not considered in our study due to data-related quality limitations. 
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The bottom panel of Table 3 provides the descriptive statistics of household-level activity 

participation decisions (the dependent variables) in the final estimation dataset, including the (1) 

number and percentage of households who participate in each activity purpose during the survey 

weekday, (2) the mean duration of daily time investment among households who participate in 

each activity purpose, (3) the mean number of daily episodes of participation in each activity 

purpose, conditional on participation in each activity purpose, and (4) the percentage of 

households participating in each activity purpose who solely participate in that activity and who 

also participate in other activity purposes (the last two columns; the sum of these last two 

columns is 100% for each row).  

The descriptive statistics in the first numeric column in the bottom panel of Table 3 

reveal that households (i.e., across all individuals in the household) are most unlikely during the 

weekday to participate in recreational activities (such as entertainment and sports). However, 

more than half of all households participate in shopping, social, and personal business activities. 

The “mean duration of daily time investment among households who participate” column shows 

the high overall daily time investments of participating households in social activities (over four 

hours) and recreational activities (over six hours). These may seem quite high, but it should be 

noted that these time investments are across all individuals in a household. That is, these time 

durations refer to individual minutes of participation across all individuals in a household.9  

An interesting observation from the duration statistics in Table 3 is that, while recreation 

activity is the least participated in, on average, it receives the highest time investment from 

participating households relative to other activity purposes. This suggests that there is much less 

satiation (or drop off in marginal valuation) in recreation activity than in other activity purposes, 

which is not surprising given the nature of recreation and other activity purposes. The purpose 

with the least time investment is the shopping purpose, with a mean duration of about 100 

minutes. Also interesting to note is the lower mean number of recreation episodes relative to 

other types of episodes. Overall, households participate the least in recreational activity, and 

even if they participate in recreational activity, do so in very few episodes. However, once a 

                                                 
9 Note also that joint activities increase the time duration, since two individuals participating in shopping together 
for 20 minutes would imply 40 minutes of individual minutes in shopping activity. Thus, when allocating time and 
episodes across individuals in a household in a downstream model, one has to ensure that joint activities are 
assigned the same number of minutes of each individual participating in the joint activity. Gliebe and Koppelman, 
2005 develop such an allocation model that can be used after the generation of (total individual) activity times and 
episodes at the household level.  
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participation decision has been made in recreational activity, the time duration is high. On the 

other hand, while daily participation in shopping and personal activity is quite high (and at about 

the same level as social activities), the time duration in these two activities among participating 

households is much lower (and the satiation is much higher) than in the more discretionary 

asocial and recreation activities. At the same time, once a participation decision has been made, 

households make more episodes of personal business than shopping.  

The final two columns in Table 3 indicate the split between single activity purpose 

participation (i.e., household participation in only one activity purpose category) and multiple 

activity purpose participation (i.e., household participation in multiple activity purpose 

categories) for each activity purpose. Thus, for instance, 20.4% of households who participate in 

shopping activity during the course of the day participate only in this activity during the 

weekday, while 79.6% of households who participate in shopping activity also participate in 

other activity purposes (note that these participations refer to the participations across all 

individuals in the household). In general, about four-fifths of households who participate in any 

activity purpose also participate in at least one additional activity purpose during the course of 

the day. Clearly, this indicates the variety of activity purposes in which individuals in a 

household participate over the course of a weekday, and reinforces the use of the multiple 

discrete-continuous model for modeling household-level activity participation. 

 
5.5 Estimation Results 

5.5.1 Variable Specification and Effects Interpretation 

The selection of variables included in the final estimation results is based on previous research, 

intuitiveness, and parsimony considerations. For continuous variables (such as household 

income) and ordinal variables (such as number of workers), several different functional forms 

such as a linear specification form and a dummy variable characterization were considered. Each 

variable was considered in both the MDCP utility specification and in the count model threshold 

specification. If the coefficients of a variable in the baseline utilities of two different MDCP 

alternatives were not significantly different, they were combined. Also, we tested for different 

numbers of flexibility terms in the MC model to accommodate high or low probability masses 

(that cannot be explained by the underlying parameterized Poisson probabilities) for specific 

count outcomes. But the only such flexibility terms that turned out to be significant were for the 
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shopping and personal business purposes, and only for the count of one. That is, since the counts 

are observed only conditional on positive time investment in the MDCP model, there was a need 

only for “one-inflation” for the shopping and personal business.  

In this paper, we provide the aggregate elasticity effects of variables on the overall 

duration of time investment in each activity purpose as well as the number of daily episodes of 

each activity purpose. These two dimensions include the participation component, since, by 

definition, non-participation implies zero durations and zero number of episodes. We focus on 

aggregate elasticity effects rather than the parameter estimation results because the sign and 

magnitude of coefficients do not directly provide any indication of the sign and magnitude of the 

effects of variables on the durations and episodes. This is because of two reasons. First, the 

MDCP model is a non-linear utility model with satiation effects, because of which a negative 

sign for a variable on the baseline utility for an activity purpose (compared to a base activity 

activity purpose) can still result in a positive effect on duration of time investment in that activity 

purpose (due to an increase in the variable) if (a) the coefficient on the variable in the baseline 

utility of some other activity purpose is more negative and that other activity purpose has a 

satiation effect that is at least as high as the activity purpose under consideration and/or (b) if the 

coefficient on the variable in the baseline utility of some other activity purpose is less negative 

but that activity purpose is associated with higher satiation effects. Second, we specify a general 

matrix for 1Λ , which is the covariance matrix of the differences in the error terms in the baseline 

preferences of each alternative in the MDCP model from the error term of the first alternative 

(but the first diagonal element of this matrix is normalized to one for identification, as discussed 

in Section 2.1). Such a specification generalizes other more restrictive structural specifications 

on the covariance matrix Λ  of the original error terms of the baseline utilities. Unfortunately, 

though, such a general specification also implies that the estimated covariance elements of 1Λ do 

not provide any substantive insights (see Train, 2009; page 113 for a similar discussion in the 

case of traditional multinomial probit models).10 Further, the general specification also renders 

the interpretation of the covariance matrix Ξ in the matrix 1Σ  of Equation (6) difficult. The 

                                                 
10 We are able to use a general covariance specification because we have only four alternatives in the MDCP model. 
As the number of alternatives increase, there will be a need to impose a priori restrictive structures that seem 
appropriate to the application context to keep the number of parameters to be estimated in the covariance matrix to a 
reasonable number. However, in our estimations, a priori error-component type structures (for example, an error 
component for the more discretionary purposes of social and recreational purposes) provided statistically poorer fits, 
and so were discarded.  
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elements of Ξ, however, influence the effects of variables on the time durations and number of 

episodes because they are the ones that are responsible for generating the jointness between the 

MDCP and MC elements in the paper. The net result is that the overall effect of a variable on 

time durations and number of episodes is a complex interplay of the effects on the baseline utility 

of each alternative, the satiation effects associated with each alternative, as well as the estimated 

elements of the covariance matrix 1Σ . Thus, there is little value in trying to interpret the model 

coefficients directly.11 Indeed, the overall effects of variables are also a function of the value of 

the exogenous variables for each household because of the non-linear translation from the utility 

function to the probability expression in the MDCP model and the non-linear manner in which 

the variables appear in the thresholds in the MC model, which means that these effects are 

household-specific. 

To present the effects of variables in a compact fashion, we compute aggregate elasticity 

effects as follows. To compute the aggregate-level “elasticity” effect of a dummy exogenous 

variable (such as whether the household owns a bicycle or not), we change the value of the 

variable to one for the subsample of observations for which the variable takes a value of zero and 

to zero for the subsample of observations for which the variable takes a value of one. We then 

sum the shifts in the expected aggregate amount of time investment (across households) in each 

activity purpose in the two subsamples after reversing the sign of the shifts in the second 

subsample, and compute the effective percentage change in the expected amount of time 

investment in each activity purpose due to change in the dummy variable from 0 to 1. We use the 

same approach to compute the effective percentage change in the expected number of episodes 

of each activity purpose.12 To compute the aggregate level “elasticity” effect of a multinomial 

                                                 
11 The actual parameter estimates of the MDCP and MC models, as well as the covariance matrix estimates, are 
available from the authors. Note that the elements of the covariance matrix Γ of the count error terms, however, are 
easily interpretable as the correlation in unobserved factors across the latent propensities *

ky  to participate in 

episodes of different activity types. In our estimation, the Γ matrix elements showed strong and statistically 
significant positive correlations in unobserved factors influencing the latent propensities in social and recreational 
activities (correlation of 0.389), and in shopping and personal activities (correlation of 0.388). However, there also 
were strong and positive correlations in shopping and social latent propensities (correlation of 0.325), and social and 
personal business latent propensities (correlation of 0.339). Less strong and less significant positive correlations 
were present between shopping and recreation (correlation of 0.149) and between recreation and personal business 
latent propensities (correlation of 0.195). Overall, these correlations highlight the need to accommodate the 
multivariate nature of the counts.  
12 Note that the amount of time investment and number of episodes by activity purpose for each household, needed 
to compute the aggregate effects just discussed, is obtained in the same way as the simulation exercise in Section 
5.1. Specifically, we draw realizations of the G vector 200 times for each household, aggregate the predicted time 
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exogenous variable (such as household structure or race/ethnicity), we take the base category 

sub-sample and change the value of the variable from zero to one (for each specific non-base 

category) for all individuals in the base sub-sample. Subsequently, we compute the percentage 

change in the expected aggregate amount of time investment (and expected number of episodes) 

in each activity purpose across all households in the base sub-sample. For the aggregate level 

“elasticity” effect of an ordinal variable (such as number of children or number of motorized 

vehicles), we increase the value of the variable by 1 and compute the percentage change in the 

expected aggregate amount of time investment (and expected number of episodes) in each 

activity purpose across all households. Finally, to compute the aggregate level “elasticity” effect 

of a continuous variable, we increase the value of the continuous variable by 10%.13  

 
5.5.2 Results and Elasticity Effects 

In the empirical context studied in this paper, we estimated the MDCP-MC model for both a γ-

profile and an α-profile. The γ-profile gave a better data fit than the α-profile for many different 

variable and error structure specifications, and therefore the γ-profile results are presented here. 

The translation parameter γ functions as both a translation parameter (allowing for zero time 

investments in activity purposes for some households) as well as a satiation parameter since we 

have fixed the value of α (higher values of the γ parameter imply lower satiation, while lower 

value of the γ parameter imply higher satiation; see Bhat, 2008). The estimated values for the γ 

parameter values (and standard errors) are as follows:  Shopping - 83.2 (4.8), Social - 644.8 

(101.6), Recreation - 1000 (fixed), and Personal - 21.1 (2.6). These results indicate, consistent 

with the descriptive statistics in Table 3, that the lowest satiation is for the recreational activity 

purpose, while the highest satiation effects are for the shopping and personal activity purposes 

(the satiation parameter for recreation is fixed at 1000, because the parameter estimate was 

approaching quite large values even though the effect of the large values was rather small 

                                                                                                                                                             
investments and number of episodes across households for each of the 200 realizations, and obtain the expected 
value of the aggregate time investments and number of episodes as the mean across the 200 realizations. This 
provides the effective percentage change in the expected overall time investments and number of episodes. The 
standard deviation of these changes (across the 200 realizations) provides the standard errors of the percentage 
change estimates.   
13 Technically speaking, the effect of each variable can be computed on combinations of time investments and 
combinations of episodes in the many activity purposes. But such combinations are too many, and so we provide 
information only on the marginal effects on each activity purpose individually.  
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beyond a value of 1000; thus, for estimation stability, we fixed the parameter at the value of 

1000).    

In the rest of this section, we focus on the elasticity estimates associated with the 

variables that appeared in the final model specification. These are presented in Table 4. For 

instance, the entry in the first numeric row of the table under the column entitled “shopping” 

indicates that, on average, the daily shopping activity duration among single-person households 

is likely to be 4.9% less (with a standard error of 1.8%) than the shopping activity duration 

investment of other (primarily nuclear family) households. Other entries may be similarly 

interpreted.  

 

5.5.2.1 Household Structure 

Household structure effects are introduced in the specification through a series of dummy 

variables with “other” household structure (primarily nuclear family households) as the base 

category. For ease in interpretation, and because the “other” household is dominated by nuclear 

family households, we will assume that the “other” household structure is the nuclear family 

household structure in the following discussion.  

As the left half of Table 4 shows, single person households, relative to single parent and 

nuclear family households, invest less time, in general, in shopping and social activities. Couple 

households, again relative to single parent and nuclear family households, have a low propensity 

to invest time in social activities. Both couple and single person households participate much 

more in recreational activities. These results are not surprising, since individuals in single-person 

and couple households do not have as much shopping activity responsibility as households with 

children. Further, individuals in single-person and couple households are also more independent 

and have fewer household responsibilities, leading to a higher desire and ability to participate in 

recreational activities (see Yamamoto and Kitamura, 1999, Pinjari et al., 2009, and Rajagopalan 

et al., 2009 for similar results). The results also indicate low time investments in personal 

activity among single-person households, the reasons for which are not obvious. Single parent 

households invest less time in shopping (possibly because of tight time constraints), as well as 

slightly more time in social activity (perhaps a reflection of the need to be with other adults and 

other families with children). Indeed, several earlier studies have suggested that single parents 
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search for outlets to socialize as a way of compensating for the unavailability of an adult partner 

at home (see Carpenter and DeLamater, 2012).  

 The effects of household structure on the number of episodes (the right half of Table 4) 

show that, not only are single-person and couple households less likely (than single parent and 

other households) to expend time in social activities and more time in recreational activities, but 

these tendencies also get manifested in the lower number of social activity episodes and higher 

number of recreational activity episodes made by these households. Interestingly, though, while 

couple households are likely to be spend slightly less overall time in shopping compared to 

nuclear family households, they participate in significantly more shopping episodes. This again 

may be a reflection of the need for less planning and more time flexibility among couple 

families, that gets manifested in a higher number of shopping episodes. The important point is 

that the proposed model is able to provide the differential effects of variables on overall time-use 

and on the number of episodes of each activity purpose, which can provide important daily 

pattern information for the downstream scheduling of episodes within activity-based model 

systems. Finally, single-parent households, on average, engage in more episodes for their 

personal activities, perhaps a reflection of their less flexible schedule arising from childcare 

duties, resulting in a squeeze of their personal activities into many separate personal care 

episodes.  

 

5.5.2.2 Annual Household Income 

The effect of household income reveals that low income households expend less time in 

shopping and personal business activities, as well as make fewer episodes for shopping and 

personal business activities, compared to high income households. This is consistent with the 

higher consumption potential of goods and services in higher income earning households (see 

O'Neill et al., 2012 and Dai et al., 2012). However, different from some earlier studies (for 

example, Sener and Bhat, 2012 and Pinjari et al., 2009), the results reveal a higher time 

investment in recreational activity as well as more episodes of recreational activity among low 

income households relative to high income households. This is interesting, and may be a result of 

combining active and inactive recreation pursuits under a single aggregate “recreation” category 

(some earlier studies such as Ferdous et al., 2010 suggest that high income individuals 

participate more in active recreation, but less in inactive recreation). Finally, the finding that low 
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income households pursue more social episodes is well established in the time-use literature (see 

Kapur and Bhat, 2007 and Parizat and Shachar, 2010), indicative of higher out-of-home 

participation and variety-seeking in activities that do not necessarily impact the pocket (in terms 

of costs). 

 

5.5.2.3 Household Race and Ethnicity 

There is a clear pattern in time investment and number of episodes among Hispanic and (non-

Hispanic) African American (AA) households relative to (non-Hispanic) Caucasians and other 

races (primarily Asian, but also Pacific islanders, mixed race, and indeterminate race).  Overall, 

AA households invest less time in shopping and personal business activity, but pursue more 

episodes for these activity purposes. In terms of social activities, Hispanic and AA households 

spend more time in these activities, but make fewer episodes for these activities. These are again 

important findings, and caution against assuming that time investment decisions and episode-

making decisions are always positively correlated. The higher time investment in social activities 

among Hispanic and AA households is consistent with similar findings from the literature (see 

Parks et al., 2003). Also, the negative coefficients on the Hispanic and African American 

households associated with recreational activity (for both time investments and number of 

episodes) reinforce the findings from earlier studies that Caucasians have higher levels of 

participation in recreational pursuits (see Mallett and McGuckin, 2000, Bhat and Gossen, 2004, 

and Humphreys and Ruseski, 2007).  

 

5.5.2.4 Housing Type and Tenure  

Households living in unattached single family homes are less inclined (relative to those living in 

other housing types such as condominiums, apartment complexes, and duplexes) to invest time 

in, and pursue episodes for, social and recreational pursuits, and more likely to invest time in 

shopping and personal activities. These households in single family homes also pursue more 

shopping episodes than those in other housing arrangements. It is quite likely that the effects 

above are capturing the availability of activity opportunities (in ways that are not being able to be 

captured through the activity accessibility measures discussed in Section 5.3); that is, single 

family households are more likely to be in suburban and rural areas, where there may be fewer 

social activity opportunities (such as restaurants) and recreational activity opportunities (such as 
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bicycle paths, movie theatres, and workout gyms). Chen and McKnight (2007) reported a related 

finding that homemakers in suburbs spend less time on discretionary activities and more time on 

maintenance activities. 

 In terms of housing tenure, households that live in rented homes (as opposed to owned 

homes) invest significantly less time in social activities and significantly more time in 

recreational activities. It is possible that recreational opportunities, such as a gym or a pedestrian 

pathway, or a swimming pool, are more accessible in rental communities, resulting in the higher 

time investment in recreational pursuits.  Interestingly, however, households in rented homes 

also partake in significantly fewer recreational episodes, a finding that needs additional 

exploration in future studies.  

 

5.5.2.5 Household Size-Related Attributes 

In this group of variables, the effect of the “number of children” variable pertains to the effect of 

an additional child in the household beyond one (note that the presence of children effect is 

captured in the household structure variables). The results indicate that, as the number of 

children increases beyond one, households have a higher predisposition to participate in social 

and recreation activities rather than in shopping and personal business activities. This has also 

been found in Farber et al. (2011) and Candelaria (2010), who attribute these effects to a higher 

inclination to participate with young children in joint social and recreation outdoor pursuits as 

the number of children increase. Interestingly, and unlike some earlier studies (see, for example, 

Sener and Bhat, 2012 and Meloni  et al., 2009), we did not find statistically differential effects of 

the number of children by age category on either time investments or the number of episodes.  

As the number of workers in a household increases, so do the time investments and 

number of episodes in social and recreational pursuits (with decreasing time investments and 

number of episodes in shopping and personal business pursuits). Households with many workers 

are likely to be time-poor during the weekdays, and may relegate shopping and personal business 

to the weekend days, and channel their time mainly toward the more discretionary social and 

recreational pursuits during the weekdays. Lee et al. (2009) also observed that households with 

multiple workers in the household spend less weekday time on maintenance activities and more 

weekday time on discretionary activities.   
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5.5.2.6 Bicycle Ownership and Number of Motorized Vehicles 

At the outset, we should acknowledge that the bicycle ownership and motorized vehicle 

ownership effects in the model should be viewed with some caution because we have not 

considered potential self-selection effects. That is, it is possible that households who want to 

pursue active recreation will own more bicycles, and households who would like to be mobile 

and pursue many episodes will own many motorized vehicles. The reader is referred to Bhat and 

Guo (2007), Pinjari et al. (2008), and De Vos et al. (2012) for methodologies to accommodate 

such self-selection effects. However, for this first demonstration application of the proposed 

MDCP-MC model, we ignore self-selection considerations because accommodating these will 

add a layer of additional econometrics over what has been proposed for the first time in this 

paper. So, the use of self-selection methodologies with the MDCP-MC model is left for future 

research. 

The elasticity results of Table 4 are consistent with the notion that households that own 

bicycles are strongly pre-disposed to expending time in recreation pursuits and also participating 

in a higher number of recreation episodes, relative to households that do not own bicycles. 

Households who own more bicycles may be more outdoor-oriented by nature, and owning 

bicycles also provides an additional means to participate in outdoor recreation (Bhat, 2005, 

Ogilvie et al., 2008). The results also indicate that the number of motorized vehicles in a 

household does not have a statistically significant effect on time investments, but has a clear 

positive and statistically significant impact on the number of episodes for social and personal 

activities. Overall, the positive effect of the number of vehicles on number of episodes forms the 

basis for using this variable as a determinant of episode generation and trip generation, but our 

results indicate that this effect is purpose-specific.  

 

5.5.2.7 Accessibility Measures 

The travel opportunity local accessibility measure of the length of freeways (in thousands of 

kilometers) accessible within 10 minutes from the residence has small, but statistically 

significant, positive impacts on the time investment in social and recreation activities, and weak 

negative impacts on the time investment in shopping and personal activities. This is perhaps 

because travel times and distances for social and recreational episodes are generally much longer 

than for other types of episodes (see Lockwood et al., 2005, Carlson et al., 2012), and thus the 
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accessibility to freeways is particularly important for social and recreation activity participation 

and time investments. However, this variable plays little role in the number of episodes pursued 

for all activity purposes, except for a small (but statistically significant) negative impact on 

shopping episodes. 

 Among the Hansen-type accessibility measures, the only one that turned out to be of 

importance in the final model specification was the retail and service employment accessibility. 

An increase in the accessibility to retail and service employment increases the time investment 

and the number of episodes in recreational activities, and decreases the time investment and 

number of episodes in other activity purposes.  

Overall, though, the effects of the accessibility measures are very inelastic (note that the 

results in Table 4 correspond to a 10% increase in the accessibility measures). This, combined 

with the fact that only these two variables turned out to be statistically significant from among 

the many other accessibility variables considered (while several demographic variables did turn 

out to be important determinants) suggests that, in general, time investment in activities and the 

number of episodes of activities may be more of a lifestyle- and lifecycle-driven choice than 

related to the availability of opportunities for activity participation.14 

 

5.5.3 Comparison with Independent Model 

The results of the proposed joint model may be compared with the independent model that 

ignores the correlation between the MDCP and MC components of the model. To do so, we 

computed the aggregate elasticity effects as implied by the independent model. To conserve on 

space, we do not present an equivalent of Table 4 for the independent model, but discuss a 

sampling of elasticity value comparisons (the full elasticity table for the independent model is 

available from the authors). Note also that, since we are taking the marginals and reporting 

elasticity effects associated with each activity purpose, we are losing out on the richness 

provided by the joint model in terms of predictions of the combinations of time investments and 

number of episodes across all activity purposes simultaneously (for example, the number of 

households who participate in shopping and social, but not recreation and personal, and who 

                                                 
14 However, the result that many accessibility variables are not statistically significant may also be a manifestation 
of the use of the TAZ as the spatial unit of resolution for computing transportation system/built environment 
variables. Future studies should consider more micro-scale measures to represent neighborhood physical 
environment variable effects, which would require some kind of geo-coded information on household residences.  
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make two episodes for shopping and three episodes for social activities). But, as indicated 

earlier, there are too many such combinations to present, and so we only present elasticity effects 

associated with the marginal of time investment in each activity purpose and number of episodes 

in each activity purpose. In such a marginal elasticity comparison exercise, the difference 

between the joint and independent models is due to the mis-estimated coefficients in the 

independent model. 

According to the independent model, single person households make 0.9% fewer 

episodes for recreation compared to a nuclear family household, while the joint model indicates 

that single person households make 4.3% more recreational episodes relative to a nuclear family 

household. Similarly, the independent model predicts an increase of 4.8% in recreational 

episodes between a low income household and an observationally equivalent high income 

household, while the corresponding figure from the joint model is 11.9%. In terms of time 

investments, the independent model predicts no difference in time investment in social activities 

between Caucasian and AA households, while the joint model predicts an increase of 6.2% in 

social activity time investment between a Caucasian and an AA household. All of these indicate 

the differences in elasticity effects from the independent and joint models.  

The substantive differences between the independent and joint models imply a need to 

examine the data fit of the two models. This is best done using the log-likelihood values at 

convergence of the two models, which are -18821.4 (for the independent model) and -18717.9 

(for the joint model). The likelihood ratio test value is 207, which far exceeds the table chi-

squared value with six degrees of freedom at any reasonable level of significance. The six 

degrees of freedom correspond to the six statistically significant covariance parameters of the 12 

possible total parameters representing the covariance between the three error differentials (with 

respect to the shopping error term) in the MDCP model and the four purpose-specific error terms 

in the count model. In fact, even if one were conservative and tested the likelihood ratio test 

value with 12 degrees of freedom, the joint model would still resoundingly come out the winner 

based on the likelihood ratio test. 

As a base model, we also computed the log-likelihood for the model with only the 

constants in the baseline preference and the satiation parameters in the MDCP model, and only 

the constants embedded in the ks vector in the thresholds and the flexibility terms in the 

thresholds of the count model. This model corresponds to an independent and identically 
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distributed (IID) MDCP model for participation and time investment, and univariate flexible 

count models. The log-likelihood for this base model is -19148.2.  The likelihood ratio test for 

testing the presence of exogenous variable effects on the baseline preference in the MDCP 

model, the presence of exogenous variable effects in the MC model, the presence of error 

covariances in the MDCP and the MC models, and the presence of error covariance between the 

MDCP and MC models is 860.6, which is substantially larger than the critical chi-square value 

with 54 degrees of freedom (corresponding to 36 non-constant parameters in the MDCP and MC 

models, five error covariance elements in the MDCP model, seven error covariance elements in 

the MC model, and six error covariance elements between the MDCP and MC models) at any 

reasonable level of significance.  Overall, the results indicate the value of the model estimated in 

this paper to predict household-level activity participation, time investment, and number of 

episodes, based on household demographics and accessibility variables.  

 
6. CONCLUSIONS 

This paper has proposed a new econometric formulation to specify and estimate a model for 

multivariate count (MC) data that are themselves observed conditional on a multiple discrete-

continuous (MDC) selection system. The MDC and MC systems are modeled jointly to account 

for any potential endogenous effects that the participation system may have on the multivariate 

count data in a hurdle-type model. A defining feature of the model is that decision agents jointly 

choose one or more discrete alternatives and determine a continuous outcome, as well as a count 

outcome for each chosen alternative.  

A simulation exercise is undertaken to evaluate the ability of the proposed approach to 

recover parameters from simulated datasets generated using the proposed econometric 

formulation. A total of seventeen parameters, including seven error matrix components, are 

estimated in the simulation setup. The results from the experiments show that the proposed 

inference approach does well in recovering the true parameters used in the data generation. In 

addition, the asymptotic standard errors approximate the finite sample standard errors quite well 

for the typical sample sizes used in the transportation and economic literature.  

This paper demonstrates the application of the proposed formulation through the study of 

households’ decisions to participate in weekday activities, including the associated time 

investment as well as the frequency of episodes of each activity purpose. The data collected by 
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the Southern California Association of Governments for the Greater Los Angeles Area was used 

in the analysis. The results provide insights into the demographic and other factors that influence 

households’ preferences for different activities, and show the importance of recognizing, from  

both a substantive perspective as well as a data fit perspective, the joint nature of participation, 

time investment, and episode frequency decisions. It is hoped that the proposed formulation will 

open the door for examining multivariate systems of discrete, continuous, and count data in other 

empirical contexts.  
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Table 1. Simulation Results 
 

Parameter 

Parameter Estimates Standard Error Estimates 

True 
Mean 

Estimate 
APB FSSE ASE RE APERR 

β 1.000 1.061 6.1% 0.023 0.021 0.92 0.001 

γ1 1.000 0.844 15.6% 0.039 0.041 1.04 0.001 

γ2 1.000 1.024 2.4% 0.053 0.051 0.97 0.001 

γ3 1.000 1.115 11.5% 0.053 0.062 1.18 0.002 

ς1 0.500 0.513 2.5% 0.078 0.078 0.99 0.009 

ς2 0.250 0.264 5.6% 0.072 0.074 1.03 0.006 

ς3 0.500 0.482 3.5% 0.082 0.067 0.82 0.006 

φ1 1.000 0.945 5.5% 0.064 0.064 1.00 0.008 

φ2 0.500 0.489 2.2% 0.042 0.040 0.95 0.003 

φ3 0.750 0.712 5.0% 0.043 0.041 0.94 0.003 

1,1Σ
l  0.600 0.552 8.1% 0.028 0.027 0.98 0.001 

2,1Σ
l  1.000 1.011 1.1% 0.024 0.024 1.00 0.001 

3,1Σ
l  0.400 0.362 9.5% 0.036 0.041 1.14 0.007 

4,1Σ
l  0.360 0.362 0.6% 0.038 0.039 1.01 0.007 

5,1Σ
l  0.475 0.449 5.3% 0.049 0.055 1.12 0.014 

6,1Σ
l  0.380 0.344 9.3% 0.059 0.058 0.98 0.015 

7,1Σ
l  0.293 0.305 4.1% 0.052 0.055 1.06 0.012 

Average across all Parameters 5.8% 0.049 0.049 1.01 0.006 
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Table 2. Effects of Ignoring the Presence of the Endogenous Selection Effect 
 

Parameter True 

Joint model Independent Model 

Mean 
Estimate 

APB 
Mean 

Estimate 
APB 

β 1.000 1.062 6.2% 1.060 6.0% 

γ1 1.000 0.844 15.6% 0.843 15.7% 

γ2 1.000 1.021 2.1% 1.025 2.5% 

γ3 1.000 1.114 11.4% 1.119 11.9% 

ς1 0.500 0.512 2.4% 0.498 0.5% 

ς2 0.250 0.263 5.1% 0.265 6.1% 

ς3 0.500 0.482 3.6% 0.484 3.2% 

φ1 1.000 0.945 5.5% 1.139 13.9% 

φ2 0.500 0.489 2.2% 0.473 5.5% 

φ3 0.750 0.713 4.9% 0.701 6.5% 

1,1Σ
l  0.600 0.552 8.1% 0.551 8.1% 

2,1Σ
l  1.000 1.011 1.1% 1.010 1.0% 

5,1Σ
l  0.475 0.446 6.0% 0.395 16.8% 

6,1Σ
l  0.380 0.337 11.1% 0.300 21.0% 

7,1Σ
l  0.293 0.309 5.5% 0.337 15.1% 

Overall mean value across 
parameters 

  
6.1% 

  
8.9% 

Mean log-likelihood at 
convergence 

-10121.18 -10189.87 

Number of times the 
likelihood ratio test (LRT) 

statistic favors the Joint 
model 

All fifty times when compared with 99.52
95.0,2  value 

(mean LRT statistic is 137) 
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Table 3. Sample Characteristics 

Variable Share [%] Variable Share [%] 

Household structure    Housing type   
Single-Person Household 28.2 Unattached single family home 66.1 
Couple Household 29.4 Other homes (duplexes, apartment 

complexes, condominiums, etc.) 
33.9 

Single-Parent Household   3.1  
Other Household (primarily nuclear family households) 39.3 Housing tenure  

Annual Household Income   Renting 33.1 
Low Income (< 50,000) 49.1 Not-renting 66.9 
High Income (>50,000) 50.9 Bicycle ownership  

Race and Ethnicity   Own one or more bicycles 46.4 
Non-Hispanic Caucasian 63.9 Not owning bicycles 53.6 
Hispanic 18.1    
Non-Hispanic African-American   6.0    
Other (primarily Asian, but also including mixed race, 
Pacific Islander, and unidentified race) 

12.0    

Descriptive Statistics 
Variable Mean Std. Dev. Min. Max. 

Household size-related attributes     
Number of Children (aged 15 years or younger) 0.498 0.935 0.000 6.000 
Number of Adults (16 years or older) 1.931 0.862 1.000 6.000 
Number of Workers 1.171 0.918 0.000 6.000 

Other Household attributes     
Number of Motorized Vehicles 1.884 0.996 0.000 8.000 
Length of freeways (in 1000 kms) accessible in 10 min 0.061 0.049 0.000 0.438 
Retail and Service Emp. Accessibility (in 100s) 0.217 0.097 0.040 0.560 

Dependent variables: Mean daily activity participation duration and mean number of daily episodes 

Activity Category 
Total number (%) 

of households 
participating 

Mean duration of daily 
time investment among 

households who 
participate 

participation (mins)  

Mean number of 
daily episodes 

among households 
who participate 

Number of households (% of total number 
participating) who participate…. 

Only in activity type 
In the activity type 
and other activity 

types 

Shopping 1123 (53.2%) 100.0 1.34 229 (20.4%) 894 (79.6%) 

Social 1175 (55.7%) 253.5 1.47 242 (20.6%) 933 (79.4%) 

Recreation and Entertainment   546  (25.9%) 371.3 1.30 106 (19.4%) 440 (80.6%) 

Personal 1203 (57.0%) 165.7 1.45 225 (18.7%) 978 (81.3%) 
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Table 4. Aggregate Elasticity Effects (and Standard Errors) of Variables 

Variable 
Activity duration for the activities Mean number of episodes for the activities 

Shopping Social Recreational Personal Shopping Social Recreational Personal 

Household Structure (base is other household, mainly comprised of nuclear family households) 

Single-Person Household 
-4.9%   
(1.8%) 

-3.0%   
(4.1%) 

19.5%   
(8.4%) 

-3.7%   
(2.9%) 

-10.0%   
(2.0%) 

-16.3%   
(3.7%) 

4.3%   
(8.5%) 

-17.6%   
(5.3%) 

Couple Household 
-0.7%   
(1.1%) 

-5.7%   
(3.0%) 

12.9%   
(4.6%) 

0.4%    
(1.3%) 

4.1%      
(1.7%) 

-16.7%   
(3.4%) 

2.7%   
(3.1%) 

0.3%   
(1.3%) 

Single Parent Household 
-1.0%   
(0.6%) 

0.9%    
(0.6%) 

0.9%    
(0.8%) 

-0.8%   
(1.1%) 

-0.1%   
(0.3%) 

0.3%   
(0.4%) 

0.9%   
(0.8%) 

13.3%   
(8.1%) 

Annual Household Income (high income or income >50,000 is the base category) 

Low-Income Household 
-6.0%   
(2.6%) 

0.4%   
(2.9%) 

18.2%   
(6.9%) 

-5.6%   
(2.2%) 

-4.9%   
(1.7%) 

4.8%   
(3.3%) 

11.9%   
(6.6%) 

-1.7%   
(1.0%) 

Household Race and Ethnicity (Non-Hisp. Caucasian and Other (primarily Asian, but also incl. mixed race, Pacific Islander, and unident. race) are the base) 

Hispanic Household 
1.3%   

(1.5%) 
2.3%   

(1.7%) 
-7.1%   
(2.0%) 

0.2%   
(1.2%) 

-8.8%   
(2.8%) 

-17.7%   
(2.9%) 

-3.9%   
(1.6%) 

-4.6%   
(4.2%) 

African American Household 
-2.4%   
(1.0%) 

6.2%   
(2.3%) 

-4.9%   
(1.8%) 

-2.6%   
(1.5%) 

0.4%   
(0.5%) 

-13.3%   
(3.1%) 

-1.5%   
(0.9%) 

1.7%   
(1.0%) 

Housing Type and Tenure [Other homes (duplexes, apartment complexes, condominiums, etc.) and non-renting constitute the base categories] 

Unattached Single Family 
House 

4.2%   
(2.0%) 

-1.6%   
(2.7%) 

-8.2%   
(5.6%) 

4.7%   
(2.0%) 

6.9%   
(2.3%) 

-2.8%   
(2.7%) 

-9.1%   
(5.8%) 

-1.2%   
(1.9%) 

Renting Home 
-0.6%   
(0.7%) 

-2.8%   
(1.2%) 

7.7%   
(2.8%) 

-0.8%   
(0.8%) 

-0.2%   
(0.6%) 

1.3%   
(0.9%) 

-4.6%   
(1.9%) 

0.9%   
(1.1%) 

Household Size-Related Attributes 

Number of Children 
-1.0%   
(0.9%) 

0.4%   
(1.0%) 

1.5%   
(0.9%) 

-0.4%   
(1.0%) 

0.5%   
(0.4%) 

4.1%   
(1.8%) 

1.7%   
(0.9%) 

-2.3%   
(1.2%) 

Number of Workers 
-4.3%   
(1.5%) 

1.8%   
(1.7%) 

8.0%   
(3.1%) 

-3.3%   
(1.4%) 

-1.4%   
(1.4%) 

3.0%   
(1.9%) 

9.8%    
(3.6%) 

-4.1%   
(1.4%) 

Bicycle Ownership and Number of Motorized Vehicles 

Owns Bicycle 
-0.4%   
(1.1%) 

-4.2%   
(1.7%) 

9.9%   
(5.7%) 

-0.2%   
(1.1%) 

-1.2%   
(0.7%) 

2.2%   
(3.2%) 

9.5%   
(5.9%) 

-4.3%   
(3.2%) 

Number of Motorized Vehicles 
0.6%   

(0.9%) 
-1.0%   
(0.9%) 

0.4%   
(1.0%) 

0.4%   
(1.0%) 

1.4%   
(1.4%) 

3.1%   
(1.5%) 

-0.5%   
(0.8%) 

5.1%   
(2.5%) 

Accessibility Measures 

Length of freeways (in 
thousands of kms) accessible in 
10 min 

-0.2%   
(0.2%) 

0.2%   
(0.1%) 

0.2%   
(0.1%) 

-0.2%   
(0.1%) 

-0.2%   
(0.1%) 

0.2%   
(0.2%) 

0.2%   
(0.2%) 

-0.1%   
(0.1%) 

Retail and Service Emp. 
Accessibility (in 100s) 

-0.2%   
(0.1%) 

-0.5%   
(0.2%) 

1.5%   
(0.5%) 

-0.2%   
(0.1%) 

-0.2%   
(0.1%) 

-0.4%   
(0.1%) 

1.7%   
(0.6%) 

-0.1%   
(0.0%) 

 


