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Abstract 

In this paper, we enhance the current understanding of the properties of multiple discrete-

continuous (MDC) choice models with additively separable (AS), independent and identically 

distributed (IID) utility functions, and linear utility form on the essential outside good. First, 

we highlight that the prior implementations of this model in the literature ignore primal 

feasibility conditions related to the budget constraint and the essential nature of outside good 

in formulating the model likelihood function. Second, we evaluate the suitability and 

performance of the model for alternative consumption patterns relative to the budget. In 

addition, we provide a systematic comparison of the performance of MDC choice models with 

the linear outside good utility form (i.e., the -profileL  model) and those with the non-linear 

outside good utility form (i.e., the -profileNL  model). Third, for the -profileL  model with 

infinite budgets (i.e., when a very small proportion of the budget is allocated to inside goods), 

we derive the distributions of the resulting optimal demand functions and analytic expressions 

for the corresponding first and second moments, and identify a property that makes it easy to 

estimate the utility function parameters of an inside alternative even when consumption data is 

not available for other alternatives. In addition, perhaps for the first time in the literature, we 

show how an independent system of Tobit models can be derived as a restricted version of the 

utility-theoretic -profileL  MDC model structure. Finally, we apply the model for an empirical 

analysis of expenditure patterns of leisure trips from a domestic tourism survey sample of 

households in India. 
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1. INTRODUCTION 

1.1.  Background 

Multiple discrete-continuous (MDC) choice models have now become the workhorse for 

analysis of consumer choices involving the allocation of resources such as time and money to 

a set of exhaustive discrete choice alternatives that are not mutually exclusive (see, for 

example, Bhat, 2005; von Haefen et al., 2004; Kim et al., 2002; Habib and Miller, 2009; Eluru 

et al., 2010; Enam et al., 2018; Calastri et al., 2021). In such choice situations, consumers 

potentially choose multiple choice alternatives, but not necessarily all available alternatives; 

hence the term multiple discreteness (Hendel, 1999; Dubé, 2004). In addition, they make 

decisions on how much of the available resources to allocate to each of the chosen alternatives; 

hence the term multiple discrete-continuous (MDC) choices (Bhat, 2005).  

Most of the MDC models in use today are based on the classical consumer choice theory 

of random utility maximization (RUM), subject to constraints on available resources for 

consumption and non-negativity of consumption amounts. Specifically, consumers are 

assumed to optimize a direct utility function ( )U x  over a bundle of non-negative consumption 

quantities 1( ,..., ,..., )k Kx x x=x  subject to a linear budget, as: 

Max ( )U x  such that . E=x p  and 0   1,2,...,kx k K  =
     

(1) 

In the above equation, ( )U x  is a quasi-concave, increasing and continuously differentiable 

utility function with respect to the consumption quantity vector x , 1( ,..., ,..., )k Kp p p=p
 is the 

vector of prices of unit consumptions for all goods, and E is the budget for total expenditure. 

The consumption quantity vector x  may or may not include an outside good, which, when 

included, is a composite good that represents all goods other than the inside goods of interest 

to the analyst. Typically, the outside good is treated as a numeraire with unit price, based on 

the assumption that the prices of goods combined into the outside category do not influence 

the expenditure allocation among inside goods (Deaton and Muelbauer, 1980). 

 A commonly used approach to work with the above problem is based on the Karush-

Kuhn-Tucker (KKT) conditions of optimality. Since the utility function is stochastic, the 

resulting KKT conditions are stochastic, which form the basis for deriving likelihood 

expressions for observed consumptions and deriving the demand function distributions. Due to 

the central role played by the KKT conditions, MDC choice models based on this approach are 

also called Kuhn-Tucker (KT) demand systems.  
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The form of the utility function ( )U x  governs the characteristics of optimal 

consumptions resulting from the above utility maximization problem. A typical assumption in 

this context is that the contribution to ( )U x  from different goods is additively separable (AS). 

Another typical assumption is that the utility ( )ku x  accrued from consuming a good k  rises 

non-linearly with consumption to follow the law of diminishing marginal utility and allows 

corner solutions (zero consumptions) to the utility maximization problem. In most applications, 

however, the numeraire outside good is not associated with corner solutions in that the 

consumers are assumed to always allocate some part of the budget to it (i.e., the outside good 

is an essential good). Further, while most model formulations in the literature specify a non-

linear utility form for the outside good, Bhat (2018) relatively recently introduced the linear 

utility form for the outside good within a traditional -profile (see Bhat, 2008), which he labels 

as the -profileL  model, with the additively separable (AS) utility form as below: 

1 1

2

( ) ln 1
K

k
k k

k k

x
U x  

=

 
= + + 

 
x        (2) 

This formulation has also recently been considered by Palma and Hess (2020), Bhat et al., 

(2020), and Mondal and Bhat (2021). These studies cite various advantages of using the linear 

utility form (as opposed to a non-linear form) for the outside good. These advantages are: (a) 

the ability to infer the influence of covariates on discrete choices separately from that on 

continuous choices (Bhat, 2018), and (b) the ability to model consumption data even if the 

budget information is unknown (Bhat et al., 2020; Palma and Hess, 2020) and when the 

consumption data is grouped into intervals (Bhat et al., 2020). However, the above papers do 

not undertake a detailed and systematic evaluation of the performance of the -profileL  model 

for different consumption patterns. While the study by Palma and Hess (2020) presents a 

simulation evaluation of the -profileL  model, none of the studies delve into the reasons for 

any differences in efficacy for different consumption patterns.  

1.2.  The Current Study 

MDC model specifications and applications with an -profileL  formulation will likely increase 

in the future, due to the potential advantages offered by a linear utility specification on the 

outside good. However, the implications of using a linear utility on the outside good vis-à-vis 

that of a non-linear utility function are not yet fully understood. The current study contributes 

in this direction along two primary research thrusts: (1) understanding the properties of RUM-
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based -profileL  MDC choice models, and (2) deriving analytic expressions for the 

distributions of the Marshallian demand functions for -profileL  MDC models. Each of these 

issues is discussed briefly in turn in the next two sections. 

1.2.1. Properties of RUM-based -profileL MDC choice models  

The -profileL  model has been motivated by its value for situations when the budget is 

unobserved. However, several applications (for example, modeling daily activity time-use) 

have a natural budget on the resource to be allocated. While such applications can be readily 

modeled through the MDC model with a non-linear utility function for the outside good (as 

proposed in Bhat (2008), which we will henceforth refer to as the -profileNL  model1), a 

natural question is whether the -profileL  can be used to model situations with finite and 

known budgets. Further, while it is the case that the -profileNL  model cannot be used in 

situations with unobserved budgets (the -profileNL  requires the budget information) and the 

-profileL  model has been proposed for this purpose, it is important to investigate the 

suitability of the -profileL  for different consumption patterns even when the budgets are 

unobserved. Furthermore, the current literature does not shed adequate light on which of the 

two specifications – -profileL  and -profileNL  – performs better and is suitable for different 

consumption patterns when the budgets are observed. 

1.2.2. Distributions of Marshallian demand functions 

Despite significant advances in the context of prediction with the MDC choice models, almost 

all work in this area resorts to using a combination of simulation (of the stochastic utility 

functions) and optimization for forecasting the Marshallian demand, policy analysis, and 

welfare calculations (for example, see von Haefen et al., 2004; Pinjari and Bhat, 2021). Little 

work exists on characterizing the distributions of the Marshallian demand functions from MDC 

choice models and the corresponding elasticities. This is because it is not possible to 

analytically derive the distributions and moments of the distributions of the optimal demand 

functions for the -profileNL , due to the close tie between the continuous consumption value 

of any inside good with its corresponding discrete choice as well as the consumption value of 

the outside good. However, the -profileL  of Eq. (2) breaks the strong linkage between the 

 
1 For completeness, the AS -profileNL  utility function that we consider in this paper is as follows: 

1 1

2

( ) ln ln 1
K

k

k k

k k

x
U x  

=

 
= + + 

 
x . 
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discrete choice of an inside good with the continuous consumption values for that good as well 

as the continuous consumption value of the outside good (Bhat, 2018). This should open up 

the possibility of deriving the distributions (and the corresponding moments) of Marshallian 

demand functions for such models, at least for specific situations. The ability to do so and 

having access to analytic expressions for the moments of the demand functions can help obviate 

the need for extensive simulations for prediction and policy analysis. 

1.2.3. Research Objectives 

The discussion above drives our efforts in this paper, with two primary objectives. The first 

objective is to elucidate the properties of MDC choice models with the -profileL  utility 

function of Eq. (2). Specifically, the paper theoretically examines the suitability of the 

-profileL  model for different consumption patterns (relative to the budget). In doing so, the 

paper highlights the importance of explicitly considering the primal feasibility conditions of 

the budget constraint and the essential nature of the outside good during parameter estimation. 

None of the implementations of the -profileL  model in the literature consider these conditions 

during parameter estimation, which poses a risk of biased parameter estimation and erroneous 

prediction. In the current paper, we examine the theoretical appropriateness of the -profileL  

model2 for the following three broad consumption patterns relative to the budget: 

(i) A very small proportion of the budget is allocated to inside goods (in subsequent 

discussions, such a pattern is referred to as the infinite budget case),  

(ii) A small (but significant) proportion of the budget is allocated to inside goods, and  

(iii) A large proportion of the budget is allocated to inside goods.  

An important clarification regarding the term infinite budget is in order here. Note that the term 

infinite budget does not necessarily imply that the budget is always literally infinite. It also 

applies to situations when a very small proportion of a finite budget is allocated to inside goods 

(or equivalently, the outside good allocation is very large compared to the allocation to inside 

goods).  The use of the term infinite budget is justified for such situations because the budget 

amount does not have a bearing on the consumption patterns. More specifically, the optimal 

demand density, when integrated to the finite (but large) budget to obtain its moments, 

produces essentially the same results as one would get by integrating to infinity. 

 
2 In the rest of this paper, unless mentioned otherwise, we use the term -profileL  model to refer to the additively 

separable (AS) model that does not consider the budget constraint and the essential nature of the outside good 

during parameter estimation. As discussed later, these issues do not arise with the AS -profileNL  model, because 

both the budget constraint and the essential nature of the outside good are implicitly considered during parameter 

estimation (as with the -profileL , any reference to the -profileNL  will refer to the additively separable form).  
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For each of the consumption patterns listed above, extensive simulations are conducted 

to confirm our theoretical expositions of the -profileL  model vis-à-vis the -profileNL  model, 

in the context of parameter bias and prediction performance. The paper proceeds to provide 

guidance on when to use the -profileL  model vis-à-vis the -profileNL  model (i.e., which 

model is suitable for what type of consumption pattern). 

 The second objective of this paper is to derive analytic expressions for the distributions 

(and corresponding first and second moments) of the Marshallian demand functions resulting 

from -profileL  utility function-based MDC choice models with infinite budgets, considering 

independent and identically distributed (IID) log-extreme value kernel error terms in the 

baseline utility (i.e., -profileL  MDCEV models) as well as IID log-normal kernel error terms 

in the baseline utility (i.e., -profileL  MDCP models).  We also accommodate situations with 

choice alternative-specific upper bounds on consumptions, which result in a probability mass 

at the upper bound value. The analytic expressions we derive obviate the need to use simulation 

for prediction and policy analysis using MDC choice models with large budgets. Further, one 

can easily compute elasticities of the first and second moments of the demand distributions 

with respect to prices and covariates entering the utility functions.  

In pursuing the two objectives identified above, we identify an important theoretical 

property of IID -profileL  utility-based MDC models for the infinite budget case – the optimal 

consumption value of an inside good or its corresponding distribution does not depend on the 

presence or attributes of other choice alternatives. This is because the budget amount does not 

have a bearing on the consumption patterns, thereby the inside goods do not compete with each 

other for resources from the budget. This property, referred to as the irrelevance of other 

alternatives (IOA) property, allows estimation of the utility function parameters of any 

alternative as long as consumption data is available for that alternative even if information is 

not available on other alternatives in the choice set. In addition, we shed light on the 

relationship between the scale parameter in -profileL  utility-based MDC models and the 

existence of finite moments for the Marshallian demands for the case of infinite budgets. 

Furthermore, we clarify identification issues in the -profileL  MDC model (building on Bhat 

2018 and Bhat et al., 2020). In addition, we show that the Tobit models typically used to model 

censored demand data are a restricted version of the utility theoretic -profileL  MDC model 

with infinite budget. We also develop a forecasting algorithm for the case when an -profileL  

utility-based MDC model is implemented for a situation with an observed and finite budget.   



6 

 

The rest of the paper is structured as follows. Section 2 presents a theoretical analysis 

for the case when -profileL  utility function-based models are applied to the case of the three 

broad types of consumption patterns identified earlier. It also delves into issues associated with 

the estimation of scale parameter in the -profileL  model. Section 3 involves simulation 

experiments to confirm the theoretical analysis in Section 2. Section 4 delves into -profileL  

models with infinite budgets and derives the distributions (and corresponding first and second 

moments) of optimal demand functions resulting from such models. It also discusses the 

relationship between the -profileL  model with infinite budgets and Tobit models. Section 5 

demonstrates the applicability of the -profileL  models with infinite budgets for an empirical 

analysis of tourism travel expenditures in India. Section 6 summarizes and concludes the paper. 

   

2. L -profile  Utility Functions, Finite Budgets, and Essential Outside Good 

2.1. Primal feasibility conditions in L -profile  models  

Consider the constrained utility maximization problem in Eq. (1) with an -profileL  utility 

function as in Eq. (2). Assuming that the first M  of the K  available alternatives are chosen 

(i.e., 
* 0, 1,2,...,kx k M  = ), the KKT conditions of optimality are as below (where,   is the 

Lagrange multiplier): 

*

1 1

*

*

*

, since 0

, since 0  2,3,...,

1

, since 0  1,...,

k
k k

k

k

k k k

x

p x k M
x

p x k M K

 






 

= 

=   =
 

+ 
 

 =  = +

      (3) 

From the above KKT conditions, we obtain the optimal consumption values as follows for the 

consumed goods:  

*

1 1

1 , 2,3,.... , with 1.k k
k k

k k

x k M
p p

 


 

 
= − =  
 

     (4) 

Thus, the KKT conditions ensure that, for any consumed inside goods, the optimal continuous 

value of consumption will exceed zero. But the optimal consumptions should also satisfy the 

primal feasibility condition given by the budget constraint 
* *

1

2

M

k k

k

x E p x
=

= − , with 
*

1 0.x    
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Unfortunately, the budget E does not enter anywhere in the KKT conditions for the -profileL

utility, except in its primal form that needs to be honoured but is not during estimation. When 

the data is such that the budget is very large relative to the expenditure on the consumed inside 

goods as given by 
*

2

M

k k

k

p x
=

 , the estimation will proceed such that, even without expressly 

imposing the condition that 
* *

1

2

0,
M

k k

k

x E p x
=

= −   the condition may get met. Of course, when 

,E → the condition 
*

1 0x   will automatically get satisfied during estimation. Therefore, in 

situations with a very large (or infinite) budget (relative to the allocation to inside goods), it is 

safe to assume that the outside good consumption will always be positive (i.e., the outside good 

acts as an essential good).  

It is worth noting that all applications of -profileL  utility models hitherto estimate 

model parameters using likelihood functions that ignore the primal feasibility condition during 

estimation. Such an approach might seem innocuous as it is similar to how a likelihood function 

is developed for -profileNL  utility models. However, a subtle but important difference 

between the likelihood functions of -profileL  utility models and -profileNL  utility models 

is that the latter models implicitly embed the budget, and guarantee that 
*

1 0x  3.  

2.2. An alternate L -profile  model with finite budgets and essential outside good 

During parameter estimation, the condition 
*

1 0x   can be maintained. Specifically, for 
*

1x  to 

be always positive, one can insert Equation (4) for 
*

kx  in the equation 
* *

1

2

0
M

k k

k

x E p x
=

= −   to 

obtain the following condition: 

 
3 The KKT condition for the essential outside good in -profileNL  utility models, whose utility function is of the 

form given by 
*

1 1ln( )x , is 
*

1 1/ x = , due to which the likelihood function includes 
*

1x  and, therefore, the 

budget constraint (since 
* *

1

2

M

k k

k

x E p x
=

= − ). The optimal consumption of the consumed inside goods in the 

-profileNL  is 
* 1 1

1 1

1 with 1, andk k

k k

k k

x x
x

p p

 


 

 
= −  
 

*

1

2 2 1

1
M M

k k
k k

k k

x E p
 


= =

  
= + +  
   

  . *

1x  is always positive 

here, given 
k , 

kp , 
k  are all positive for all inside goods, 

1 0,  and E >0. 
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2
1

2

M

k k

k

M

k k

k

E p

 





=

=



+




         (5) 

The above condition implies a truncation on the inside good’s baseline preference based on the 

budget and other inside good parameters. Importantly, Eq. (5) ensures that the primal 

conditions corresponding to the budget constraint and positivity of the outside good 

consumption are satisfied. Therefore, the likelihood function of a model with -profileL  utility 

functions should not only consider the KKT conditions identified in Eq. (3), but also include 

the condition in Eq. (5). Of course, when the budget tends to infinity, the exponential form for 

1  immediately guarantees the condition in Eq. (5), and no additional truncation needs to be 

considered in model estimation. That is, the likelihood function used in the literature so far 

(which does not include the budget information) for -profileL  models work well for situations 

when the budget is large relative to the consumption on inside goods. One can estimate the 

model parameters and carry out predictions without knowledge of the budget (i.e., even when 

the budgets are not observed). 

Unfortunately, however, in the general case, the truncation condition in Eq. (5) will 

need to be considered, which leads to likelihood functions with multidimensional integrals and 

complicates the estimation of such a model. If the truncation condition is not considered in the 

likelihood function (as done by earlier studies), the resulting parameter estimates would be 

biased toward situations when the budget is very large compared to the allocation to inside 

goods (aka, the infinite budget case). And such a bias in estimation can potentially make it 

difficult to interpret covariate effects solely from the parameter estimates. Therefore, it is useful 

to assess if embedding the truncation condition during prediction (without doing so during 

estimation) can help mitigate forecasting errors. Such a prediction algorithm is presented in 

Section 2.4. However, before delving into the prediction algorithm, a specific issue related to 

the estimation of scale parameter in -profileL  MDC choice models is worth discussing. 

2.3. Estimation of scale in the L -profile  model 

Bhat (2018) discusses the fact that the scale of the error term in the logarithm of the baseline 

parameters of the inside and outside goods (assuming constant scale across all goods) is 

estimable in the -profileNL  model. In that paper and in Bhat et al. (2020), issues arising with 

the estimation of scale in the -profileL  model are discussed. These earlier papers do not 
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indicate a definitive theoretical identification problem that precludes the estimation of the scale 

when there is no price variation across goods. However, the papers raise issues related to 

empirical identification that may make it difficult to estimate a scale when there is no price 

variation and distinct k  parameters are estimated for each inside good. Here, we further study 

this issue and add some additional nuanced perspectives related to the identification of the scale 

parameter in the -profileL  model. 

Consider the following KKT conditions from Eq. (3). 

*

1 1

*

*

*

, since 0

, since 0  2,3,...,

1

, since 0  1,...,

k
k k

k

k

k k k

x

p x k M
x

p x k M K

 






 

= 

=   =
 

+ 
 

 =  = +

      (6) 

To complete the model specification, the utility function parameters ( k , 1 , and k ) can be 

expressed as a function of observed and unobserved attributes of decision-makers and choice 

alternatives as: exp( )k k k = +β z , 1 1exp( ) = , and exp( )k k = θ w , where kz  and kw  

are vectors of decision-maker and alternative attributes that influence k  and k , respectively, 

and k  are random utility terms specific to each good k ( 1,2,..., )k K= . Note that 1  is 

normalized to 1exp( ) , and does not include observed explanatory variables. Such a 

specification allows identification of parameters on attributes that do not vary across 

alternatives. While one can think of attributes that are specific to alternatives, it is unlikely for 

the outside good to have its own attributes as it typically represents a numeraire composite 

good (i.e., it represents all the other goods that are not of interest to the analysis). However, if 

there are such attributes that are specific to the outside good, an interpretable specification 

would include difference between the corresponding attribute value for the thk  inside good and 

the outside good in kz . 

 With the above discussed statistical specification, and defining 1 1k k  = − , the KKT 

conditions can be rewritten as: 
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*
*

1

*

1

ln ln 1  when 0; 2,3...,

ln 0 when 0; 2,3...,

k
k k k k

k

k k k k

x
p x k K

p x k K






 
 + − = +  = 

 

 + −  = =

β z

β z

    (7) 

Consider the situation with no price variation (i.e., 1 2,3,...,kp k K=  = ), and write the above 

equations using standardised error terms (assuming homoscedastic error terms), 

( )

( )

*
* * *

1

* * *

1

ln 1  when 0; 2,3...,

0 when 0; 2,3...,

k
k k k

k

k k k

x
x k K

x k K

 


 

 
 + = +  = 

 

 +  = =

β z

β z

    (8) 

where, *

1k  is the standardised error difference, and *




 =

β
β . 

It can be seen from the above set of equations that the identification of the scale parameter (i.e., 

  parameter) is possible only through the first set of equations that are written for positive 

continuous consumption values (i.e., when * 0kx  ). As discussed in Bhat (2018) and Bhat et 

al. (2020), empirical identification issues may arise with the estimation of   for the model and 

a separate satiation parameter k  for each inside good. However, our explorations regarding 

estimation of scale in the absence of price variation (as will be evident in Section 3) suggest 

that such identification issues are not as severe as they were previously thought. In most 

situations (as our simulation experiments in Section 3 suggest), the scale parameter   is 

estimable, even when there is no price variation. To understand the reason behind the 

estimability of the scale parameter, divide the first set of KKT conditions in Eq. (8) by    on 

both sides. The resulting KKT conditions show 
1


 as a coefficient of 

*

ln 1k

k

x



 
+ 

 
, which makes 

it possible to estimate   in addition to k  ( 2,3...,k K= ). That said, a specific situation in 

which we noticed the estimation of scale parameter became difficult was when the allocation 

to inside goods constituted a large proportion of a limited budget, as discussed next. 

When the allocation to an inside good is large but the budget is limited (even if the 

budget is unobservable), the corresponding k  parameter tends to be large due to the low 

satiation rate of consuming that good. However, the scale parameter of such an -profileL  

model becomes small so as to compensate for not recognizing the budget constraint in model 

estimation; lest the model should imply a large probability of unreasonably large consumption 
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values (greater than what can be afforded by the budget) for the good. With some datasets 

where the allocation to the inside goods is large but the budget is limited, the scale parameter 

keeps decreasing in magnitude during estimation, to an extent that it becomes difficult to 

estimate it. Such datasets with high consumption of inside goods (while the budget is limited) 

further exacerbate the difficulty in estimating scale due to low satiation rate, or, high values of 

k . Specifically, the high values of k  parameters can potentially result in situations where 
*

k

k

x


 

values become sufficiently smaller than 1, such that 
*

ln 1k

k

x



 
+ 

 
 approximates to 

*

k

k

x


. In such 

a case, the first set of equations from Eq. (8) can be written as: 

( )

( )

*
* * *

1

* * *

1

when 0,  or,k
k k k

k

k k k k

x
x

x

 


  

 + = 

= +

β z

β z

       (9) 

In the above-discussed case, one can only estimate k k = , and to estimate  , at least one 

of the k  parameters must be fixed. However, when there is price variation, despite the scale 

being small in value, it may be generally possible to estimate it. To see this, Eq. (9), in the case 

of price variation, can be written as: 

( )

*
* * *

1

* * *

1

1
ln when 0,  or,

ln

k
k k k k

k

k k k k k k

x
p x

x p

 
 

   

 
 + − =  

 

= + −

β z

β z

      (10) 

In the above equation, k  for each inside good can be identified form the coefficient on ln kp  

in addition to the scale parameter  , as long as the unit price kp  is not equal to one.  

In summary, the estimation of scale parameter in the -profileL  MDC model is 

generally possible even in situations without price variation. However, in situations with 

limited budgets (even if unobservable) and relatively high allocations to inside goods, the 

estimation of the scale parameter together along with all the other satiation parameters (i.e., 

  2,3,...,k k K  = ) may not be possible. As we establish later in this paper, the -profileL  

MDC model is anyway not suitable to model such consumption patterns and the -profileNL  

MDC model is more appropriate in such cases. 
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2.4. L -profile  model forecasting with finite budgets and essential outside good 

Given the data on model covariates ( )kz , budget ( )E , and the model parameters 

2 3( , , ,..., , )K    β , the following procedure is proposed: 

Step 1: Draw K independent realizations of k  (say k ), one for each good ( 1,2,..., )k k K=

from the corresponding distribution with a location parameter of 0 and a scale parameter equal 

to the estimated 
1

 or 


 
 
 

 value. 

Step 2: Compute ,0 ,0k k kH V= −  for each inside good k=2,.3,…,K using the inputs, and set 1,0H  

for the outside good to be an arbitrary value higher than the maximum of the ,0kH  values 

across the inside goods, where ,0 1k kV V V= − , and lnk k kV p= −β z  (k = 2, 3,…, K) .  ,0kH  is 

same as lnk k kp  − +β z  (since 1V  corresponds to the outside good and is equal to zero). 

Step 3: Re-order the goods in descending order of ,0;kH  let G be the vector of the re-ordered 

indices of the inside goods (with the outside good appearing as the first entry and the ordering 

of the inside goods starting from position 2); set a new index m (m=1,2,…,K) for this new 

ordering of the outside and inside goods. Let 0H  be the re-ordered vector of values of ,0kH  so 

that 0 1,0 2,0 ,0 1,0( , ,..., ,... )m KH H H H −=H , where 
,0 ,0

[ ]

( )m k
k

k G m

H Max H



=  for m=2,3,…,K. 

Step 4: Set M = 2.  

Step 5: If 1 ,0 ,MH   set the consumptions of all the re-ordered inside goods m=M to m=K to 

zero. STOP. 

Step 6: If 1 ,0 ,MH  compute exp( )M M M = +β z .  

Step 7: If  

 
2

1

2

M

m m

m

M

m m

m

> ln

E p

 





=

=

 
 
 
 + 
 




, declare the inside good M as being selected for consumption 

and forecast the continuous value of consumption as follows: 

*

1 0exp( ) 1 .M M M Mx V   = − − − 
 

Set 1M M= + . Go to Step 5. 
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Step 8: If 

 
2

1

2

M

m m

m

M

m m

m

< ln

E p

 





=

=

 
 
 
 + 
 




, declare the inside good M as not being selected for 

consumption (i.e., 
* 0mx m M=   ) and 

* *

1

2

M

m m

m

x E p x
=

= − .  STOP. 

The above forecasting procedure is similar to the forecasting approach for the 

-profileNL  in that the resources are allocated in the decreasing order of the baseline 

preferences. However, in steps 7 and 8 of the procedure, the truncation condition in Eq. (5) is 

verified to ensure that the primal feasibility conditions are met. Specifically, if the truncation 

condition in Eq. (5) is violated (step 8), the allocation of all the subsequent goods, including 

the good under consideration, is made equal to zero, and the remaining budget is allocated to 

the outside good. This is akin to truncating the baseline preference parameters of the inside 

goods in accordance with the truncation condition of Eq. (5) such that they are not chosen. This 

ensures that the essential outside good is always chosen with a positive consumption and the 

budget constraint is always met. 

  

3. Simulation Experiments  

In this section, simulation experiments are presented to evaluate the suitability of the 

-profileL  utility model (that does not consider in its likelihood function the truncation 

condition) vis-à-vis the suitability of the -profileNL  utility model for different consumption 

patterns – both in terms of the model’s ability to recover true parameters and its predictive 

performance. 

3.1. Simulation experiment design 

We performed simulation experiments on synthetic data with four choice alternatives. 

Specifically, the following -profileL  utility structure was considered, with the first alternative 

as the essential Hicksian outside good and three other alternatives as inside goods:  

1 2 2 3

2

32 4
1 3 4 4

3 4

ln 1 ln 1 ln 1U
xx x

x      
  

    
= + + + + + +    

    
, where            (11) 
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z



  
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










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=
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The model covariates influencing the baseline preferences were simulated as 1 (4,4)Normalz  

and 2 (0.5)Bernoulliz . The satiation parameters were expressed as 22 exp( )w = ,

3 3exp( )w = , and 4 4exp( )w = .  In all the simulations, we assumed k   to be IID extreme 

value distributed with scale parameter 0.4 =  (equivalently 2.5 = ). Also, in all subsequent 

data generation, we assume that unit prices for all goods are unity (i.e., no price variation).   

We simulated optimal consumptions for the following three budget and consumption 

pattern scenarios: 

(a) Scenario 1: Infinite budget scenario, where the budget is set to 50,000 units and the 

total allocation to inside goods is very small (less than 1% of the budget, on 

average), 

(b) Scenario 2: A small but significant proportion (on average, 16%) of the budget is 

allocated to inside goods, with the budget amount as 1,000 units, and 

(c) Scenario 3: A large proportion (on average, 43%) of the budget is allocated to inside 

goods, with the budget amount as 1,000 units. 

The parameter values used to simulate optimal consumptions for each of the above scenarios 

are presented in Table 1.  

We simulated 50 datasets (for different simulated values of k ), each of 10,000 

individuals (for different values of 1z  and 2z ) for each of the above scenarios using the 

forecasting algorithm discussed in the previous section. Subsequently, we estimated the MDC 

choice model (one that ignores the truncation condition) to assess the ability of the model to 

retrieve parameters. In addition, we evaluated the prediction accuracy using the estimated 

parameters (average of the parameter estimates across the 50 datasets) and the forecasting 

algorithm discussed in the previous section. 

3.2. Parameter recovery for the L -profile  model 

As can be observed from the results for Scenario 1 in Table 1, for situations with very large 

(that is, infinite) budgets, the -profileL  model (that ignores the truncation condition) is able 

to recover the true parameters very well, with a very low average absolute percentage bias 

(APB) of 0.22 and small finite sample standard errors (FSSE) that are close to the asymptotic 

standard error (ASE) values. 

 For Scenario 2 where a small (but significant) proportion of the budget is allocated to 

inside goods, ignoring the truncation condition in Eq. (5) in model estimation has resulted in a 
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non-negligible bias in parameter estimates, even if the FSSE continues to be close to the ASE 

values. In this scenario, the average APB rises to 25.58 %. For Scenario 3 where the proportion 

of the budget allocated to inside goods becomes large, the bias in parameter estimates becomes 

large (overall APB is 83.53 %). Overall, the results from Table 1 confirm our theoretical 

observation earlier that, as the proportion of the budget allocated to inside goods increases, the 

need for accommodating the truncation condition increases, and ignoring it will increase bias 

in parameter estimation.  In fact, in Scenario 3, some of the recovered parameter values are 

even different in sign from that of the true parameter values. Further, as discussed in Section 

2.3, the scale parameter estimate in Scenario 3 is very small compared to the corresponding 

true parameter value. Such a large bias in parameters makes it difficult to rely on the parameter 

estimates for interpretation of covariate effects on consumer preferences and will likely cause 

several other issues, including inferior model fit and erroneous forecasts. 

3.3. Predictive performance of the L -profile  model vis-a-vis the NL -profile  model 

To examine the effect of bias in the estimated parameters on the predictive performance of 

-profileL  models (in which we expressly recognize the need for the outside good consumption 

to be positive, using the procedure in Section 2.4), we used the estimated parameters from 

Table 1 to predict consumptions and compared the predicted values with the ‘true’ consumption 

values simulated using the -profileL  (that is, the truncation condition is ignored in estimation 

but recognized in prediction). In addition, we compared the predictive performance of the 

-profileL  model with that of the -profileNL  model estimated on the same data. Similarly, 

data were generated using -profileNL  utility functions (using the Pinjari and Bhat, 2021 

approach) and the utility function parameters of both -profileL  and -profileNL  models were 

estimated on such data. The resulting parameter estimates were used to assess predictions from 

both the -profileL  and -profileNL  models against data simulated using -profileNL  utility 

functions. All these assessments were performed for two consumption patterns: (1) when a 

small (but significant) proportion of the budget is allotted to inside goods and (2) when a large 

proportion of the budget is allotted to inside goods. In summary, the following data generation 

processes (DGP) are considered: 

(i) DGP 1: Data simulated using -profileL  utility functions such that a small proportion 

(16%) of the budget is allocated to inside goods. 

(ii) DGP 2: Data simulated using -profileNL  utility functions such that a small proportion 

(16%) of the budget is allocated to inside goods. 
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(iii) DGP 3: Data simulated using -profileL  utility functions such that a large proportion 

(43%) of the budget is allocated to inside goods. 

(iv)  DGP 4: Data simulated using -profileNL  utility functions such that a large proportion 

(43%) of the budget is allocated to inside goods. 

For each of the above DGPs, 50 datasets of sample size 10,000 were simulated assuming a 

budget of 1,000 units. Next, the predictive performance of both -profileL  and -profileNL  

models was assessed for all the above cases.4 Table 2 presents the results of the above discussed 

predictive assessments, which are discussed next. 

3.3.1 When a small (but significant) proportion of the budget is allocated to inside goods 

As can be observed from the first set of rows in Table 2 (for DGP1), the -profileL  model 

provides accurate forecasts, with very small weighted mean absolute percentage error 

(weighted MAPE) 5 values of 1.25% for discrete choice and 1.65% for continuous choice. 

Further, these forecasts are better than those from the -profileNL  model (6.08% for discrete 

choice and 10.08% for continuous choice). These results suggest that although the parameter 

estimates are biased due to ignoring the truncation condition, accommodating the condition 

during forecasting helps in obtaining accurate forecasts. This is perhaps because, in situations 

when a small (but significant) proportion of the budget is allocated to inside goods, the 

condition in Eq. (5) requires truncation of a small part of the distribution of the baseline 

preference parameters, ignoring which during estimation does not harm model predictions. 

 The results in the second set of rows in Table 2 (for DGP2, where the -profileNL  

utility function is used to simulate data) suggest that the predictions of the -profileNL  model 

are superior to that of the -profileL  model. Together, the results for DGP1 and DGP2 imply 

that when a small (but significant) proportion of the budget is allocated to inside goods, the 

underlying DGP determines which model to work with. In empirical contexts where the DGP 

is unknown, the analyst should try both the models and select the one that provides better fit, 

predictions, and interpretation. 

 
4 Predictive performance of the -profileL  model for the infinite budgets case is presented in the next section, 

where the model is analyzed in greater detail for the infinite budgets case. Further, we do not present the 

predictions of the -profileNL  models for the infinite budgets case because, as discussed in Bhat (2018), it is not 

easy to estimate -profileNL  models for situations with very large budgets. 

5 
( ) 100k k k kk

kk

O P O O
Weighted  MAPE

O

−  
=



. In this expression, 

kO  and 
kP  are the observed and predicted 

discrete choice shares (or average expenditures), respectively, for the thk  choice alternative. 
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3.3.2 When a large proportion of the budget is allocated to inside goods 

The results for DGP3 and DGP4 (third and fourth set of rows in Table 2) suggest that the 

-profileL  model predictions are worse than the predictions of the -profileNL  model in 

situations when a large proportion of the budget is allocated to inside goods, regardless of the 

underlying DGP. These results highlight that the large bias in the parameter estimates of the 

-profileL  model due to ignoring the truncation condition harms the model predictions, even 

if the truncation condition is enforced at the prediction stage. The impact of this bias grows as 

the proportion of the budget allocated to inside goods increases. Therefore, when the proportion 

of the budget allocated to inside goods is high, it is better to work with the -profileNL  model 

than the -profileL  model that ignores the truncation condition, even if the underlying DGP 

is that of the -profileL  utility functions. 

3.4. What proportion of the budget is very small, small, and large for L -profile  models? 

The preceding discussion sheds light on the suitability of the -profileL  model (that ignores 

the truncation condition during estimation) for different consumption patterns. While the 

simulation experiments of the preceding section considered the proportional allocations of 

around 1%, 16%, and 43% as very small, small, and large, respectively, these definitions are 

subjective. In this context, a pertinent question is what proportion of the budget allocation to 

inside goods can be considered very small, small, and large.  

To determine what proportion of the budget allocation to inside goods can be 

considered ‘very small’ (such that the budget can be considered very large or infinite), we 

conducted additional experiments by increasing the percentage of the budget allocated to inside 

goods from 1% to 5% and then to 10% for the -profileL  utility functions. To generate data 

where up to 5% of the budgets were allocated to inside goods, the assumed budget value was 

50,000 units, and to generate data where 10% or more of the budgets were allocated to inside 

goods, the assumed budget value was 1000 units. Using each of these simulated consumption 

data, we estimated -profileL  models and applied the parameter estimates to forecast 

consumptions using two different approaches. One approach considers the budget constraint as 

in the forecasting procedure described in Section 2.3. The other approach does not consider the 

budget constraint (i.e., skips the verification of the truncation condition in steps 7 and 8 of the 

forecasting procedure of Section 2.4). While detailed results of these experiments are not 

presented here to conserve space, for consumption data with about 5% of the total budget 

allocated to inside goods, the bias in parameter estimates was small (overall APB was 1.5%). 
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Also, the predictions from not considering the budget constraint were close enough to those 

obtained after considering the budget constraint (a difference of 0.5 % in discrete choices and 

11.2% in continuous choices between the consumptions forecasted with and without the budget 

constraint). Increasing the inside good allocation to 10% of the budget resulted in an overall 

bias (APB) of 4.5% in the parameter estimates. While this bias might appear low, the 

predictions from not considering the budget constraint were not close to those obtained after 

considering the budget constraint (a difference of 1.3% in discrete choices and 34.7% in 

continuous choices). These results suggest that an average allocation of less than 5% of the 

total budget can be considered ‘very small’. In such situations, it is not necessary to consider 

the budget information during estimation or forecasting, for the budget can be treated as very 

large (essentially infinite) in such situations.6 However, for situations with more than 5% of 

the budget allocated to inside goods, it becomes important to consider the budget constraint, at 

least during forecasting.   

 Next, to differentiate between small (but significant) and large proportional allocations 

to inside goods, in addition to the already considered cases of 5%, 10%, 16%, and 43% 

allocation to inside goods, an additional consumption pattern was simulated, where about 24% 

of the budget was allocated to inside goods. The predictive performance of both the -profileL  

and -profileNL  models estimated on all these data are shown in Fig. 1. In all these 

predictions, the budget constraint was considered through the truncation condition (as 

described in Section 2.4). Clearly, as the proportion of the budget allocated to inside goods 

increases (on the X-axis), the errors (plotted on the Y-axis as weighted MAPE) in both discrete 

predictions (figure on the left side) and continuous predictions (figure on the right side) for the 

-profileL  model increases. The same trend is not observed with the -profileNL  model. 

While the trends presented in the figure might change with the parameter estimates, variable 

specification in the utility functions, and choice set size, the results suggest that any allocations 

with more than 35% of the budget allocated to inside goods can be considered large. In such 

cases, the -profileNL  model should be preferred over the -profileL  model. And anywhere 

 
6 Our experience with simulated datasets suggests that estimation of the -profileNL  models for situations with 

‘very small’ allocations to inside goods is not easy, which makes the -profileL  model as the preferred 

alternative. This is because data with large allocations to the outside good do not reflect a discernible bend in the 

utility profile (or diminishing marginal utility) to be suitable for a non-linear utility form for the outside good. As 

a result, such data pose difficulty in estimation of -profileNL  models. Another related reason is that in situations 

when inside goods are chosen relatively frequently but with low continuous consumptions, the satiation 

parameters are close to zero (to reflect high satiation). This causes too dramatic a bend in the utility profiles of the 

inside goods, adding to estimation difficulties. 
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between 5% and 35% of the budget can be considered small (but significant). In such cases 

with a small (but significant) proportion of the budget allotted to inside goods, it is 

recommended that both the  -profileL  and -profileNL  models are estimated to select the 

one that offers better fit, interpretation, and forecasts. 

3.5. Summary of findings from the simulation experiments 

The findings from the simulation experiments in this section can be summarized as follows: 

(i) The -profileL  model (that ignores the truncation condition during estimation) is ideally 

suited for situations when a very small proportion (<5%) of the budget is allocated to inside 

goods. The budget in such situations can be treated as very large or infinite. In such cases, 

the -profileL  model can be used for both parameter estimation and predictions without 

budget information. The -profileNL  models are less likely to suit these situations, for it 

would be difficult to estimate the model parameters. Of course, if the budget information is 

available, the analyst may use the information during predictions to reduce prediction errors. 

(ii) When a small (but significant) proportion (5% to 35%) of the budget is allocated to inside 

goods, if the DGP is unknown, the analyst should estimate both the -profileL  and 

-profileNL  models and select the one that offers better fit, interpretation, and forecasts. 

If the underlying DGP involves -profileL  utility functions, estimating the -profileL  

model will yield biased parameter estimates attributable to the truncation condition. Despite 

the bias, accommodating the truncation condition during prediction will help improve the 

accuracy of predictions. Note that prediction with the -profileL  model in such situations 

will require the analyst to use the budget information. That is, one cannot apply the model 

if the budgets are unobserved. 

(iii) When a large (>35%) proportion of the budget is allocated to inside goods, using the 

-profileL  model will result in a high bias in parameter estimates and poor predictive 

performance. Therefore, regardless of the DGP, it is preferable to use the -profileNL  

model. Another implication is that one cannot use constrained utility maximization models 

to analyze consumption data with unobserved budgets if it is known that a large proportion 

of the budget is allocated to inside goods (or if the analyst does not have any idea of the 

proportional allocation to inside goods). 

In addition to the above important points, it is worth mentioning that the scale parameter is 

generally estimable across the three consumption patterns (and well recovered in situations 

when a small or very small proportion of the budget is allocated to inside goods; i.e., Scenarios 
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1 and 2) along with all the k  parameters, despite the absence of price variation. However, 

issues related to estimation of scale are likely to crop up in situations when the budget is limited 

and the allocation to inside goods is large. As discussed in Section 2.3, in such situations, the 

scale parameter takes small values to compensate for not accommodating the budget constraint 

during model estimation. This can be observed from the parameter recovery results reported 

Table 1 for Scenario 3, where the estimated scale parameter is very small. Sometimes the scale 

parameter might become so small during estimations that the model estimation breaks down. 

In such situations, as already discussed above, the -profileL  model that ignores the budget 

constraint is anyway not appropriate, and the -profileNL  model is better suited. 

 

4. MDC Choice Models with L -profile  Utility Functions and Infinite Budgets 

Consider the constrained utility maximization problem in Eq. (1) with an -profileL  utility 

function as in Eq. (2) and the budget (E) being very large (infinite). As discussed earlier, such 

a formulation is applicable for situations where the total expenditure on inside goods is a very 

small (<5%) proportion of the available budget. In such situations, one can assume safely that 

the outside good will always be consumed, and as a result, the KKT conditions in Eq. (3) are 

sufficient for optimality and feasibility without the need for the truncation condition of Eq. (5). 

Therefore, the likelihood function can be formed by anchoring the value of the Lagrange 

multiplier using the outside good ( 1 = ) and substituting it into the KKT conditions for 

inside goods. Assuming that the first  ( )M M K  goods are chosen and that the corresponding 

consumption values are 
* *

2 ,..., Mx x , the KKT conditions are given by: 

*

1*

*

1

, since 0 2,3,...,

1

, since 0 1,...,

k
k k

k

k

k k k

p x k M
x

p x k M K






 

=   =
 

+ 
 

 =  = +

     (12) 

With statistical specification for the above KKT conditions as discussed in Section 2.3, where 

exp( )k k k = +β z , 1 1exp( ) = , and exp( )k k = θ w , different assumptions on the random 

error terms ( k ) give rise to different models. Independent and identically distributed (IID) 

Gumbel error terms give rise to the -profileL  MDCEV model with the following log-

likelihood function (Bhat, 2018): 
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where, 
*

ln 1 lnk
k k k
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
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β z , 
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 , and   is inverse of the scale 

parameter of the distribution of k  (i.e., 
1




= ). Note that lnk k kV p= −β z  for non-chosen 

goods (i.e.,  k M  ), because 
* 0kx = . Further, the likelihood function can also be interpreted 

as the MDC density function for the 1M −  dimensional vector 1 2{ , ,..., }KX X X X=  of random 

variables representing optimal consumptions from the -profileL  MDCEV model. Rather than 

IID Gumbel error terms for k , if IID normally distributed random error terms are used, the 

-profileL  MDC Probit (MDCP) model results, whose likelihood involves a product of normal 

probability density and cumulative density functions (non-IID normally distributed error terms 

may also be used within the MDCP framework, as discussed in Bhat et al., 2013, but we confine 

attention here to the IID-normal case here within the MDCP framework). Furthermore, as 

demonstrated in Saxena et al. (2021), it is straightforward to accommodate upper bounds on 

the consumption of individual goods in either the MDCEV or the MCDP models. For example, 

consider 
max

kx  as the upper bound on the consumption of a good k . One can accommodate 

such an upper bound via modifying the KKT conditions for the optimal consumption (
*

kx ) of 

that good accordingly, as below:    
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Saxena et al. (2021) provide a detailed derivation of the likelihood for MDC models from the 

above KKT conditions that accommodate upper bounds on optimal consumptions.  
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4.1. Distribution of demand functions with L -profiles and infinite budgets 

One can express the optimal consumptions for any inside good k  from the KKT conditions of 

Eq. (14) as: 
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Note from the above expressions that 
*

kx  is left-censored at 0 and right-censored at 
max

kx . Let 

the uncensored version of the optimal consumption be represented as: 
1

1  k
k k

k

x
p






 
= − 
 
 

. It 

is easy to see from this expression that the minimum possible value for kx  is k− . Further, 

these expressions can be used to derive the discrete-continuous density function and the 

corresponding first and second moments of optimal consumptions from MDC choice models 

with AS -profileL  utility functions involving IID random error terms and infinite budgets. In 

this section, we derive the distributions of the demand functions and their first and second 

moments for the -profileL  MDCEV model and the -profileL  MDCP model. 

4.1.1. Demand functions from the L -profile  MDCEV model with infinite budgets 

One may utilize the expression 
1

1  k
k k

k

x
p






 
= − 
 
 

 for the uncensored version KX  of the 

optimal consumptions provided in Eq. (15) and apply the change of variables technique to 

derive the distribution of kX . Given the IID type-1 extreme value distributional assumptions 

on k  and 1  in k  and 1,  the marginal density of kX  in its uncensored form where 

k kX−     may be derived as follows (see Appendix A for the derivation): 
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The above density function is the same as that of a three-parameter log-logistic (or, shifted log-

logistic) distribution. Using this distribution for the uncensored variable kX , one can derive the 

discrete-continuous distribution for the censored optimal consumption variable 
*

kX  as follows: 

( )
*
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1
( 0) (0)

1k k
k X p
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The above density function for 
*

kX  reflects that the optimal consumption is left-censored at zero 

and right-censored at 
max

kx  with probability masses (0)
kX

F  and max( )
k

kX
F x , respectively, and 

has a continuous distribution * ( )
k

kX
f x  between zero and 

max

kx . A special case of this distribution 

is when there is no right-censoring or when there is no upper bound on the optimal consumption 

of good k  (i.e., 
max

kx → ). 

4.1.2. Demand functions from the L -profile  MDCP model with infinite budgets 

Assuming that the random error terms ( 1,...,k k K  = ) are IID normal distributed with a scale 

parameter  , the marginal density for the uncensored variable kX  ( k kX−    ) representing 

the optimal consumption of good k  from the MDCP model may be derived as (see Appendix 

A for the derivation):   
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The derived density is the same as that of a shifted log-normal density function. 

Using the above distribution for uncensored variable kX , one can derive the discrete-

continuous distribution for the optimal consumption variable  *

kX   from an MDCP model as: 
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4.1.3. Moments of demand distributions from L -profile  models with infinite budgets  

Table 3 provides expressions for the first and second moments for the continuous conditional 

distribution * max|0
( )

k k k
kX X x

f x
 

 for the case without an upper bound on the consumptions for both 

MDCEV and MDCP models with -profileL  utility functions, infinite budgets, and IID error 

terms. Appendix B derives these expressions. Note that these expressions are not fully closed-

form and involve open integrals for both MDCEV and MDCP models. However, the open 

integrals are easy to solve using off-the-shelf functions for integration. For the MDCP model, 

for example, the open integral is a univariate CDF of standard normal distribution, which is a 

commonly available function in most spreadsheet and data analysis software platforms.  

The ability to easily compute these expressions obviates the need for simulation to 

derive distributions from the corresponding MDC choice models. This becomes helpful when 

implementing such models in large-scale travel demand micro-simulation systems, where one 

can draw from the distributions given in Sections 4.1.1 and 4.1.2 as opposed to implementing 

the consumer’s utility optimizing program. Besides, now one can not only investigate the 

influence of prices or other covariates on the expected value of the distribution of optimal 

consumptions but also on the variance of the distribution. Furthermore, one can easily compute 

elasticities and other such metrics by simply computing the moments for the base case and a 

policy case (of 1% change in the variable for which elasticity is computed). In this context, we 

derived expressions for elasticities of the first and second moments of optimal consumptions 

with respect to unit prices and covariates in the baseline utility and satiation functions. 

However, those expressions are not reported here as they become quite cumbersome. It might 

be easier to compute the moments for the base and policy cases and use them to compute the 
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elasticities. It should also be possible to use the density function derived in the earlier section 

to derive different quantile values of the distribution. 

 For the MDCEV model, it is important to note that the first and second moments of 

optimal consumption of a good might not always be finite when there are no upper bounds on 

that good. This is due to the fat tail of the Gumbel distribution used in the underlying utility 

functions and the availability of an infinite budget. To examine this, we derived the conditions 

under which the moments from the distribution of optimal consumptions from the MDCEV 

model are finite. As derived in Appendix C, the first moment is finite only when the scale 

parameter 1   , and the second moment is finite only when the scale parameter 0.5  . For 

other values of the scale parameter, the corresponding moments become infinite. These 

findings are in line with the properties of the three parameter (or shifted) log-logistic 

distribution, which resembles closely with the distribution of the censored variable 
*

kX .  As a 

result, it becomes important to verify that the scale parameter estimate   is less than 0.5. This 

issue is demonstrated in Appendix C (see Table C.1 and the discussion associated with it in the 

appendix) with simulated data from an MDCEV model (with 1 = ), where the first and second 

moment values fluctuate substantially as the seed for the simulation of the error term 

distribution is varied. 

Interestingly, the above-discussed problem does not arise with the MDCP model in that 

the first and second moments are always finite (despite infinite budgets and no upper bound on 

the inside good’s consumption value). This can be verified from a visual examination of the 

expressions provided in Table 3 for the MDCP model. Specifically, the moments exist for all 

finite values of  . Table C.1 of Appendix C also demonstrates this using simulated data from 

an MDCP model. 

 To verify the correctness of the expressions derived in this section, we used the same 

utility functions assumed in Section 3 (and the parameters in the first row of Table 1) to 

simulate the first and second moments of optimal consumptions. To do so, the Pinjari and Bhat 

(2021) algorithm was used to find the optimal consumptions at each of several simulated values 

of the error terms, and then the first and second moments (i.e., mean and variance) were 

computed from these simulated consumptions. It can be observed from Table C.2 in the 

appendix that the simulated values for both the first and second moments are close to the 

corresponding values computed using the expressions shown in Table 3 for the MDCEV 

model. The same can be verified for the MDCP model by comparing the simulated and 

analytical moments reported in Table C.1. 
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4.1.4. Irrelevance of other alternatives (IOA) property for MDCEV L profile -  model with 

infinite budgets  

Interestingly, the density function for kX  in Eq. (16) is a special case of the likelihood 

expression in Eq. (13) when good k  is chosen along with the outside good, while no other 

inside good is available in the choice set. This result highlights that -profileL  MDC choice 

models with infinite budgets and IID error terms exhibit a property according to which the 

optimal consumption amount and the corresponding density function of an inside alternative 

do not depend on the presence or the attributes of other alternatives. We refer to this property 

as the irrelevance of other alternatives (IOA) property for discrete-continuous choice models. 

Note that this property holds true for the MDCP model (with IID error terms) as well. 

Intuitively, the marginal density of optimal consumption for any good k depends only on the 

parameters of good k and is same as the likelihood expression when good k is the only available 

inside good. To see this for the MDCP model with IID error terms, the likelihood expression 

for a K-good case (with the first good as the essential outside good) can be written as below: 
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where, ( )   is the standard normal probability density function. When good k is the only 

available inside good, the above likelihood expression simplifies to the following expression: 
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It can be shown that the above expression is the same as the marginal density function for kX  

in Eq. (20). This indicates that the IOA property holds for the MDCP model as well.  

Note that the IOA property does not imply independence across consumptions of 

different alternatives (since the error term corresponding to the outside good induces 

correlations across consumptions of different inside alternatives). Yet, due to this property, 

such dependencies do not affect parameter estimation and model predictions. This is because 

the inside goods do not compete among each other due to the presence of a relatively large 

budget to draw from. Thanks to this property, for situations with infinite budget and IID 

-profileL  utility functions, one can use discrete-continuous consumption data of only one 

good (or a subset of goods) to estimate the utility function parameters of that good (that subset 
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of goods); there is no need to observe or collect demand data of other goods. To verify this, we 

used the simulated MDCEV choice data (with infinite budgets) described in Section 3 to 

estimate binary discrete-continuous (BDC) choice models separately for each of the three 

inside goods. As can be noted from the results in Table 4, such BDC choice models for each 

inside good retrieve the parameters equally well as that of the MDC choice models that consider 

all inside goods at a time. We verified the IOA property in a similar manner using simulated 

data for the -profileL  MDCP model as well, although we do not report the results here to 

conserve space. 

As discussed above, the IOA property implies that the optimal allocation to a good 

depends only on the attributes of that good (i.e., its baseline preference and satiation 

parameters). However, an implication of this property is that the cross elasticities with respect 

to price or any other alternative attributes are zero, which essentially is a result of the 

availability of a large budget. While this may be seen as a limitation of the -profileL  utility 

MDC models with infinite budgets (unlike the traditional MDC choice models which can 

accommodate non-zero cross elasticities since the inside goods compete amongst each other 

due to a finite budget), an empirical strategy to accommodate non-zero cross price elasticities 

is to include prices and attributes of other alternatives as explanatory variables in the baseline 

preference function ( k ) of the good under consideration. Such an approach is useful in 

situations when consumption data of other goods is not available but information on prices is 

available to the analyst. However, this is only an empirical strategy and not a rigorous, utility 

theoretic approach to accommodate non-zero cross elasticities in -profileL  MDC model (this 

approach is akin to the use of the mother logit model in the single discrete choice case; see 

McFadden, 1975). As such, when finite budgets create competition among goods and result in 

non-zero cross elasticities, the analyst should consider using a non-linear utility form for the 

outside good or find a way to accommodate the budget constraint within the context of the 

linear form for the outside good.

4.2. Value of MDC models with infinite budgets and their relationship with a system of 

Tobit models 

It may appear that the proposed models with infinite budgets are not useful for practical 

applications since infinite budgets are rare in practice. However, as we observed from the 

simulation experiments in Section 3, the models are applicable in situations when the budgets 

are very large in comparison to the total expenditure on inside goods. Applications involving 

such situations are abundant. For example, households’ expenditures on tourism travel in a year 
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are typically very small compared to overall household expenditures in that year. Similarly, 

households’ expenditures at a shopping occasion are generally much smaller compared to their 

overall expenditures. In both these cases, households’ disposable incomes and overall 

expenditures can be assumed as large enough (relative to the total expenditure on inside goods) 

to be considered infinite. If the utility functions are well-specified with the important factors 

influencing the consumptions as explanatory variables entering the baseline utility and the 

satiation parameters, and if the scale parameter is estimated, the random components of the 

utility functions can be expected to be tight enough (i.e., of small variance) to limit the 

likelihood of predicting unrealistically large consumption values for the inside goods. Also, as 

discussed earlier, it is possible to impose upper bounds on the consumption values of individual 

goods if such information is available with the analyst.  

Further, the -profileL  MDC model with infinite budgets leads to RUM-based 

discrete-continuous choice models that have similarities with the traditional discrete-

continuous mixture regression models for censored data such as the Tobit model (Tobin, 1958). 

To see this specifically, consider the utility function from Eq. (2) and restrict all k  parameters 

to one (i.e., 1for 2,3,...,k k K = = ). Such restrictions result in the following utility profile: 

( )1 1
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( ) ln 1
K

k k

k

U x x 
=

= + +x         (26) 

Note that in the above utility function, the satiation effects are still included for the goods, 

independent of k  ( k  provides additional satiation effects and allows for corner solutions; see 

Bhat, 2008 for more details) This satiation is introduced through the log-transformation, (the 

k  satiation parameter in Bhat’s (2008) formulation is normalised to zero, which results in the 

log-transformed utility profile) and can be verified from the marginal utility for an inside good 

k given by: 
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The above marginal utility decreases as consumption ( kx ) increases. Also, for any two inside 

goods with same baseline preferences ( k ), the utility profiles are identical, with equal 

satiation. This implies that k determines not only the discrete consumption, but also is the 

sole determinant of the continuous consumptions, thus imposing tight tie between the discrete 
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and continuous consumptions. However, allowing free estimation of k  provides additional 

flexibility to the models in that it loses the strong tie between the discrete and continuous 

consumptions to a larger degree. Besides, by allowing k  to be a function of individual 

characteristics, it is possible to accommodate heterogeneity in satiation level across individuals. 

Interestingly, the KKT conditions of the optimization model (as in Eq. (1)) for the utility 

function of Eq. (26) (that restricts 1 2,3,...,k k K =  = ) result in a sequence of Tobit models. 

To see this, with 1for 2,3,...,k k K = = , the resulting KKT conditions for the utility function 

in Eq. (26) are: 
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The above set of equations can be equivalently written as: 
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where, *

ky  is the latent propensity and is given by *

1 lnk k k ky p= + −β z , and ky  is the observed 

variable (which is same as the log-transformed consumption value, i.e., ( )*ln 1kx + ). 

The above system of equations (in Eq. (29)) is exactly same as a Tobit model, with a 

Tobit equation for each alternative. This implies that a Tobit model is in fact a restricted version 

of the -profileL  MDC model and is consistent with utility maximization. To the best of our 

knowledge, this is the first attempt to show the derivation of the Tobit model form a utility 

maximization approach, albeit with several restrictions as discussed above. 

 

5. Empirical Application  

5.1. Empirical data 

The empirical data for this analysis comes from the Domestic Tourism Expenditure survey lead 

by the National Sample Survey Office (NSSO) of India in the years 2014 and 2015 (survey of 

domestic tourism in India, NSS 72nd round). For every respondent household, the survey 

recorded data on domestic trips that involved at least an overnight trip in 365 days prior to the 

date of the survey. For each such domestic trip made for the primary purpose of (a) leisure, 

holiday and recreation, (b) shopping, or (c) health and medical, the survey recorded 

expenditures across six expenditure classes: transportation, accommodation, food and 
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beverages (f&b), shopping, recreation and leisure, and health/medical. For this analysis, only 

the trips made for the purposes of leisure, holiday and recreation were considered (referred to 

as leisure trips from now on). Most households reported at most one overnight domestic leisure 

trip over the timeframe of a year. For households that reported multiple trips, we considered 

the most recent leisure trip made by the household.  Among these, only those trips that were 

not reimbursed by an employer or other sources were considered. Also, package-deal trips were 

not included in the analysis since the data did not contain information on expenditure by 

category for these trips. After further cleaning and processing, the final empirical dataset used 

in this study had expenditure information on the recent leisure trip made by 4981 households, 

along with other details such as household socio-demographics and trip-level variables. These 

4981 trips were split into two samples – an estimation sample with 3500 trips and a validation 

sample with 1481 trips.  

For the above-described leisure trips considered in this study, we analyzed expenditures 

in the following categories: (a) accommodation, (b) food and beverages (f&b), (c) shopping, 

and (d) recreation and leisure (or recreation for brevity). Recall from the discussion in Section 

4 that parameter estimation on a subset of alternatives does not affect the parameter estimates, 

as long as the utility functions belong to the -profileL  class and have IID error terms. Further, 

since the expenditures incurred on health and medical services and transportation may not be 

fully discretionary, and transportation expenses include fixed costs of travel to and from the 

destination, we did not consider these expenditures in the current study.  

Table 5 reports the aggregate expenditure patterns of the trips in the estimation sample. 

As can be observed, a large majority of households expended in f&b and shopping categories, 

but only 46.9 percentage of households spent on accommodation and 37.4 percentage spent on 

recreation and leisure. However, if households spent on accommodation, their average 

expenditure in that category (3200 Indian rupees (₹)) was higher than that for other expense 

categories. Interestingly, despite trips being for leisure, holiday, or recreation purposes, the 

expenditures in the recreation and leisure category are smaller than those in other categories. 

These statistics have implications for the tourism industry in India. Specifically, recreation does 

not appear to be the primary revenue-generating activity by leisure travelers in India. Their 

expenditures on accommodation, shopping, and food and beverages generate more revenues 

than their leisure activities. 

Apart from the information on spending across the four classes, the sample has 

information on households’ socio-demographic attributes, such as household type (whether 
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urban or rural), income level, and the composition of the group undertaking the trip (such as 

gender ratio). Also, trip-level attributes such as the trip duration (number of days), travel group 

size, and the destination of the trip aggregated at a state level were available. All these variables 

were explored as exogenous variables in the empirical model. Note here that since the model 

framework employs -profileL  utility functions and assumes infinite budgets, the information 

on the total budget (and therefore, the outside good expenditure) is not necessary for our 

analysis. 

5.2. Estimation results 

We estimated both MDCEV and MDCP models with -profileL  utility functions. While the 

scale parameter in the MDCEV model was estimated to be 0.46 which ensured existence of the 

first and second moments, the MDCP model provided a better statistical fit than the MDCEV 

model, both in term of AIC and BIC values (log-likelihood of -38563.70, and the corresponding 

AIC and BIC values of 77237.40 and 77576.22, respectively for the MDCEV model as 

compared to log-likelihood of -38302.25, and the corresponding AIC and BIC values of 

76714.50 and 77053.32, respectively for the MDCP model). The subsequent results and 

findings are reported for the MDCP model owing to its superior statistical fit, albeit the 

MDCEV model also provided similar interpretations.  

This empirical analysis intends to demonstrate the applicability of such models despite 

the assumption of infinite budgets, more than contributing substantially to understanding 

tourism expenditures in India. Nonetheless, we explored several alternative empirical 

specifications and arrived at the final empirical specification based on statistical significance 

and substantive interpretation of the parameter estimates. The model estimation results are 

presented in Table 6 and discussed next. 

5.2.1. Baseline marginal utility and satiation functions 

The constants in the baseline preferences and the satiation parameters are estimated for each 

alternative, except for the outside good. The constants themselves do not have a substantive 

interpretation. However, the constants in the baseline preference functions adjust for the bias 

in the location of the baseline preference distributions, and therefore, are important in the 

specification regardless of their statistical significance. 

 In the context of attributes that represent household demographics, the parameter 

estimates on urban dummy in the baseline preference highlight that urban households are more 

likely to spend in accommodation than their rural counterparts (Shucksmith et al., 2009). On 

the other hand, rural households are more likely to spend in shopping, possibly due to lack of 
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retail infrastructure in rural regions (Gupta, 2011). Unsurprisingly though, the positive 

coefficient on urban dummy in the satiation function indicates that urban households typically 

spend more across all expenditure categories (Pal and Ghosh, 2007). The effects of households’ 

monthly income (considered through a surrogate variable that represents household usual 

monthly expenditure) indicates that low-income households (whose usual monthly expenditure 

is less than ₹10,000) and medium-income households (whose usual monthly expenditure is 

between ₹10,000 and ₹20,000) are less likely to spend than high-income households in all 

expenditure categories except shopping. Income did not have a significant effect on the 

likelihood of a household expending on shopping. In the context of income effects on the 

satiation parameters, high-income households tend to spend more on shopping and recreation 

than low- and medium-income households, and more on food and beverages than low-income 

households. Overall, the parameter estimates of income variables in the baseline preference 

and satiation functions reflect the higher spending capabilities of the medium- and high-income 

households than low-income households. 

 In the context of group and trip specific attributes, larger groups are less likely to spend 

in accommodation category. Intuitively though, such groups spend more in each of the 

categories as compared to a smaller group. Interestingly, groups with higher proportion of 

women are less likely to spend in accommodation and food and beverages. However, groups 

that are constituted primarily of women spend more in accommodation and food and beverages 

category, indicating that women prioritize safety, health, and hygiene (Herter et al., 2014; 

(Zemke et al., 2015; Meng and Uysal, 2008; Hao and Har, 2014). Also, such groups are more 

likely to spend in shopping category (Herter et al., 2014).  

Finally, the duration of the trip did not influence the likelihood of spending in any 

category, except in accommodation, where longer duration trips resulted in less likelihood of 

opting for a paid accommodation (see Pellegrini et al., 2021 for a similar finding). However, 

as expected, the extent of expenditure across all categories increases with the duration of stay. 

Similarly, farther destinations are associated with higher likelihood of spending in each of the 

spending categories, though trip destination does not influence the satiation parameter of 

expenditure in any category, except shopping. 

5.2.2. Scale parameter 

Based on the discussion in Section 2.3, we attempted to estimate the scale parameter, which 

was estimated with a value equal to 0.66 (despite the absence of price variation). Another 

empirical specification that fixed the scale parameter to 1 was of substantially inferior fit. 
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Therefore, we retained the model with the scale parameter estimate of 0.66. As discussed later, 

the relatively low variance of the error terms results in thin right tails for the implied 

distributions of the expenditures. This, in turn, implies very low probabilities for predicting 

unrealistically high expenditures, and obviates the need for imposing finite budgets. Overall, 

the estimation results provide intuitive and behaviourally plausible insights on leisure travelers’ 

expenditure patterns on overnight leisure trips in accommodation, food and beverage, 

shopping, and leisure categories. 

5.3. Characterization of the distributions of empirical demand  

Figure 2 presents the trip-level probability density function (PDF) plots for the expenditures 

implied by the empirical model for a randomly selected rural household in the data for a four-

day trip made by one of the household’s male members to a destination within the same state 

as that of the UPR. For this household, each of the four panels in the figure presents 

expenditures in each of the four expenditure categories – accommodation, food and beverages, 

shopping, and recreation. In each panel, there are three PDF plots – one for each of low-, 

medium-, and high-income scenarios. Each density function plot is for values of expenditures 

above zero, based on the expression given in Eq. (22). The probability mass values for zero 

expenditure, computed using the expression in Eq. (21), are reported in the legends of the 

panels in the figure. 

 As discussed earlier, the empirical model implicitly assumes infinite budgets. This is 

reflected in the expressions for the PDF expression of Eq. (22) as well. Specifically, the PDF 

expression is defined for all values of kx  above zero (i.e., 
max

kx =  ). Therefore, in theory, the 

predicted values of optimal expenditures can be unreasonably large. This possibility raises 

questions on the practical applicability of the model with -profileL  utility functions. However, 

the plots in Figure 2 illustrate that the PDF values for high expenditure values are very small 

and close to zero. This is because the scale parameter estimate (0.66) of the model is small 

enough to render a thin right tail to the implied probability distributions of expenditures. As 

income increases, all the PDF plots skew to the right, indicating an increase in spending in all 

expenditure categories. Nonetheless, the right tails of the distributions are not fat enough to 

result in a high likelihood of large expenditures.     

We plotted the PDF functions for a few more randomly selected households (not shown 

in Figure 2) and observed similar trends. Therefore, despite the assumption of infinite budgets, 

MDC choice models with -profileL  utility functions can be used to model consumption data 

(in situations with large budgets). The model does not necessarily lead to high likelihoods of 
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unreasonably large consumption values. Of course, there is no guarantee that such an 

observation will hold across all empirical contexts or for all empirical specifications. Therefore, 

it is useful to plot the model-implied PDF functions for at least a few individuals in the data. 

Further, if the analyst has access to information on upper bounds (i.e., 
max

kx ) for any of the 

expenditures, it is straightforward to apply the bounds to avoid the prediction of unrealistically 

large values (Saxena et al., 2021).  

5.4. Aggregate predictive performance assessment  

This section evaluates the aggregate predictive performance of the estimated MDC choice 

model with -profileL  utility functions, IID log-normal error terms, and infinite budgets. The 

evaluation was undertaken for both the estimation sample (N = 3,500) and the holdout 

validation sample (N = 1,481). Table 7 provides the results for both the discrete choice decision 

to spend in each of the four expense categories and the corresponding continuous expenditure 

amounts. The observed aggregate discrete choice shares for an expense category are reported 

as the percentage of individuals in the sample who spent in that category. The observed 

aggregate expenditures for an expense category are the average of observed expenditures 

across all those who spent in that category. These metrics from the observed data are compared 

with two types of model predictions – analytic predictions and simulated predictions. The 

analytic predictions were obtained using the expressions derived in this paper. Specifically, Eq. 

(21) was used to compute the discrete choice probability of each household in the sample 

expending in each category. Such choice probabilities for a given category were summed 

across all individuals in the sample to predict the percentage of individuals spending in that 

category. Similarly, the analytic expression reported in Table 3 (for the MDCP model) was 

used to compute the expected value of the continuous probability distribution for the 

expenditure by each household in each category. The average values (across the sample) of 

such expected values are reported as average expenditures for each expense category. 

Simulated predictions were obtained by solving each household’s utility maximization for each 

of the 50 sets of simulated values of the models’ error term draws. The aggregated predictions 

across all 50 sets of error draws for all households are reported as simulated predictions. 

 To compare model predictions with observed aggregate values, the last row of Table 7 

reports weighted MAPE values for both analytic and simulated predictions. Two important 

observations can be made from the Table. First, despite making an implicit assumption of 

infinite budgets, the aggregate predictions from the model (both analytic and simulated 

predictions) are fairly accurate (i.e., close to observed aggregate values). The weighted MAPE 
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values are small for both discrete and continuous choice components. The same pattern may 

be observed for predictions in both the estimation and validation samples. These results 

highlight that the assumption of infinite budgets is innocuous in the current empirical 

application. Second, the simulated predictions are generally close to the analytic predictions in 

almost all cases, except for the average expenditures in the accommodation category. The 

weighted MAPE values for the simulated predictions are 13.82 and 11.82 in the estimation and 

validation sample, respectively, and are higher relative to the more accurate analytic 

predictions, with a weighted MAPE of 7.18 and 4.65 for the estimation and validation sample, 

respectively. We noticed that increasing the number of error draws from 50 to 100 helped 

reduce the weighted MAPE for simulated predictions, albeit with an increase in the 

computation time needed. These results suggest the benefit of using the analytic methods 

proposed in this paper for prediction and policy analysis with MDC choice models with 

-profileL  utility functions and infinite budgets. 

 

6. Summary and Conclusions  

This paper sheds light on the properties of MDC choice models with a linear utility profile for 

the outside good and an additively separable specification for the inside goods (i.e., -profileL  

models). Specifically, the paper examines the suitability of the -profileL  models for different 

consumption patterns (relative to the budget), using both a theoretical examination of the model 

and extensive simulations. In doing so, the paper highlights the importance of explicitly 

considering the budget constraint and the essential nature of the outside good during parameter 

estimation. Doing so requires the likelihood function to accommodate a truncation condition 

on the baseline marginal utility parameters of the model. Prior implementations of the 

-profileL  model in the literature do not consider the truncation condition during parameter 

estimation, which causes a risk of biased parameter estimation and erroneous prediction. 

 The paper demonstrates that the -profileL  models (that do not account for the 

truncation condition during parameter estimation) are best applied for situations when the total 

expenditure on inside goods is very small compared to the budget (<5% of the budget). The 

-profileNL  models are less likely to suit these situations, for it would be difficult to estimate 

model parameters. As the proportion of the budget allocated to inside goods increases (beyond 

5%), the bias in parameter estimates from the -profileL  model increases. However, the model 

may still be used as an alternative to the -profileNL  models only in situations when a small 

proportion of the budget is allocated to inside goods (<35% percent of the budget), as long as 
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the prediction algorithm considers the truncation condition. In such situations, it is advisable 

to try both the -profileL  and -profileNL  models and prefer the one that offers better 

interpretations and predictive ability. However, in situations when a large proportion of budget 

(>35% of the budget) is allocated to inside goods, it is imperative to explicitly incorporate the 

budget constraint in model estimation. Unfortunately, doing so becomes complicated with the 

usual assumptions made for the stochastic error terms. Thus, the -profileL  model should not 

be used as it can result in substantial bias in parameter estimates and poor predictions. In such 

situations, the -profileNL  model should be preferred, and information on the budget amount 

becomes necessary for parameter estimation and prediction. In addition, the paper highlights 

that the issues related to estimation of scale parameter in the absence of price variation are not 

as severe as previous studies pointed out. The paper indicates that the scale parameter is indeed 

estimable in the absence of price variation, except in some situations with limited budgets and 

large allocation to inside goods.  

 Importantly, the paper characterizes the stochastic distributions of the optimal demand 

functions resulting from MDC models for both -profileL  MDCEV and -profileL  MDCP 

models that assume additively separable and IID utility functions in situations when the budget 

is sufficiently large relative to the expenditure on the inside goods. In addition to the density 

functions of optimal demands, the paper derives expressions for the first and second moments 

of the distributions, thereby obviating the need for extensive simulations to forecast the 

expected consumption values. Based on these derivations, the paper sheds light on two 

important properties of these models. First, the -profileL  MDCEV models yield demand 

functions with finite first moments only when the scale of the utility function 1   (and finite 

second moments when 0.5  ). However, this is not the case with -profileL  MDCP model 

as the moments of the corresponding demand functions exist for all values of the distribution’s 

parameters. Second, these models exhibit an irrelevance of other alternatives (IOA) property 

which implies that the discrete-continuous demand of an alternative is a function of the 

attributes of only that alternative and does not depend on the attributes (or availability) of other 

inside goods. This property allows the estimation of the utility function parameters of any 

alternative as long as the consumption data is available for that alternative even if information 

is not available on other alternatives in the choice set. However, the IOA property also results 

in a possible limitation of the -profileL  MDC choice model in that the model exhibits zero 

cross elasticities with respect to price and other alternative attributes. Finally, perhaps for the 

first time in literature, the paper highlights the relationship between the -profileL  MDC 
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models and Tobit models and shows that the Tobit model is a restricted version of the 

-profileL  MDC models and is consistent with utility maximization.   

 The above discussed derivations and properties of the demand density functions from 

-profileL  MDC choice models (for the infinite budgets case) are verified using simulated as 

well as empirical data. The empirical analysis was undertaken to analyse expenditure patterns 

of domestic tourism trips from a sample of households in India. Despite the assumption of 

infinite budgets, the empirical model provides plausible forecasts without a high likelihood of 

unreasonably large expenditures.  

 Future research should consider formulating -profileL  models that make it easy to 

consider the budget constraint and essential nature of the outside good during parameter 

estimation. Doing so might need a departure from the typically used stochastic distributions on 

the error terms in the utility functions. Another useful avenue is to derive the marginal 

distributions of demand functions for non-IID error terms, since all the derivations in the 

current paper are for IID error terms. In addition to non-IID error terms, it will be useful to 

accommodate dependence among utility functions through non-additive utility forms (Bhat et 

al., 2015). The empirical analysis presented in the study does not consider travel costs to and 

from the destination as fixed costs. In this context, the development of MDC models that 

recognize fixed costs (which can lead to non-smooth budget constraints) is an important area 

for future research.  
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Table 1. Simulation experiment results: Parameter recovery for the -profileL  model for different consumption patterns 

Scenario 1: A very small proportion of the budget is allocated to inside goods (infinite budget case) 

Data generation process: -profileL  model, Budget = 50,000 units, Sample size = 10000 individuals. 

Parameter 2
ASC  

3
ASC  

4
ASC  

12,z
  

13,z
  

14,z
  

22,z
  

23,z
  

24,z
  2w  

3w  
4w    

True parameter value -1.800 -1.200 -1.500 0.500 0.700 0.800 -1.000 -1.200 0.600 1.000 1.800 2.500 0.400 

Parameter estimate with -profileL  -1.809 -1.202 -1.495 0.502 0.700 0.799 -1.006 -1.201 0.600 0.998 1.799 2.498 0.399 

Absolute percentage bias (APB) 0.500 0.17 0.32 0.46 0.05 0.09 0.65 0.10 0.12 0.18 0.04 0.04 0.50 

Asymptotic standard errors (ASE) 0.031 0.02 0.019 0.007 0.006 0.005 0.02 0.016 0.013 0.025 0.025 0.027 0.002 

Finite sample standard errors (FSSE) 0.020 0.021 0.021 0.005 0.004 0.003 0.021 0.017 0.012 0.026 0.022 0.026 0.002 

Overall Average APB   0.22 

Scenario 2: A small but significant proportion of the budget is allocated to inside goods 

Data generation process: -profileL  model, Budget = 1000 units, Sample size = 10000 individuals. 

Parameter 2
ASC  

3
ASC  

4
ASC  

12,z
  

13,z
  

14,z
  

22,z
  

23,z
  

24,z
  2w  

3w  
4w    

True parameter value -1.800 -1.200 -1.500 0.500 0.700 0.800 -1.000 -1.200 0.600 1.000 1.800 2.500 0.400 

Parameter estimate with -profileL  -1.597 -0.730 -0.826 0.423 0.501 0.467 -1.146 -1.132 0.352 0.833 2.087 3.378 0.490 

Absolute percentage bias (APB) 11.26 39.17 44.92 15.38 28.40 41.57 14.63 5.63 41.16 16.65 15.96 35.13 22.61 

Asymptotic standard errors (ASE) 0.027 0.018 0.017 0.005 0.005 0.005 0.018 0.015 0.012 0.024 0.025 0.028 0.003 

Finite sample standard errors (FSSE) 0.014 0.014 0.015 0.006 0.005 0.005 0.022 0.015 0.010 0.022 0.024 0.039 0.002 

Overall Average APB  25.58 

Scenario 3: A large proportion of the budget is allocated to inside goods 

Data generation process: -profileL  model, Budget = 1000 units, Sample size = 10000 individuals. 

Parameter 2
ASC  

3
ASC  

4
ASC  

12,z
  

13,z
  

14,z
  

22,z
  

23,z
  

24,z
  2w  

3w  
4w    

True parameter value 0.500 0.800 1.800 0.200 -0.149 -0.212 0.700 0.600 0.500 5.059 3.713 4.641 0.265 

Parameter estimate with -profileL  0.078 0.150 0.285 0.003 -0.045 -0.055 -0.125 -0.104 -0.100 7.950 5.736 7.380 0.085 

Absolute percentage bias (APB) 84.40 81.25 84.16 98.50 69.79 74.05 117.85 117.33 120.00 57.14 54.48 59.01 67.92 

Asymptotic standard errors (ASE) 0.006 0.010 0.018 0.001 0.003 0.003 0.009 0.007 0.008 0.072 0.070 0.074 0.005 

Finite sample standard errors (FSSE) 0.008 0.012 0.020 0.001 0.003 0.004 0.009 0.008 0.008 0.074 0.083 0.077 0.005 

Overall Average APB   83.53 

 



41 

 

Table 2. Simulation experiment results: Predictive accuracy of the -profileL  model and its comparison with the -profileNL  model 

DGP 1: L -profile  utility function. A small proportion of the budget is allocated to inside goods. Budget = 1000 units, 50 datasets of sample size 10000. 

 Discrete choice (% of times an alternative is chosen) Average continuous consumption choice  

 Simulated % -modelL prediction -modelNL  prediction Simulated -modelL  prediction -modelNL  prediction 

Alternative 1 100 100 100 836.3 840.3 783.1 

Alternative 2 31.0 31.7 35.5 4.9 5.3 8.8 

Alternative 3 62.3 64.4 68.7 46.7 49.9 65.5 

Alternative 4 77.9 78.5 83.5 170.9 161 201.8 

Weighted MAPE (%) -- 1.25 6.08 -- 1.65 10.08 

DGP 2: NL -profile  utility function. A small proportion of the budget is allocated to inside goods. Budget = 1000 units, 50 datasets of sample size 10000. 

 Discrete choice (% of times an alternative is chosen) Average continuous consumption choice  
 Simulated % -modelL  prediction -modelNL  prediction Simulated -modelL  prediction -modelNL  prediction 

Alternative 1 100 100 100 783.1 847.5 781.7 

Alternative 2 35.5 29.1 35.5 8.8 6.9 8.8 

Alternative 3 68.7 61.4 68.6 65.5 52.6 66.9 

Alternative 4 83.5 77.2 83.5 201.8 153.0 202.8 

Weighted MAPE (%) -- 6.94 0.06 -- 12.1 0.4 

DGP 3: L -profile  utility function. A large proportion of the budget is allocated to inside goods. Budget = 1000 units, 50 datasets of sample size 10000. 

 Discrete choice (% of times an alternative is chosen) Average continuous consumption choice  
 Simulated % -modelL  prediction -modelNL  prediction Simulated -modelL  prediction -modelNL  prediction 

Alternative 1 100 100 100 569.9 704.7 536.6 

Alternative 2 55.3 47.3 58.3 463.5 338.4 440.6 

Alternative 3 32.9 25.5 32.6 43.6 41.1 79.4 

Alternative 4 54.1 46.8 58.0 296.3 266.5 311.4 

Weighted MAPE (%) -- 9.36 2.98 -- 21.3 7.8 

DGP 4: NL -profile  utility function. A large proportion of the budget is allocated to inside goods. Budget = 1000 units, 50 datasets of sample size 10000. 

 Discrete choice (% of times an alternative is chosen) Average continuous consumption choice  

 Simulated % -modelL  prediction -modelNL  prediction Simulated -modelL  prediction -modelNL  prediction 

Alternative 1 100 100 100 536.63 760.53 533.27 

Alternative 2 58.3 40.0 58.6 440.60 309.70 445.10 

Alternative 3 32.6 22.3 32.7 79.43 54.80 78.35 

Alternative 4 58.0 41.3 58.1 311.40 250.37 310.28 

Weighted MAPE (%) -- 18.20 0.22 -- 32.19 0.74 
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Table 3. Density functions and the corresponding moments for consumptions arising out of the -profileL MDCEV and MDCP models 
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Notes for Table 3:  

The above moments are for conditional distributions * max|0
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 of optimal consumptions (conditioned on the choice of the good). 

In the above expressions, ln 1 lnk
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 − + −
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β z
, where (.)  is standard normal CDF function. It is worth noting here that the 

integrals 1kI  and 2kI  do not necessarily have a closed-form for all values of  , except maybe for a few integer values. But these integrals can be computed easily with 

numerical integration techniques available in many off-the-shelf programs. Similarly, k , 1k , and 2k  do not have a closed form, but these terms involve standard 

normal CDFs that can be computed rather easily.  
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Table 4. Demonstration of the IOA property of the -profileL  MDCEV model with infinite budget 

MDCEV choice model estimated on consumptions simulated from MDC choice model with infinite budget 

Parameter 
2

ASC  
3

ASC  
4

ASC  
12,z  

13,z  
14,z  

22,z  
23,z  

24,z  2w  
3w  

4w    

True parameter -1.800 -1.200 -1.500 0.500 0.700 0.800 -1.000 -1.200 0.600 1.000 1.800 2.500 0.400 

Estimate -1.809 -1.202 -1.495 0.502 0.700 0.799 -1.006 -1.201 0.600 0.998 1.799 2.498 0.399 

APB (%) 0.500 0.174 0.320 0.460 0.056 0.094 0.654 0.100 0.129 0.189 0.043 0.043 0.250 

FSSE 0.02 0.021 0.021 0.005 0.004 0.003 0.021 0.017 0.012 0.026 0.022 0.026 0.002 

ASE 0.031 0.02 0.019 0.007 0.006 0.005 0.020 0.016 0.013 0.025 0.025 0.027 0.002 

BDCEV choice model estimated for the first inside good (estimated on consumptions simulated from MDCEV choice model with infinite budget) 

Parameter 
2

ASC  

  

12,z  

  

22,z  

  

2w  

  

  

True parameter -1.800 0.500 -1.000 1.000 0.400 

Estimate -1.799 0.499 -1.003 1.006 0.398 

APB (%) 0.004 0.048 0.361 0.631 0.500 

FSSE 0.034 0.010 0.029 0.044 0.007 

ASE 0.048 0.012 0.030 0.049 0.010 

BDCEV choice model estimated for the second inside good (estimated on consumptions simulated from MDCEV choice model with infinite budget) 

Parameter 

 

3
ASC  

  

13,z  

  

23,z  

  

3w  

 

  

True parameter -1.200 0.700 -1.200 1.800 0.400 

Estimate -1.202 0.699 -1.202 1.804 0.400 

APB (%) 0.223 0.008 0.172 0.235 0.058 

FSSE 0.019 0.007 0.021 0.038 0.006 

ASE 0.022 0.007 0.018 0.032 0.005 

BDCEV choice model estimated for the third inside good (estimated on consumptions simulated from MDCEV choice model with infinite budget) 

Parameter 

  

4
ASC  

  

14,z  

  

24,z  

  

4w    

True parameter -1.500 0.800 0.600 2.500 0.400 

Estimate -1.495 0.799 0.599 2.500 0.399 

APB (%) 0.280 0.110 0.144 0.029 0.250 

FSSE 0.023 0.004 0.011 0.032 0.003 

ASE 0.020 0.005 0.014 0.032 0.004 
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Table 5. Aggregate expenditure patterns in the empirical data (N = 4,981 trips) 
 Participation rate 

(Percentage of households who 

expended in the category) 

Average expenditure by households 

who spent in that category (in ₹)  

Accommodation  46.9 3200 

Food and beverages (F&B) 93.7 1610 

Shopping 84.4 1970 

Recreation and leisure       37.4   600 
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Table 6. Estimation results of the model for household expenditures on leisure trips in India 

 Expenditure classes 

 
Accommodat

-ion 

Food and 

beverages 
Shopping 

Recreation 

and leisure 

Baseline preference function     

Constants -1.15 (-9.85) 1.43 (16.17) 0.44 (6.67) -0.91 (-10.16) 

Household specific variables     

Urban household (Base category: Rural) 0.11 (2.80) IS -0.21 (-4.44) IS 

Income (Base category: UMCE > ₹20K)     

Low-income (UMCE < ₹10K) -0.76 (-12.82) -0.53 (-7.58) IS -0.23 (-4.33) 

Medium-income (UMCE: ₹10-₹20K) -0.43 (-8.21) -0.44 (-9.28) IS -0.12 (-2.56) 

Travel group and trip specific variables     

Size of the travel group -0.01 (-1.10) IS 0.06 (3.34) 0.03 (1.12) 

Proportion of women in the group -0.30 (-3.75) -0.50 (-6.00) 0.08 (1.30) IS 

Trip duration (Base: duration > 10 nights)     

Trip duration is 1-3 nights 1.00 (13.29) IS IS IS 

Trip duration is 4-10 nights 0.53 (7.70) IS IS IS 

Trip destination (Base: Same district as UPR)     

Same state of UPR (not same district) 0.75 (9.75) 0.61 (10.74) 0.32 (4.72) 0.57 (8.05) 

Outside the state of UPR 1.33 (16.67) 1.21 (20.34) 0.61 (8.42) 0.97 (13.44) 

Satiation function     

Constants 3.48 (17.95) -0.23 (-4.07) 1.11 (9.05) 1.30 (8.58) 

Household specific variables     

Urban household (Rural is base) 0.19 (1.70) 0.22 (4.63) 0.31 (4.50) 0.20 (2.04) 

Income (Base category: UMCE > ₹20K)     

Low-income (UMCE < ₹10K) IS -0.30 (-3.28) -0.54 (-9.11) -0.38 (-3.22) 

Medium-income (UMCE: ₹10-₹20K) IS IS -0.28 (-5.11) -0.15 (-1.32) 

Group and trip specific variables     

Size of the travel group 0.10 (3.48) 0.17 (8.76) 0.07 (3.43) 0.07 (2.75) 

Proportion of women in travel group 0.49 (3.09) 0.42 (4.19) IS IS 

Duration of stay (Base: Duration>10 nights)     

If the duration of stay was 1-3 nights -1.84 (-10.42) * * * 

If the duration of stay was 4-10 nights -0.92 (-5.17) * * * 

   Number of nights * 0.02 (17.14) 0.03 (10.10) 0.02 (3.85) 

Trip destination (Base: Same district as UPR)     

Same state of UPR (not same district) IS IS 0.12 (4.73) IS 

Outside the state of UPR IS IS 0.48 (5.34) IS 

Scale of error terms of all goods 0.66 (44.7) 

Goodness of fit measures  

Number of cases (N) 3500 

Log-likelihood for constant only model -39756.85 

Log-likelihood of the final specification -38302.25 

Number of parameters of the final specification 55 

   Notes: t-statistics of each estimated parameter are provided in parentheses next to the estimate. 

   IS: The parameter turned out to be statistically insignificant. The corresponding variable was dropped     

         from the specification. 

   *  No. of nights was specified as categorical variables in the accommodation satiation function and continuous  

        variable in other satiation functions. 
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Table 7. Predictive performance of the empirical model on estimation and validation samples 

 Estimation sample (N=3500) Validation sample (N=1481) 
Discrete choice shares 

(Percentage of households) 
Aggregate Expenditures 

(100s of ₹) 
Discrete choice shares 

(Percentage of households) 
Aggregate Expenditures 

(100s of ₹) 
Observed Simulated Analytic Observed Simulated Analytic Observed Simulated Analytic Observed Simulated Analytic 

Accommodation 46.9 46.7 46.7 32.0 37.9 34.2 49.7 47.2 47.2 32.8 39.8 35.3 

Food & 

beverages 
93.7 93.1 93.2 16.1 17.7 17.1 93.6 93.4 93.4 18.5 18.0 17.6 

Shopping 84.4 81.6 81.7 19.7 21.2 21.3 84.2 81.7 81.2 21.8 22.7 21.7 

Recreation & 

leisure 
37.4 37.6 37.7 6.0 7.2 6.5 37.9 38.2 38.2 6.4 7.4 6.6 

Weighted 

MAPE (%) 
-- 1.44 1.41 -- 13.82 7.18 -- 2.07 2.26 -- 11.82 4.65 

 

 

 

 

Note: Data generation was done using the -profileL  for this comparison. 

Figure 1. Prediction performance of -profileL  and the -profileNL  models under different proportional allocations to inside goods 
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Figure 2.  Probability density curves for expenditures on overnight leisure trips by three households belonging to low-, medium-, and high-income categories
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APPENDIX A: Derivation of the distribution of demand functions for the L -profile  

MDCEV and MDCP models with infinite budgets 

A.1. Distribution of demand functions for the -profileL  MDCEV model 

From Eq. (15) in the text, the uncensored expression for optimal consumption is: 

1

1  k
k k

k

x
p






 
= − 
 
 

         (A1) 

In the above expression, the utility parameters k  and 1  are log-extreme value distributed, 

and specified as exp( )
k k k

 = +β z  and 1 1
exp( ) = , where ( 1,2,..., )k k K =  are IID type-1 

extreme value distributed with scale parameter  . For ease in notation, we use the inverse of 

the scale parameter 
1




=  in this and all other derivations for MDCEV models.  

Consider another random variable Y  such that 1Y = . To derive the density of kX , a 

random variable representing kx  from the above equation, we derive the joint density of 

( , )kX Y  and use it to derive the marginal density of kX . Using the change of variables 

technique, the joint density of ( , )kX Y  can be written as:  

,

1
( , ) ( ln 1 ln , )

k

k
k k kX Y

k k k

x
g x y h p y y

x 

 
= − + + + + 

+ 
β z     (A2) 

where, ( , )h    is the joint PDF of IID error terms 1( , )k  , as below: 

1
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1( , )  
k

k e e

kh e e e e
   

− −− −− −=   

Therefore, the expression in Eq. (A2) can be rewritten as: 
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Next, the marginal density of kX  can be written as: 
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Let ye  be t− . Then, 
ye dy −− is equal to dt . The above integral can now be written as: 
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The above integral simplifies to the following expression, which is the same as the likelihood 

of an MDCEV model with one inside good and linear utility profile on outside good: 
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Simplifying the above expression, we write the marginal density of kX  as: 
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A.2. Distribution of the demand function for the L profile −  MDCP model 

Using the KKT conditions from Eq. (12) in the text, we write 

1

( ) 1k
k k

k

x
p 



−

 
+ = 

 
          (A5) 

Taking logarithm on both sides and rearranging the terms, we rewrite the above condition as: 

1 ln ln 1k
k k k

k

x
p 



 
− = − + + + 

 
β z        (A6) 

For the MDCP model, k  and 1  are IID normal distributed with zero mean and scale  . Let 

1k −  be 1k . Then, 1 (0, 2 )k N  . Therefore, using change of variables, the density of 

kX  can be written as:  
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where, 
1k

h is the density function of 1k . Therefore, the above density function can be written 

as: 
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APPENDIX B: Derivation of first and second moments for the demand functions 

B.1 Derivations for the L profile −  MDCEV model 

The moments are derived for the conditional distribution * | 0k kX X  . The PDF for the 

conditional distribution is: 
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where, 
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F  in the above expression. Expanding kV , (0)
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Let 1k

k

x
t


= + . Then, k
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= . The above integral can now be simplified as: 
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Therefore, 
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Note that the above expression is the same as 1 1( )kP p   which is the discrete choice 

probability of the inside good being chosen. 

Substituting the above expression for 1 (0)
kX

F−  into Eq. (B1) and after further 

simplification, we get the following conditional PDF: 
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Next, we derive the moments of the conditional distribution. 

B.1.1. First raw moment (Mean) 
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Let 1k

k

x
t


= + . Then, k

k

dx


 is dt. The above integral can now be written as: 
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Rewriting the integrand: 
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The second term in the above expression integrates to the following: 
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However, integration of the first term, i.e., 
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depends on the value of  . 

Since further simplification of this integral is not possible without knowing the value of  , 

the first moment can be written as: 
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where, 
( )( )

1 2
ln

1
k k

k
p

t dt
I

t e







 −
=

+


β z
. 

One can verify that for 1  , the integral 
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 diverges to infinity, thus 

implying that the first moment does not exist when 1  . However, we delve into this aspect 

in more detail in Appendix C. 

B.1.2. Second central moment (variance) 
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Expanding the above expression, we get: 
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The first term in the above expression is the second raw moment and the second term is the 

square of the first moment. Considering the first term in the above expression, feeding the 

density, and simplifying the expression, we get: 
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Again, let 1k

k

x
t


= + . Then, k
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dx
dt


= .  The above integral is now written as: 
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Expanding the integrand in the above expression,  
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Expanding the above expression further, 
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The second term in the above expression integrates to 
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e
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, while the 

integration of the other two terms depends on  , which we will discuss more in Appendix C. 

For ease in notation, the second central moment can be written as: 
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  In the above expression, 
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B.2 Derivations for the -profileL  MDCP model 

Using Eq. (22) from the text (without upper bounds, i.e., 
max

kx =  ), the conditional density 

is written as: 
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Therefore, the PDF for the conditional distribution 
* | 0k kX X   is written as: 
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B.2.1. First raw moment (Mean) 
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Solving the above integral: 
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Replace the second integral in the above expression with k  to rewrite the above expression 

as: 
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Now, consider the first integral, 
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For brevity, let lnk kp −β z  be kc . Rewriting the above integral, 
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Feeding the expression for kc  in the above equation, the expected value can be written as: 
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Rewriting the above expression, the expected value can be written as: 
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B.2.2. Second central moment (Variance) 

Using the expression for variance as used in B.1.2, and expanding it, we get, 
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We focus on the first term on the RHS of the above expression. Using the transformation 
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Again, for brevity, let lnk kp −β z  be kc . Expanding the above expression, we get, 
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The above expression can be further simplified to  
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Simplifying the first term in the above expression,  

( )
( )

2

2

2 2

1 1
2 22 2 2 4 2 42 2

2

0

2

1 1

2 2

k

k k

k

t c
u

c ct

k

ct
u

e e dt e e du e
  




  

 − −   − −  + + 

=
=−

= =    

where, 
2

2

4
1

2

k
k

c 




 +
= − − 

 
. 

Collecting all the terms together, the variance of the conditional distribution 
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APPENDIX C: Existence and verification of moments of optimal consumptions from 

-profileL  MDC models with infinite budgets 

C.1. Existence of finite moments for consumptions implied by the profileL −  MDCEV 

model 

C.1.1 Existence of the first moment 

The expression for first moment for the profileL −  MDCEV model is: 
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Existence of the first moment depends upon the convergence of the integral in the above 

equation. Consider the integrand as below: 
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For the sake of brevity, let 
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The antiderivative for the above integral can be written as 
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where, ( )2 1 , ; ;F a b c z is a hypergeometric function. 

The hypergeometric function can be expanded as an integral as: 
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Using the above expansion and imposing limits on the integral, we can rewrite the integral in 

Eq. (C3) as: 
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Rewriting the above expression,  
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The condition for convergence requires the two integrals on RHS of the above expression to 

exist in limit. It is easy to verify that the second integral converges. Therefore, for the integral 

to converge, the first integral must converge. That is, 
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  must be finite.   (C7) 

For the above limit to exist, the degree of t in the numerator must be less than the degree of t in 

the denominator in the above expression. Since, degree of t in the numerator is 1 +  while that 

in the denominator is 2 . Therefore, for the limit to exist, 2 1  +  or 1  . 

In summary, the inverse of the scale parameter   of the error terms in the utility 

function must be greater than 1 (i.e., the scale parameter 1  ) to yield finite first moments 

for the optimal consumptions from profileL −  MDCEV models with infinite budgets. 

C.1.2 Existence of finite variance (Second central moment) 

The expression for the second moment of 
* | 0k kX X   given by Eq. (B12) is: 
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  (C8) 
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In the above expression, the second integral converges for all  , while the third integral 

converges when 1   (verified in the earlier section). Therefore, the criterion for the existence 

of finite variance depends on the convergence of the first integral in the above expression (with 

1  ) . Again, let 
( )ln

bek kp

ke   Q
  −β z

. Expanding the first integral in the above expression using 

hypergeometric functions, we get the following expression: 
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            (C9) 

The second term in RHS of the above expression converges to a finite value. However, for the 

above expression to converge to a finite value, the first term must also converge. For this to 

happen as t → , the degree of t in the numerator must be less than the degree of t in the 

denominator (or, the numerator must rise slower than the denominator). That is,  2 2  +  or 

2  . Therefore, 2   or 0.5   is the criterion for the second moment to exist. 

C.2. Simulation-based verification of the conditions for existence of first and second moments 

To verify the existence of moments and the accuracy of the analytic formulae for computing 

the moments, we simulated consumption data for a choice setting with four alternatives – one 

outside good and three inside goods – for both the profileL −  MDCEV and the profileL −  

MDCP models. The utility function considered for simulating data from both models is: 

 
1 2 2 3

2

32 4
1 3 4 4

3 4

ln 1 ln 1 ln 1U
xx x

x      
  

    
= + + + + + +    

    

   (C10) 

where, ( )1 1exp = , exp( ), {2,3,4}k k kASC k = + = , and exp( ), {2,3,4}k kw k = = . And 

the parameters assumed for this simulation experiment are provided below: 

Parameters Alternative 2 Alternative 3 Alternative 4 

Baseline preference constants (ASCk) -1.5 -1.0 -0.5 

Satiation function constants ( k )  0.5  1.8  2.5 

Scale ( ) for  profileL −  MDCEV 1.00 

Scale ( ) for  profileL −  MDCP 1.28 
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To simulate consumptions for the MDCEV model, we considered standard IID Gumbel 

distribution with a scale parameter 1(or 1) = = . To simulate consumptions for the MDCP 

model, we considered a scale parameter 1.28 = , which results in the same variance as that 

from a standard Gumbel distribution. For both cases, we simulated 15 datasets of 10,000 

individuals. From each of these datasets, we computed the simulated mean and standard 

deviation of consumptions for each of the three inside goods. We also used the analytic 

expressions derived in this paper to compute the means and standard deviations.  Table C.1 

reports all these values – both simulated and those calculated using analytic expressions. 

In the case of the -profileL  MDCEV model, as can be observed from Table C.1, the 

simulated average consumption values and the standard deviations for all the three alternatives 

fluctuate considerably across the 15 datasets, implying that the moments do not exist when 1 =

. We carried out similar simulations and observed that the simulated average consumption values 

stabilize for 1   and the variances of the distributions stabilize for 0.5  . These results 

corroborate the non-existence of finite first moment of the distributions for optimal consumptions 

from -profileL  MDCEV model when the scale parameter 1  . 

For the -profileL  MDCP model, on the other hand, note from Table C.1 that the 

simulated average consumptions (and the standard deviations of consumptions) do not 

fluctuate (so much as they did in the case of the MDCEV model) across the different simulated 

datasets. These results corroborate that finite moments exist for the distributions of optimal 

consumptions from the -profileL  MDCP model with infinite budgets regardless of the value 

of the model’s scale parameter. Further, the simulated averages of the moments across the 15 

simulated datasets are close to the values computed using the analytic expressions derived in 

this paper. These results help verify the correctness of the analytic expressions we derived in 

this paper for the moments of the distributions of optimal consumptions from the -profileL  

MDCP model. 
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Table C.1. First and second moments of the consumptions implied by the -profileL MDCEV and MDCP models 

Sample 

Alternative 2 Alternative 3 Alternative 4 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 

profileL −  

MDCEV 

profileL −  

MDCP 

profileL −  

MDCEV 

profileL −  

MDCP 

profileL −  

MDCEV 

profileL −  

MDCP 

profileL −  

MDCEV 

profileL −  

MDCP 

profileL −  

MDCEV 

profileL −  

MDCP 

profileL −  

MDCEV 

profileL −  

MDCP 

1 82.76 6.21 2786.94 17.38 73.67 30.54 963.86 108.81 149.67 81.72 2214.80 214.04 

2 15.73 6.07 130.53 20.10 66.90 26.47 583.07 91.97 194.57 80.55 3860.53 284.91 

3 22.59 5.75 300.37 22.48 56.51 29.89 460.30 88.68 241.77 73.75 7824.20 256.06 

4 23.93 6.21 408.88 18.42 71.25 28.66 1169.61 82.53 205.69 76.96 2842.90 204.95 

5 16.39 5.95 138.64 14.94 129.56 29.43 2325.98 85.33 179.26 85.97 2026.86 376.61 

6 17.58 6.55 110.65 21.23 334.26 28.45 11808.95 96.08 247.28 70.69 3755.80 279.99 

7 17.90 5.76 266.10 18.58 80.96 35.10 1652.33 116.31 116.43 77.67 863.56 363.54 

8 74.83 6.08 2744.41 20.74 89.19 28.62 1737.60 85.56 161.63 78.91 2333.03 289.84 

9 11.62 6.51 48.82 12.45 65.78 28.51 654.90 121.54 142.19 79.11 1055.82 327.88 

10 19.30 5.79 289.96 13.90 142.93 26.73 3444.78 100.99 182.79 73.85 1697.56 295.06 

11 699.72 5.71 29461.78 15.84 278.66 28.16 9904.84 104.23 133.67 84.04 1007.78 266.50 

12 16.84 5.92 175.88 14.48 62.29 29.39 745.35 88.35 347.83 80.36 11661.82 227.05 

13 86.02 6.23 2895.36 18.11 134.72 26.25 2760.77 97.56 171.47 78.20 1712.83 310.80 

14 12.33 6.29 74.42 16.61 2143.07 29.76 106897.78 87.89 246.27 81.07 4059.21 245.74 

15 35.62 5.91 948.25 15.71 76.13 30.74 846.02 88.55 187.29 82.16 2109.61 382.40 

Simulated 

average 

across 15 

samples 

76.88 6.06 2718.73 17.40 253.73 29.11 9730.41 96.29 193.85 79.00 3268.42 288.36 

Analytic  

value 
Not defined 6.13 Not defined 20.11 Not defined 29.29 Not defined 103.55 Not defined 78.95 Not defined 299.33 
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 To verify the accuracy of the moments of the distributions of optimal consumptions from 

the -profileL  MDEV model with 1  , we compared the simulated and analytic predictions 

for the simulated data used in Section 3 (i.e., consumptions that correspond to infinite budget). 

Table C.2 shows these comparisons. It can be observed from this table that the analytic 

predictions of both the discrete choice shares and the moments of the continuous consumption 

values match closely with the simulated values.  

Table C.2. Comparison of simulated and analytic predictions for the data simulated in Section 3 for 

very large (infinite) budget. 

 Participation rates 
Average consumption  

(first moment) 

Standard deviation  

(second central moment) 

 Simulated Analytical Simulated Analytical Simulated Analytical 

Alternative 2 40.4 40.5 7.6 7.2 17.7 18.5 

Alternative 3 71.8 71.8 84.7 82.6 101.3 104.1 

Alternative 4 87.0 87.0 483.0 481.4 623.2 626.5 

  

  


