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ABSTRACT 

Commute trips account for a large portion of travel demand in peak hours and significantly 

influence the operation of urban transportation systems. In this paper, we apply a fully flexible 

multinomial probit (MNP) model for the analysis of commute mode choice behavior, and compare 

this MNP model with more traditional discrete choice models, including the multinomial logit 

(MNL), the cross-nested logit (CNL), the heteroscedastic independent MNP (HI-MNP), and the 

homoscedastic non-independent MNP (HONI-MNP). The two-variate bivariate screening (TVBS) 

approach, a recently developed analytical evaluation for the multivariate normal cumulative 

distribution (MVNCD) function, is employed. The sample for analysis is drawn from a web-based 

travel survey conducted in Shanghai. Overall, from a data fit perspective at, both the disaggregate 

and aggregate levels, the MNP clearly outperforms all the other four models, underscoring the 

importance of considering both heteroscedasticity as well as correlated error terms when 

estimating mode choice models. Policy implications are also examined and discussed.  

 

Keywords: mode choice, multinomial probit (MNP) model, multivariate normal cumulative 

distribution (MVNCD), two-variate bivariate screening (TVBS) approach, cross-nested logit 

(CNL) model  
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1. INTRODUCTION 

The emergence of travel smartphone app-facilitated modes, and the increasing ease in the ability 

to plan, schedule, and pay for journeys undertaken by different modes, have led to increased 

accessibility to activity locations, especially in urban areas. While the effects of such technology-

enabled travel planning and execution on urban traffic congestion are still being examined (see, 

for example, Dias et al. (2017), Lavieri and Bhat (2019), Shaheen and Cohen (2019), Zhong et al. 

(2018)), traffic congestion continues to clog urban streets in many cities during the commute peak 

periods, especially in large metropolitan areas of China. This is not surprising, because commute 

trips account for a large portion of daily trips and are concentrated during relatively narrow 

windows of time corresponding to work start and end times. For instance, 48% of average daily 

trips in Shanghai in 2015 were commute trips, and the traditional 9 am-5 pm work day packs those 

trips during the 7-9 am time window in the morning and the 5-7 pm time window in the evening 

(2015). Thus, commute mode choice analysis plays an important role in urban transportation 

planning, providing a tool to evaluate the ability of traffic congestion mitigation efforts to effect a 

change in the mode of travel from solo-auto to high-occupancy vehicles. The efforts to relieve 

traffic congestion may involve improvement in the level of service (LOS) attributes of high-

occupancy travel modes (for example, designation of high-occupancy vehicle lanes on freeways 

and an increase in the frequency of bus service), disincentives to use the solo-auto mode (for 

example, congestion-pricing and additional gas taxes), and encouragement of the use of non-

motorized travel modes (for instance, providing separate bicycle lanes and well-lit walk paths).  

Most commute mode choice models are based on the random utility maximization (RUM) 

framework of microeconomic theory, which assumes that an individual's choice of mode on any 

choice occasion is a reflection of underlying indirect utilities associated with each of the available 

modes and the individual selects the alternative which provides her or him the highest utility (or 

least disutility). The most commonly used RUM model structure in mode choice practice is the 

multinomial logit (MNL) model (McFadden, 1974), which has a simple mathematical structure 

and provides a closed-form likelihood function that is easy to compute. But the MNL model 

assumes that random error terms across the utilities of alternatives are independently identically 

distributed (IID) with a Gumbel distribution. This assumption leads to the independence from 

irrelevant alternatives (IIA) property at the disaggregate choice level, which results in equivalent 

cross-elasticities across alternatives. 

 To overcome the limitation of IIA property, the nested logit (NL) model (Ben-Akiva and 

Lerman, 1985; Daly and Zachary, 1978; McFadden, 1978; Williams, 1977) was proposed, which 

relaxes the independence across utility error terms of the MNL model, allowing for correlations 

across similar alternatives. Alternatives in a nest exhibit an identical degree of increased sensitivity 

relative to alternatives not in the nest (Bhat, 2003a). A problem with the NL model is that it requires 
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the a priori specification of the nesting structure. This requirement has at least two drawbacks. 

First, the number of different structures to estimate in a search for the best structure increases 

rapidly as the number of alternatives increases. Second, the actual competing structure among 

alternatives may be a continuum that cannot be accurately represented by partitioning the 

alternatives into mutually exclusive subsets. A suite of more general multivariate extreme-value 

(MEV) models were proposed and applied to allow more flexible correlation structures than the 

NL model. These include the paired combinatorial logit (Chu, 1989; Koppelman and Wen, 2000) , 

the ordered generalized extreme value (OGEV) model (Small, 1987), the MNL-OGEV model 

(Bhat, 1998a), and the cross-nested logit (CNL) (Ben-Akiva and Bierlaire, 1999; Vovsha, 1997; 

Wen and Koppelman, 2001). Of these MEV models, the CNL model is the most flexible. Also, all 

these MEV models have a closed-form structure; however, they require all correlations to be non-

negative. GEV correlation estimates are biased in the presence of negative correlations between 

choice alternatives (Dong et al., 2017). In addition, all the MEV models impose the a priori 

assumption of homoscedasticity of the utility error terms across alternatives. On the other hand, 

Bhat (1995) proposed the heteroscedastic extreme value (HEV) model, which allows the utility 

error terms to be heteroscedastic across alternatives, but maintains independence across 

alternatives.  

In the more recent past, two general econometric model structures have been commonly 

used in the literature that are much more flexible than all of the models just discussed. The first 

corresponds to an MEV kernel structure mixed with a multivariate distribution to engender flexible 

covariance structures across the utilities of alternatives. While many multivariate mixing 

distributions may be used based on the context, it is quite typical to use a multivariate normal 

mixing distribution (though more recent studies have used a variety of non-normal and even 

discrete distributions; see, for example, Bhat and Lavieri (2018); Train (2016); Vij and Krueger 

(2017)). The classic mixed MEV model is the normally-mixed multinomial logit (MMNL) (Bhat, 

1998b; McFadden and Train, 2000; Revelt and Train, 1998). The second general model structure 

is the multinomial probit (MNP) model (Daganzo, 1980). Both structures have been used in the 

past, with the choice between a GEV kernel or an MNP kernel really being a matter of “which is 

easier to use in a given situation” (Ruud, 2007). But, in the past two decades, the mixing of the 

normal with the GEV kernel has been the model form of choice in the economics and transportation 

fields, mainly due to the relative ease with which the probability expressions in this structure can 

be simulated (see Bhat et al. (2008) and Train (2009) for detailed discussions). On the other hand, 

an MNP kernel has not been used as much, because the simulation estimation of the MNP is 

generally more difficult. In any case, while there have been several approaches proposed to 

simulate the models with a GEV or an MNP kernel, most of these involve pseudo-Monte Carlo or 

quasi-Monte Carlo simulations in combination with a quasi-Newton optimization routine in a 

maximum simulated likelihood (MSL) inference approach (Bhat, 2003b, 2001). In such an 
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inference approach, the desirable asymptotic properties are obtained at the expense of 

computational cost (because the number of simulation draws has to rise faster than the square root 

of the number of observations used for estimation). Moreover, the MSL estimation and inference 

can be affected by simulation noise, which might cause problems ranging from non-convergence 

to inaccuracy and/or non-inversion of the Hessian of the log-likelihood function.  

More recently, there has been renewed interest in the use of the MNP model, thanks to the 

development of new analytic methods to estimate the multivariate normal cumulative distribution 

(MVNCD) function (Bhat, 2018). Patil et al. (2017) show that these analytic approaches can be 

much faster than traditional MSL approaches used for the MMNL or MNP models. But these 

analytic approaches are much more suited to the MNP model. Given this computational advantage 

in using the MNP model, we will focus in this paper on alternative MNP models and compare 

them with MNL and CNL models, two types of MEV models being widely used in practice.   

1.1  The Current Research 

Due to estimation difficulty, the MNP model has rarely been applied for mode choice modeling, 

in both research and practice. This is especially the case for commute mode choice models 

estimated in Chinese cities, most of which are based on the MNL model (Dai et al., 2016; Feng et 

al., 2014; Hu et al., 2018; Li and Zhao, 2015; Lin and Chang, 2010; Song et al., 2012; Sun et al., 

2017; Yang et al., 2016, 2017; Zhao, 2011). The rare exception to this long list of MNL studies 

are Lin and Chang (2010) and Yang et al. (2013), who estimate an NL or CNL model. Besides, 

most applications of commute mode choice in the literature use three or four alternatives, while, 

in Chinese cities, there are usually more than four alternatives with non-insignificant commute 

mode shares (for example, car, taxi, bus, metro, bicycle, walking, a combination of bus and metro, 

and other kinds of combinations of different modes).  

In this paper, we demonstrate the use of the MNP model for mode choice modeling even 

with a relatively large number of alternatives. Indeed, there is no need to shy away today from the 

MNP model on any grounds, computational-wise or otherwise. We use data on commuter travel 

from the City of Shanghai in China to estimate an MNP model with six alternatives, which is 

estimated using an analytic approximation for the MVNCD function as proposed by Bhat (2018). 

Bhat develops and compares several matrix-based methods for the analytical evaluation of the 

MVNCD function, and recommends the two-variate bivariate screening (TVBS) approach as the 

one-stop evaluation approach for the MVNCD function. This is the specific analytic approximation 

method used in the current paper.  

The results from the MNP model are compared with the more traditional models, including 

the MNL, the CNL, the homoscedastic non-independent MNP (or the HONI-MNP, which is 

similar to the CNL, except that it uses a multivariate normal kernel rather than the multivariate 

Gumbel kernel in the CNL, and allows for negative utility correlations across alternatives), and 
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the heteroscedastic independent MNP model (or the HI-MNP model, which is similar to Bhat’s 

HEV model (Bhat, 1995), except using heteroscedastic normal distributions instead of 

heteroscedastic Gumbel counterparts). The assumptions of these models compared with the MNP 

model are summarized in Table 1. In addition to data fit considerations, policy implications and 

disadvantages of using the traditional models relative to the fully flexible MNP model are 

examined and discussed.  

 

Table 1 Assumptions of models 

Models Assumptions regarding stochastic component of the utilities of alternatives 

MNL Identical and independent; Gumbel 

CNL Identical, with only positive correlations allowed; Gumbel 

HI-MNP Non-identical, but independent; Normal 

HONI-MNP Identical, but non-independent; Normal 

MNP Non-identical, non-independent; Normal 

 

The rest of the paper is structured as follows. The next section presents the structure of the 

CNL model (the MNL is a special case of the CNL) and the MNP model (the HI-MNP and HONI-

MNP models are special cases of the MNP). It also provides a brief introduction to the TVBS 

approach. Section 3 discusses the data used in the empirical study. Section 4 reviews the results 

from the different models, and compares the data fit as well as policy implications from the 

different models. The final section concludes this paper and identifies directions for additional 

research. 

2. MODELING METHODOLOGY 

2.1  The Cross-Nested Logit (CNL) Model  

The CNL model allows each available mode to belong to more than one nest, thus generalizing 

the NL model that restricts each mode to belong exclusively to one and only one nest. Based on 

the MEV theory (Ben-Akiva and Bierlaire, 1999; McFadden, 1978; Vovsha, 1997; Wen and 

Koppelman, 2001), the probability of choosing mode i  in the CNL model is as follows: 
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where mP  is the marginal probability of nest m , 
|i mP  is the conditional probability of choosing 

alternative i  in the nest m . im  is the allocation parameter that allows mode i  to be assigned 
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partially to nest m, 0 1im    and 1im

m

  . When 0im  , alternative i  is not in the nest m . 

By assigning only binary values to im , an alternative can only belong to one nest, as in the NL 

model. mN  is the set of all modes included in nest m. m  is the dissimilarity parameter for nest m  

capturing the correlation between modes in nest m, and 0 1.m   The correlation between modes 

in nest m increases as m  gets closer to zero, and decreases as m  approaches 1. When m  is equal 

to one for all m nests, the CNL model collapses to the MNL model. 

To better understand error correlations among different modes, correlations of the CNL 

model can be calculated as per the following equation (Marzano et al., 2013):  

 
11

222
, 1

i j jm mm im        (2) 

where i  and j  are the error terms in the utility functions of mode i  and j , respectively; jm  is 

the allocation parameter of mode j  to the nest m . 

 

2.2 Multinomial Probit (MNP) Model 

This section provides an overview of the MNP modeling methodology and formulation. The utility 

inU  that an individual  1,2,...,n n N obtains from mode ( 1,2,..., )i i J  can be expressed as: 

in in in inU V    inX β    (3) 

where inX  is a (1 )K  vector of explanatory variables characterizing both mode i  and individual 

n  (including a constant for each alternative, except one of the alternatives); β  is a ( 1)K  

coefficient vector corresponding to variable vector inX . inV   is the systematic utility. in  is the 

random error term. We assume that  1 2, ,...,n n n Jn  ε  is normally distributed with zero mean 

and a covariance matrix that can be expressed explicitly as 

11 21 1

21 22 2

1 2

=

J

J

J J JJ

  

  

  

 
 
 
 
 
 

.  

The MNP model with J  alternatives  2J   has ( 1) / 2J J   elements in the covariance matrix, 

and [ ( 1) / 2] 1J J    covariance parameters are identified when normalized. When the J  random 

error terms are assumed to be independent, the MNP model collapses to the HI-MNP 

(heteroscedastic independent MNP) model. All the covariances are zero and ( 1)J   variances in 

the covariance matrix can be identified. When the J  random error terms are assumed to have the 
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same variance, the MNP model collapses to the HONI-MNP (homoscedastic non-independent 

MNP) model.  

Individuals are assumed to choose the travel mode with the greatest utility. The probability 

that an individual n  will choose mode i  is the probability that mode i  has a greater utility than 

all the other modes in the choice set. Therefore, 

      , 1,2,..., ;in in jn jn in jP P U U P j J j i         
 in nX β X β   (4) 

Let
jn jn in      and 

jn jV   in nX β X β  with j i  , then 

   
1 2

1 2 1 2... ... , ,..., ,..., ... ... ,

jnn n Jn
VV V V

in jn jn n n jn Jn n n jn JnP P V f d d d d j i        

  

         

   

         (5) 

where  f   is the probability density function of the  1J  -dimensional multivariate normal 

distribution. 

 

2.2.1 Two-Variate Bivariate Screening (TVBS) Approach  

The likelihood function of the MNP model entails the evaluation of a  1J  -dimensional 

integration, which can be easily evaluated using the new TVBS approach for the analytic 

evaluation of the MVNCD function. For  1 2J   , 
1
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  , set 1K K  ; else set K K . The probability of 

choosing mode i  can be expressed as (subscript n  is suppressed below):  
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The bivariate distribution 
2 1 2 2 2 1 2, | ,k k k k      

  
 is a bivariate skew-normal distribution 

rather than a bivariate normal distribution. It is assumed to be a two-variate bivariate-screened 

distribution (see Kim and Kim (2015)) in the TVBS approach. The corresponding conditional 

cumulative distribution function at each step can be expressed as a ratio of a four-variate normal 

cumulative distribution function (CDF) and a two-variate normal CDF. For more details about the 

TVBS approach, please refer to Bhat (2018).  
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3. DATA AND SAMPLE DESCRIPTION 

The primary data for the current analysis include the commute trip data and the level-of-service 

(LOS) data.  

 

3.1 Commute Trip Data 

The commute trip data used in this paper were obtained from a 2017-2018 web-based travel survey 

of Shanghai commuters. The web-based survey was accessible to all smartphone users and internet 

users (see Duan et al. (2020) and Li et al. (2019)) for additional information on the survey). The 

survey collected detailed socioeconomic and demographic information, and a complete 24-hour 

travel diary reported by 2033 individuals. The detailed trip data included origin and destination 

locations, trip beginning and ending times, travel mode, trip purpose, and the number of 

companions. After data screening to remove records with missing data for the explanatory 

variables of interest and commute travel mode choice, the final sample comprised commute trips 

of 1743 commuters.  

The travel modes considered in our analysis included (1) car (drive alone, car-pool, and 

car-sharing), (2) taxi, (3) metro, (4) bus, (5) a combination of bus and metro (hereinafter referred 

to as Bus & Metro), and (6) the non-motorized mode (bicycling and walking). Even if some 

commuters do not own private cars or bicycles, they can still use car-sharing and bike-sharing 

services, so they do have the car and non-motorized modes available. However, the bus, metro and 

Bus & Metro modes may not be available for commuters who live far away from bus stops or rail 

stations. Based on the maximum access/egress distance reported by individuals in the survey and 

the 5th Shanghai Comprehensive Transport Survey (2015), we set the cutoff threshold distance for 

bus availability to 2 km; that is, the bus mode is considered available only if the access/egress 

distance for an individual is less than 2 km. The corresponding cutoff distance for the metro was 

set to a distance of 5 km. 

 

3.2 Level-of-Service (LOS) Data 

The LOS characteristics of different travel modes were extracted from the zone-to-zone travel 

impedance matrices generated from the transportation networks of Shanghai, which were 

integrated into TransCAD based on the GIS data of roads (links and nodes), bus lines and stops, 

metro lines and stops, and the residential zone of each respondent. Travel times calculated from 

floating car data were added to each link of the road network (Zhang et al., 2019). Travel times, 

service frequencies, and fares by time of day of were appropriately appended. 
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3.3 Sample Description 

Table 2 provides a brief summary of the socioeconomic and demographic characteristics of the 

sample. Men account for a little shy of half of the commute trips (45.4%). More than 80% of 

commuters are 20-40 years old. Most commuters are married, hold a driving license, and live with 

family. The majority of commuters are well educated, with a bachelor’s degree (78.5%) or a 

graduate degree (13.6%). Personal monthly income is heavily clustered between 4.5k and 15k 

RMB Yuan. The average personal monthly income is 10.2k RMB Yuan. More than half (62.2%) 

of commuters have an available private car on the trip day. 30.3% of commuters have an available 

private bicycle on the trip day. These statistics are reasonably close to the statistics of all 

commuters in Shanghai (see the 5th Shanghai Comprehensive Transport Survey (2015)), even if 

slightly skewed toward women and highly educated individuals. The average population density 

of origin TAZs (residential areas) is slightly greater than that of destination TAZs (workplaces). 

And the average employment density of commuters’ workplaces is greater than that of residential 

areas, as expected. 

Descriptive statistics of LOS characteristics are shown in Table 3. The average trip 

distance for the non-motorized mode is 4.204 km, indicating the short-distance nature of commute 

trips that use non-motorized modes. In terms of average fare, the taxi mode has the highest fare 

because the Shanghai taxi has a high starting price at 14 RMB Yuan for the first 3 km. The average 

in-vehicle commute time for the car, taxi, and metro modes are all around 20 minutes, while the 

bus and Bus & Metro’s in-vehicle travel times rise significantly to 37.999 and 38.747 minutes, 

respectively. The higher in-vehicle travel time of the bus mode is to be expected, because of the 

large number of stops and roundabout operating routes of Shanghai bus routes. The average initial 

waiting time and transfer waiting time of metro are shorter than those of bus and Bus & Metro, a 

reflection of the fact that the metro system provides a higher service frequency across all its many 

lines. In terms of average access/egress distance, bus and Bus & Metro have substantially shorter 

distances than those of metro because of the better spatial coverage of the service area by buses. 

And metro’s average access distance is somewhat longer than the average egress distance, 

presumably due to the denser distribution of metro stations in workplaces than in residential areas. 

The combined Bus & Metro mode requires a slightly greater number of transfers than that of bus 

alone or metro alone, and the average transfer walking distance of Bus & Metro is greater than that 

of bus, as expected.  

 In terms of the commute mode shares, they are as follows: Car (34.5%), taxi (1.9%), metro 

(21.0%), bus (12.4%), bus and metro (4.1%), and non-motorized mode (26.1%). Compared to 

cities in the US, a much higher fraction of commuters use non-car modes, especially non-

motorized modes.  
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Table 2 Sample characteristics (N=1743) 

Categorical variables Categories Percentage (%) 

Gender 
Male 45.439  

Female 54.561  

Age 

Younger than 20 years 2.811  

21-30 years 34.079  

31-40 years 46.242  

41-50 years 13.827  

Above 50 years 3.041  

Marital Status 
Married 72.060  

Unmarried 27.940  

Driving License 
Own 75.961  

Does not own 24.039  

Residential Type 

Family 87.722  

Dormitory 11.819  

Other 0.459  

Education Attainment 

Less than high school 1.549  

High school 6.311  

Bachelor's degree 78.543  

Graduate degree 13.597  

Personal Monthly Income (RMB Yuan) 

Less than 2k 2.754  

2 k - 4.5 k 8.319  

4.5 k - 6 k 14.974  

6 k - 8 k 17.843  

8 k - 10 k 20.023  

10 k - 15 k 20.367  

15 k - 20 k 7.975  

20 k - 30 k 5.221  

Greater than 30 k 2.524  

Private Vehicles 

Car 62.192  

Electric bicycle 29.260  

Bicycle 30.293  

Motorcycle 2.008  

Continuous Variables Mean S.D. 

Personal Income (1)(10k RMB Yuan/month) 1.018  0.638  

Population Density (1000 people/km2)   
Origin TAZ 2.538  2.178  

Destination TAZ 1.252  1.855  

Employment Density (1000 positions/km2)   
Origin TAZ 1.794  1.994  

Destination TAZ 2.367  2.704  

 (1)  The continuous variable “Personal Income” was generated from the categorical variable “Personal Monthly 

Income”. The exchange rate of RMB Yuan to US dollar is approximately 6.9:1
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Table 3 Descriptive statistics of LOS (Level-of-Service) attributes 

Mode Attribute Mean S.D. 

Car 
Fare (RMB Yuan) 7.065 6.471 
In-vehicle time (min) 23.406  16.604  

Taxi 
Fare (RMB Yuan) 35.490  28.880  

In-vehicle time (min) 23.406  16.604  

Metro 

Fare (RMB Yuan) 3.938  0.948  

In-vehicle time (min) 20.469  14.714  

Initial waiting time (min) 2.164  0.317  

Transfer waiting time (min) 1.226  1.455  

Access distance (km) 1.826  1.127  

Egress distance (km) 1.327  0.978  

Number of transfers 0.568  0.669  

Bus 

Fare (RMB Yuan) 3.458  1.707  

In-vehicle time (min) 37.999  29.897  

Initial waiting time (min) 4.281  2.751  

Transfer waiting time (min) 3.152  4.501  

Transfer walking distance (km) 0.110  0.240  

Access distance (km) 0.657  0.427  

Egress distance (km) 0.638  0.430  

Number of transfers 0.729  0.854  

Bus & Metro 

Fare (RMB Yuan) 3.610  1.626  

Total In-vehicle time (min) 38.747  18.981  

In-vehicle time allocated to metro (min) 22.060  14.584  

In-vehicle time allocated to bus (min) 16.687  14.436  

Initial waiting time (min) 3.599  2.658  

Access distance (km) 0.720  0.441  

Egress distance (km) 0.679  0.407  

Number of transfers 0.994  1.026  

Transfer waiting time (min) 2.833  3.556  

Transfer walking distance (km) 0.126  0.258  

Non-Motorized Mode  Trip distance (km) 4.204  5.611  

 

4. EMPIRICAL RESULTS AND POLICY IMPLICATIONS 

4.1 Model Goodness of Fit 

We begin our presentation of the results with a comparison of the model fit of the fully flexible 

MNP model with those of the more traditional models (including the MNL, CNL, HI-MNP, and 

HONI-MNP models). Multiple goodness-of-fit measures are computed, including initial log-

likelihood (  0LL ), the log-likelihood at convergence (  LL  ), AIC (Akaike Information 

Criterion,  2 number of model parameters-LL     ), BIC (Bayesian Information Criterion,

   0.5LL number of  model parameters ln sample size     ). The model with a higher log-

likelihood and smaller AIC/BIC values is the preferred model. Further, to compare the MNL and 
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CNL models with the MNP model using a statistical test, a non-nested test is applied (see Ben-

Akiva and Lerman (1985)). To do so, the adjusted log-likelihood ratio statistic of each model is 

first computed: 

 

 

2 / 2
1

0

LL K

LL





    

where K  is the number of model parameters. The non-nested test statistic is  

    
2 2

1 2 2 0P z LL z          

where    represents the CDF of standard normality and z  takes a positive value. That is, the 

probability that  2 2

1 2 z   could have occurred by chance is no larger than  

  2 0LL z     . A small value for the non-nested test statistic indicates a small probability 

of erroneously selecting the incorrect model. And the model with a higher value for the adjusted 

likelihood statistic is preferred. The non-nested test is then used to compare the MNP model with 

all the other models. 

In addition to the likelihood-based metrics just discussed, we also compare the data fit of 

the many models intuitively and informally at both disaggregate and aggregate levels. At the 

disaggregate level, the average probability of correct prediction is computed. At an aggregate level, 

the numbers of individuals predicted to choose each mode are compared to the observed numbers 

choosing each mode, and an absolute percentage error (APE) measure is computed at the 

individual mode level and then averaged across modes to obtain a mean absolute percent error 

(MAPE).  

The disaggregate data fit measures are presented in Table 4. It shows that the MNP model 

performs best with the highest log-likelihood and the smallest AIC/BIC values. From the informal 

non-nested likelihood statistic values provided in Table 4, it can be inferred that the probability of 

the adjusted likelihood differences between the MNP model and the more traditional models (the 

MNL, CNL, HI-MNP, HONI-MNP models) occurring by chance is literally zero. The average 

probability of correct prediction (as shown in the last row of Table 4) for the MNP model is higher 

than those of the other four models. The probability value for the MNP model, 0.667, is about four 

times the probability of correct prediction based on a random choice assignment (1/6=0.167).
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Table 4 Disaggregate data fit measures 

Goodness-of-fit MNL CNL HI-MNP 
HONI- 

MNP 
MNP 

LL(β) -1793.233 -1785.255 -1771.174 -1771.549 -1757.217 

LL(0) -2659.259 -2659.259 -2659.259 -2659.259 -2659.259 

AIC 3640.467 3628.51 3604.347 3605.097 3582.434 

BIC 3787.977 3786.947 3773.712 3774.462 3768.188 

non-nested test 4.97E-15 5.33E-12 1.76E-06 1.55E-06 -- 

Average probability of correct prediction 0.570  0.592  0.629  0.618  0.667  

 

The aggregate data fit measures are provided in Table 5. The MNP model again performs 

better than the other four models, in terms of the APE. The MAPE for all the five models is 

presented in the last row of Table 5. The MNP model outperforms the other four models, with a 

MAPE of over 15.6% compared to the MAPE of more than 30% for the other models. 

 

Table 5 Aggregate data fit measures 

Models 

Modes 
Observed 

MNL 

Prediction 

(APE) 

CNL 

Prediction 

(APE) 

HI-MNP  

Prediction 

(APE) 

HONI-MNP 

Prediction 

(APE) 

MNP  

Prediction 

(APE) 

Car 602 
780 

(0.296) 

762 

(0.266) 

681 

(0.131) 

692 

(0.150) 

661 

(0.098) 

Taxi 33 
10 

(0.697) 

13 

(0.606) 

12 

(0.636) 

9 

(0.727) 

26 

(0.212) 

Metro 367 
463 

(0.262) 

420 

(0.144) 

451 

(0.229) 

474 

(0.292) 

397 

(0.082) 

Bus 217 
39 

(0.820) 

83 

(0.618) 

135 

(0.378) 

116 

(0.465) 

167 

(0.230) 

Bus & Metro 72 
50 

(0.306) 

41 

(0.431) 

46 

(0.361) 

54 

(0.250) 

51 

(0.292) 

Non-Motorized 

Mode 
452 

401 

(0.113) 

424 

(0.062) 

418 

(0.075) 

398 

(0.119) 

441 

(0.024) 

MAPE   0.415  0.354  0.302  0.334  0.156  

 

The data fit measures at both disaggregate and aggregate levels indicate that models that 

consider scale heterogeneity across alternatives will generally have a better performance than the 

homoscedastic models. As shown, the HI-MNP performs better than the MNL and the CNL, and 

the MNP has a better performance than the HONI-MNP. Similarly, models that consider 

correlation across utilities also perform better, as reflected in the superior data fit of the CNL over 

the MNL and the MNP over the HI-MNP. These results indicate that scale heterogeneity across 

alternative modes and the correlation among them should generally not be ignored a priori.  
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4.2 Model Estimation Results 

4.2.1 Value of Time 

The implied value of travel time (VOT) may be obtained in a straightforward manner from the 

coefficients on in-vehicle time and cost. These are shown in Table 6 for the different models. The 

VOT from the MNP is higher than that of other models, with a value of 36.615 RMB Yuan/hour, 

less than the average hourly wage of the sample, 60.84 RMB Yuan/hour (The average monthly 

income of the sample is 10.18k RMB Yuan, and the normal working hours per year is about 2,000 

hours). 

 

Table 6 VOT of the MNL, the CNL, and alternative MNP models 

Coefficients and VOT MNL CNL HI-MNP HONI- MNP Full MNP 

In-vehicle time (min) -0.0413 -0.0472 -0.0262 -0.0250 -0.0119 

Travel cost (RMB Yuan) -0.0765 -0.0994 -0.0470 -0.0432 -0.0195 

Value of Travel Time (RMB Yuan/hour) 32.371 28.484 33.459 34.720 36.615 

 

4.2.2 Explanatory Variable Effects 

The coefficients of the different variables in the utility function of each mode are of the same sign. 

So, to conserve on space, we only present the estimation results of the MNP model in Table 7. In 

the following sections, variable effects are discussed by variable category. These effects 

correspond to the β  coefficient, and provide the impact of each exogenous variable on the utility 

of alternatives.  

 

Effects of Level-of-service Variables 

The coefficients in Table 7 show the anticipated negative effects of in-vehicle time and travel cost 

for the motorized modes (car, taxi, metro, bus, Bus & Metro). Access/egress distance adversely 

affects the utilities of public transportation modes (metro, bus, Bus & Metro). As expected also, 

waiting time is viewed as being much more onerous than in-vehicle time for the public 

transportation modes. The waiting and transferring environment at public transit stations is 

crowded and uncomfortable, and commuters are usually anxious to be on their way. Finally, in the 

set of LOS variables, commute distance has a strong negative effect on the use of non-motorized 

modes.   
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Table 7 Estimation results of the MNP model (N=1743) 

Variable Parameter t-statistic 

Alternate specific constants (Non-motorized mode is base)  

Car -2.6067  -6.348  
Taxi -2.4386  -3.302  
Metro 1.5513  5.140  
Bus 0.5754  1.820  
Bus & Metro 0.7802  2.731  

Level-of-service variables   

In-vehicle time (min)-Motorized modes -0.0119  -2.572  
Travel cost (RMB Yuan)-Motorized modes -0.0195  -3.426  
Access/Egress distance (km)-Public transportation modes -0.3405  -5.373  

Waiting time (min)-Public transportation modes -0.0766  -3.924  

Trip distance (km)-Non-motorized mode -0.1116  -9.634  

Commute trip characteristics   

Number of companions   

Car 0.0929  3.603  
Taxi 0.1437  1.929  
Bus & Metro -0.2876  -2.491  

Socio-demographic and employment variables   

Male   
Bus -0.1355  -1.709  

Married   
Car 0.2927  2.513  

Living with family   

Car 0.7796  3.978  
Personal monthly income (10k RMB Yuan)   

Car 0.5804  6.315  
Taxi 0.7535  3.894  
Metro 0.3033  2.813  

Having a driving license   

Car 1.5204  6.727  
Having available private cars on the trip day   

Metro -0.7538  -3.687  
Bus -1.5805  -3.758  

Having available private bikes on the trip day   

Non-motorized mode 0.8100  6.860  
Workplace employment density (1k positions/km2)   

Taxi 0.0775  2.185  
Metro 0.0530  2.472  
Bus 0.0397  2.083  

 

Effects of Commute Trip Characteristics 

Among the commute trip characteristics that we considered, the number of companions has a 

significant impact on travel mode choice. In particular, the number of companions has a positive 

effect on the probability of choice of taxi, a not-very-surprising result that may be attributed to 

lower taxi costs with a higher level of sharing (the taxi cost included as a level of service variable 

was for the overall cost of the trip). 
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Effects of Socio-demographic and Employment Attributes 

In the bus utility function, a negative coefficient indicates that men are less likely to take the bus 

for their commute. The higher propensity to use the car mode among married commuters and those 

who live with their families (rather than live in dormitories) may be attributed to the convenience 

and privacy offered by the car during the joint travel of family members. A high income leads to 

a higher predisposition to use the high-quality, but also the high-cost modes of car, taxi, and metro. 

The magnitudes of the income coefficients for the different modes suggest a particular inclination 

toward the taxi mode, which seems reasonable given the taxi mode obviates the need to drive. The 

next variable, corresponding to “Having a driving license” increases the propensity to use the car 

mode (note that the car mode, in our analysis, includes driving personally, or car-pooling, or car-

sharing). This effect should be viewed as an elevated propensity to use the car-pool version of the 

“car” mode because a person without a driving license will not have the options of driving 

personally and/or using car-sharing. This result of an elevated tendency to use the car-pooling 

mode among those with a driving license is to be expected, since car-pooling arrangements 

generally entail taking turns to drive. Next, as expected, the availability of a private car leads to 

the reduced propensity to use metro and bus modes, while the availability of a private bicycle 

available on the trip day intensifies the use of the bicycle as the commute mode. Finally, areas with 

higher employment densities have fewer parking facilities and higher parking fees. As a result, 

commuters working in these areas are less likely to drive (alone or with others) to work, and more 

likely to take a taxi, bus, or metro. 

 

4.2.3 Error Correlation Structures and Covariance Matrices 

For identification and normalization, all the elements related to the non-motorized mode were 

fixed in the variance-covariance matrix in the fully flexible MNP model. Error correlation 

structures and variance-covariance matrices of the CNL, HI-MNP, HONI-MNP and MNP models 

are presented in Table 8. 

The first row panel of Table 8 provides information regarding the implied overlapping 

nesting structure of the CNL model. This nesting structure is presented in Figure 1. Metro is 

involved in both nest A and B. The dissimilarity parameter of nest A is significant, with a value of 

0.581 (shown in Table 8). It indicates that the alternatives (car, taxi, and metro) in nest A have 

positive correlations and substitutability. Metro has a substitutive relation with the car and taxi 

modes, probably because of the well-developed metro system in Shanghai (see further discussion 

on this issue later in this section). The allocation parameter describing the similarity of the metro 

mode to the car and taxi modes in nest A is 0.092 (shown in Table 8), while the similarity of the 

metro mode to the public transportation modes in nest B is much higher at 0.908). This is because 
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metro, bus, and Bus & Metro are more closely correlated and substitutable than car, taxi, and metro, 

which is also in line with the correlations estimated by the HONI-MNP and the MNP in Table 8.  

 

Root

Car Taxi Metro Bus Bus & Metro Non-motor

Nest A Nest B
 

Figure 1 Nesting structure of the CNL model 

 

Table 8 Error correlation structure and covariance matrices of the CNL and the MNP models 

Models 
CNL HI-MNP HONI- MNP Full MNP 

Coeff. T-test Coeff. T-test Coeff. T-test Coeff. T-test 

Error Correlation Structure          

mu(car, taxi, metro) = mu(metro, 
bus, Bus & Metro) 

0.581  9.74  -- -- -- -- -- -- 

alpha for metro for the nest 
corresponding to (car, taxi, metro) 0.092  1.88  

-- -- -- -- -- -- 

Variance (non-motorized mode = 1) 

Taxi 1.000  -- 1.074  1.92  1.000  -- 1.000  -- 

Car 1.000  -- 0.589  3.92  1.000  -- 0.887  2.35  

Metro 1.000  -- 3.077  2.55  1.000  -- 1.221  2.83  

Bus 1.000  -- 4.178  3.61  1.000  -- 7.953  5.70  

Bus & Metro 1.000  -- 1.108  3.39  1.000  -- 1.189  1.05  

Covariance (Correlation)         

between Car and Taxi 0.662  3.82 -- -- 0.828  9.82  0.805 (0.855*) 2.35  

between Car and Metro 0.200  3.26 -- -- 0.265  2.24  0.470 (0.451*) 2.06  

between Bus and Metro 0.631  7.47 -- -- 0.624  13.41  2.128 (0.683*) 2.90  

between Bus & Metro and Bus 0.662  6.94 -- -- 0.516  3.06  2.049 (0.666*) 2.83 

*: correlations transferred from covariance matrices 

The second row panel of Table 8 provides the variances of the alternatives. These are 

relevant only in the heteroscedastic but independent MNP (HI-MNP) and MNP models, because 

the MNL, CNL and the homoscedastic but non-independent MNP (HONI-MNP) assume a 

constant (and normalized) variance across all modes. The results reveal that the HI-MNP 

overestimates metro variance and underestimates bus variance when compared with the MNP, 

though both these models show a greater variance for bus than metro. This latter result indicates 
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that unobserved variables affecting bus utility have greater variances than those affecting metro 

utility. For example, comfort level is an unobserved variable whose values generally vary 

considerably for the bus mode because there are several different kinds of bus services in Shanghai, 

including customized buses (or demand-response transit), bus rapid transit (BRT) and regular 

buses. Occupancy rates may vary among these bus services. Even regular bus service can have 

different occupancy rates on different routes. Some buses are equipped with air conditioners, while 

others are not. The metro mode, however, has little variation in comfort level. Therefore, the 

random component for the bus mode has a greater variance than that for the metro mode.  

In terms of correlations presented in the last row panel of Table 8, the MNL model, of 

course, has no error correlation due to the IID assumption (the MNL model is not presented in 

Table 8). The HI-MNP assumes that random utilities of different travel modes are not correlated. 

The table indicates that the CNL, the HONI-MNP, and the MNP models all reveal positive 

correlations for the pairwise alternatives of car/taxi, car/metro, and bus/metro. In the context of 

single choice models (that is, when only one alternative can be chosen), such positive correlations 

imply a higher level of substitutability between the corresponding pairs of modes relative to 

assuming zero correlation (as in the MNL). Of the pairwise correlations, those between car/taxi 

and bus/metro are to be expected. Cars and taxis are characterized by their mobility and flexibility 

and both belong to the category of a private transportation mode. Meanwhile, bus and metro are 

both public transportation modes and have many aspects in common. However, the positive 

correlation between the car and metro modes, even though less than the positive correlations 

between car/taxi and bus/metro, is particularly interesting because one is a private mode while the 

other is a public transportation mode. This result, though perhaps likely to be unique to many 

Chinese cities, is probably because the Shanghai metro has been well developed and provides a 

convenient, high-frequency and punctual service. Shanghai metro operates on a strict schedule, 

making it attractive to most commuters. The Shanghai metro operates at a speed (almost 30 km/h) 

even faster than the speed of road traffic during peak hours. In addition, it is difficult to find a 

temporary parking lot during peak hours and also highly expensive to reserve a parking lot because 

of limited parking spaces around workplaces. This finding suggests that improvement in metro 

LOS can be effective in attracting commuters away from private cars to the metro and alleviate 

traffic congestion during peak hours.  

Also to be noted from the table is that the error correlation between car and metro is 

underestimated quite considerably by the CNL and HONI-MNP models relative to the MNP model 

(specifically by 55.65% in the CNL and by 41.24% in the HONI-MNP). The implication is that 

we should expect an underestimation of the increase in the metro mode when car costs/times 

increase and an underestimation of the draw away from the car mode when the metro level of 

service is improved (as predicted by the CNL and HONI-MNP models relative to the MNP model), 

as we will confirm in the next section when examining market share changes.  
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4.3 Policy Implications 

4.3.1 Background  

The Chinese government has implemented several policies to encourage commuters to shift 

from private cars to high-occupancy public transportation to address the increasing traffic 

congestion in Shanghai. Traffic congestion-relief policies include disincentives to use private cars, 

improvement in public transportation level of service (LOS), and encouragement of the use of non-

motorized travel modes. To reduce the use of private vehicles, the government has adopted (and is 

increasingly considering further adoption) such demand management measures as a car plate 

auction policy to control vehicle ownership, an additional toll for the use of major highways, 

forbidding cars with plates from other provinces using elevated roads during rush hours, and 

increased parking fees. Improvements in the LOS attributes of public transportation that have been 

implemented (and also increasingly being considered) are the designation of bus lanes, increase in 

the frequency of transit service, and reduction of access/egress distance (or increase in the 

catchment area of transit stations). Bus lanes in Shanghai have grown to 437 km in 2019 and the 

average operating speed has increased by 2km/h during peak hours. The metro system in the central 

area of Shanghai decreased its peak-hour headway to three minutes in 2018 with over 5000 metro 

trains. The percent of catchment area of metro stations based on 600-meter circular buffers is more 

than 71% within the inner-ring area in Shanghai, and that based on 500-meter circular buffers for 

bus stops is more than 92% within the outer-ring area in Shanghai. The number of metro stations 

has also been increased from 366 in 2015 to 415 in 2018, and there will be new metro lines and 

metro stations in the next few years (Shanghai Transport & Port Research Center, 2018). 

Furthermore, the government is taking strides toward making short-distance trips more convenient 

by providing high-quality walking paths and environment, and by implementing policies that 

encourage bike-sharing services. However, many of these policies have only been recently 

implemented (or are still being considered), and there has been little analysis of the likely 

effectiveness of these policies on individuals’ commute mode choices. Travel mode choice models, 

such as the one estimated in this paper, provide an analytical tool for evaluating the impact of 

congestion-relief policies to encourage the shift from private cars to other modes. In this paper, we 

focus on three main policies: (1) highway tolls, (2) improvement in the frequency and 

access/egress distance of the metro system, (3) car ownership and driving license ownership. The 

last of these may provide insights on any regulations the government may want to impose on the 

purchase of cars and/or the number of driving licenses issued. Mode share changes with these 

different policy actions are presented in Table 9 and discussed below. 
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Table 9 Market share change (%△P) 

                                    Models 

Modes 
MNL CNL HI-MNP HONI- MNP MNP 

when the highway toll is increased by 5 Yuan 

Car -2.123  -2.153  -1.325  -2.185  -2.073  

Taxi -2.149  -2.121  -1.470  -2.579  -2.395  

Metro 1.169  0.906  0.780  1.172  1.258  

Bus 0.485  1.107  0.953  1.059  1.478  

Bus & Metro 0.790  1.241  0.880  1.441  0.674  

Non-motorized 0.964  0.716  0.585  0.960  0.962  

when the waiting time of the metro mode is decreased by 1 minute 

Car -0.590  -0.772  -1.268  -0.588  -0.900  

Taxi -0.386  -0.218  -0.260  -0.632  -0.776  

Metro 2.336  2.865  4.123  1.848  2.647  

Bus -0.412  -0.437  -1.229  -0.668  -0.944  

Bus & Metro -0.475  -0.539  -0.671  -0.161  -0.141  

Non-motorized -0.308  -0.444  -1.046  -0.353  -0.487  

when access/egress distance of the metro mode is decreased by 0.1 km  

Car -0.229  -0.330  -0.716  -0.579  -0.712  

Taxi -0.151  -0.107  -0.146  -0.622  -0.614  

Metro 0.909  1.237  2.330  1.818  2.093  

Bus -0.161  -0.194  -0.694  -0.657  -0.747  

Bus & Metro -0.185  -0.231  -0.377  -0.158  -0.111  

Non-motorized -0.120  -0.191  -0.593  -0.348  -0.385  

when car ownership is decreased by 1% 

Car -0.095  -0.106  -0.201  -0.151  -0.204  

Taxi 0.013  0.003  0.029  0.003  0.032  

Metro 0.151  0.275  0.264  0.214  0.262  

Bus 0.177  0.130  0.190  0.246  0.196  

Bus & Metro 0.045  0.050  0.032  0.021  0.019  

Non-motorized 0.175  0.249  0.204  0.278  0.214  

when driving license ownership is decreased by 1% 

Car -0.932  -0.944  -0.840  -0.957  -0.824  

Taxi 0.025  0.004  0.087  0.004  0.083  

Metro 0.295  0.316  0.204  0.241  0.212  

Bus 0.220  0.133  0.233  0.104  0.229  

Bus & Metro 0.083  0.092  0.042  0.021  0.021  

Non-motorized 0.404  0.603  0.237  0.566  0.245  
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4.3.2 Impact of Highway Tolls on Commute Mode Shares 

Since Shanghai highway tolls start at 5 Yuan (with 5 Yuan also being the basic unit for price 

changes), the percentage change in mode shares is calculated for an additional 5 Yuan toll for the 

private car and taxi modes. As expected, this leads to a decrease in share for the car and taxi modes, 

and an increase in share for the other modes, as predicted by all the five models (see the first row 

panel of Table 9). But the non-MNP models, in general, underestimate the decrease in car and taxi 

modes (except for the HONI-MNP, which estimates an even higher decrease in taxi share relative 

to the MNP model), and underestimate the increase in share for the metro and bus modes. Between 

the metro and bus share increases, the bus share increase is higher. Further, the underestimation of 

the increase in the metro share as predicted by the non-MNP models is particularly noticeable, 

consistent with the discussion in the previous section in this regard. Overall, the ability to shift 

individuals from private modes to public transportation through the use of toll-based policies is 

underestimated by the non-MNP models. 

4.3.3 Impacts of the Frequency and Access/Egress Distance of Metro System  

To analyze the impacts of frequency and access/egress distance improvements for the metro mode, 

we consider a waiting time reduction by 1 minute and an access/egress distance decrease by 0.1 

kilometers. The resulting mode share changes are shown in the second and third row panels of 

Table 9. The results show that the metro mode share is increased by 2.647% with a 1-min reduction 

of the waiting time and 2.093% with a 0.1-km decrease in the access/egress distance in the full 

MNP model. The corresponding metro mode share increases are either lesser or of the same order 

from the MNL, CNL, and HONI-MNP models, but are overestimated by the HI-MNP model. The 

non-MNP models also generally underestimate the draw away from the car mode due to metro 

mode improvements, except for the HI-MNP model. This is again consistent with our expectation 

(discussed at the end of Section 4.2.3) of an underestimation from the CNL and HONI-MNP 

models of the draw away from the car mode when the metro level of service is improved.  

If the highway toll policy of an increase by 5 Yuan is compared with the policies that 

improve the metro level of service, the former has a higher impact on decreasing the use of private 

cars and taxis, and the latter does better in attracting commuters to take the metro. Therefore, both 

kinds of measurements can work together to reduce the use of private transportation modes and 

increase the market share of public transportation. 

4.3.4 Impacts of Car Ownership and Driving License Ownership 

By 2017, there were 2.74 million private cars in Shanghai (Shanghai Municipal Statistics Bureau, 

2018). The number of driving licenses issued (7.61 million) in Shanghai are at about 2.78 times 

the number of cars owned. With more convenient and efficient car-sharing services emerging, an 

increase in driving licenses is likely to correlate with an increasing car commute trips, particularly 
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for young workers who cannot afford to own a car but hold a driving license. Here we investigate 

the effect of car ownership and driving license ownership on travel mode shares. Currently, as 

shown in Table 2, about 62% of sample respondents have a private vehicle available, and about 

76% of respondents have a driving license. We investigate the effects of policies that contain car 

ownership rates and meter driving license issuance. Specifically, we examine the effect of a 

decrease by 1% in private car availability and a reduction in 1% of individuals holding driving 

licenses.   

The results, presented in the last two row panels of Table 9, show that the changes in the non-

car modes are rather low, and all positive, even as they each absorb some share of the reduction in 

the car mode share because of the car ownership/driving license policies. So, we will focus on the 

car mode share changes here. The non-MNP models underestimate the decrease in car mode share 

because of a car availability reduction, and overestimate the reduction in car mode share due to a 

driving license curtailment policy. Despite these differences, all models indicate that a license 

ownership restriction has a much larger effect on car mode share than does a car availability 

reduction policy. This does suggest an emphasis on strict driving license issuance regulations to 

reduce the use of private cars, while limiting car ownership can be a supplementary policy to 

reduce car use.  

5. CONCLUSIONS AND DISCUSSIONS 

The MNP model has rarely been applied for mode choice modeling, in both research and practice. 

This paper applied an MNP model to analyze Shanghai commute mode choice. Bhat’s (2018) 

TVBS method, which is a matrix-based analytic approach to evaluate the MVNCD function, is 

employed in model estimation. The dataset was derived from a web-based travel survey of 

Shanghai commuters. Level of service attributes were generated from the transportation network 

of Shanghai. The travel modes considered in this study were car, taxi, metro, bus, Bus & Metro 

and non-motorized modes. In addition to the MNP model, we also estimated four other models; 

(1) the multinomial logit (MNL) model that assumes independent and identically distribution 

utility error terms across alternatives, (2) the cross-nested logit (CNL) model that relaxes the 

independence assumption across alternatives, but maintains identical error terms, (3) the 

heteroscedastic but independent MNP (HI-MNP) model that relaxes the identical error term 

assumption, but maintains independence, and (4) the homoscedastic but non-independent MNP 

(HONI-MNP) that relaxes the independence assumption but imposes homoscedasticity of error 

terms. Overall, from a data fit perspective at, both the disaggregate and aggregate levels, (a) the 

MNP clearly outperforms all the other four models, (b) the HI-MNP performs better than the MNL 

and the CNL models, and (c) the HONI-MNP provides a better data fit than the MNL model. 

Interestingly, the performance of the HI-MNP and the HONI-MNP are about the same, though 

quite inferior to the performance of the MNP. In totality, these results underscore the importance 
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of considering both heteroscedasticity as well as correlated error terms when estimating mode 

choice models.   

The variance and correlation structures from the many models provide useful insights and 

also have relevance for policy analysis. The models allowing for heteroscedasticity indicate a 

greater variance for bus than metro, suggesting much higher variability in the quality of bus-related 

equipment, bus stop environment, and bus service relative to the more streamlined and less 

variable metro rail service. Interestingly, whenever correlations were allowed in the models, these 

turned out to be positive. Of the pairwise correlations, those between car/taxi and bus/metro are to 

be expected. However, the positive correlation between the car and metro modes, even though less 

than the positive correlations between car/taxi and bus/metro, is particularly interesting because 

one is a private mode while the other is a public transportation mode. But this result, though 

perhaps likely to be unique to many Chinese cities, suggests that improvement in the metro level 

of service can be effective in attracting commuters from private cars to metro and alleviate traffic 

congestion during peak hours.  

Policy implications are examined and discussed. Overall, the ability to shift individuals 

from private modes to public transportation through the use of toll-based policies is underestimated 

by the non-MNP models. This suggests that there would be (inappropriately) less emphasis on 

implementing tolling and metro service improvement policies if the non-MNP models were to be 

used as the basis for policy analysis. Also, our results suggest that a highway toll policy is the most 

effective in decreasing the market share of car and taxi modes, while a metro level of service 

improvement is the most effective in increasing metro share. Therefore, both tolling and metro 

service improvement policies should be implemented together for maximum impact in reducing 

the use of private transportation modes and increasing the market share of public transportation. 

Additionally, between policies that regulate car purchases or cut back on driving license issuance, 

the latter appears to be a much more effective action to contain and decrease car mode share.  

From a methodological standpoint, the TVBS method makes the evaluation of the high-

dimensional integral of MVNCD more efficient and provides a feasible way to apply the MNP 

model to city-wide travel demand forecasting. The MNP model using this matrix-based analytic 

method is free from the limitations of simulation-based integration in the mixed MNL model and 

restrictive error structures in logit-based models such as the MNL, NL, or CNL model. We believe 

it is time to cast aside doubts about the estimability of MNP models, while still continuing to 

emphasize the best systematic specifications in our choice models. We hope that the application 

in this paper to a six-alternative mode choice model will pave the way for future travel demand 

modeling analysis using a flexible MNP model structure rather than a priori imposing constraints 

on the variance-covariance matrix.  
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