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Abstract 
There is growing interest in employing non-normal parameter distributions on covariates to 
account for random taste heterogeneity in multinomial choice models. In this study, we propose a 
flexible, computationally tractable, structurally simple, and parsimonious-in-specification random 
coefficients multinomial probit (MNP) model that can accommodate non-normality in the random 
coefficients. Our proposed methodology subsumes the normally distributed random coefficient 
MNP model as a special case, thus eliminating the need to a priori decide on the distributional 
assumption for each coefficient. The approach employs an implicit Gaussian copula to combine 
the univariate coefficient distributions into a multivariate distribution with a flexible dependence 
structure. Using our new flexible MNP framework, we investigate the commute mode choice 
behavior for workers in the city of Bengaluru, a metropolitan city in southern India. Results from 
our analysis indicate that sociodemographic variables, commute characteristics, and mode-related 
attributes significantly impact the commute mode choice decision. Importantly, our results indicate 
the presence of unobserved taste heterogeneity in the sensitivities to the travel time and travel cost 
variables; moreover, the distribution of the travel time coefficient is found to be significantly non-
normal. In terms of data fit, our proposed model statistically outperforms the traditional MNP 
model as well as an MNP model that imposes normality on the travel time coefficient. The pitfalls 
of ignoring non-normality in the distribution of parameters are also discussed, as are several 
policies to promote a shift from private modes of transportation to more sustainable public 
transportation/walk modes. 
 
Keywords: Non-normal distribution; Unobserved heterogeneity; Gaussian copula; Mode choice; 
Developing economy.  
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1 INTRODUCTION 
Among the choice models used in the literature, the multinomial logit (MNL) model continues to 
be the “workhorse” and has been the most widely used structure for modeling travel mode choices. 
But, over the past several decades, many extensions of the MNL model have been proposed in the 
literature, which relax the independence and identically distributed (IID) kernel error terms and 
homogenous response assumptions of the MNL model. Bhat (2020) provides a detailed history of 
the developments and progress of the field over multiple decades. Among all the choice models, 
two general econometric model structures have stood out as being the new standards for flexibility 
in capturing random taste heterogeneity. One is the mixed logit model that has seen several 
applications in the context of travel mode choice (see for example, Guo et al., 2020, Patil et al., 
2020, Parmar et al., 2021, Dias et al., 2022). The second is the multinomial probit (MNP) model 
(Daganzo, 2014). The MNP model can accommodate random taste heterogeneity in a way similar 
to the mixed logit, by specifying IID (independent and identically distributed) kernel normal error 
terms over which a mixing distribution is specified. In this sense, the mixed IID MNP and the 
mixed logit models have essentially the same structure; the mixed logit has received more attention 
because, conditional on random taste heterogeneity, it collapses to the familiar closed-form MNL, 
while the mixed IID probit, again conditional on random taste heterogeneity, requires a one-
dimensional integration (see Bhat, 2003). However, as discussed at length in Bhat (2018), when a 
multivariate normal random taste heterogeneity (mixing) distribution is used, the latter can be 
much more computationally efficient when the number of random coefficients (say K) is higher 
than the number of alternatives (say I), as is not uncommon in travel choice modeling. This is 
because of the conjugate nature of the multivariate normal distribution under additivity, which 
results in the evaluation of only an (I–1) dimensional truncated (from above; that is, the 
multivariate normal cumulative distribution (MVNCD) function) in the MNP case relative to a K-
dimensional untruncated integral in the mixed logit case (see Figure 1). Besides, in social/spatial 
interaction contexts or when modeling unordered choices with other types of outcome variables 
(such as ordered choice or counts), the use of a normal error kernel has substantially more appeal 
than the extreme value error kernel.   

More recently, there has been renewed interest in the use of the normal error kernel in 
discrete choice modeling, thanks also to the development of new analytic methods to estimate the 
multivariate normal cumulative distribution function (Bhat, 2018; Wang et al., 2023). Patil et al. 
(2017) show that these analytic approaches can be much faster than traditional maximum simulated 
likelihood (MSL) approaches used for the mixed logit models. Also, in the last two decades, there 
has been growing interest in considering flexible non-normal (mixing) distributions for 
coefficients on covariates to account for random taste heterogeneity, because the typical normal 
(mixing) distributional assumptions for model parameters may not be appropriate (see, for 
example, Bhat, 2000, Train and Sonnier, 2005, Greene et al., 2006, Vij and Krueger, 2017, Bhat 
and Sidharthan, 2012, and Bhat and Lavieri, 2018). In the context of a travel mode choice model, 
the most common example is the sensitivity to travel cost, which is expected to be negative; 
however, the normal distributional assumption does not ensure this negativity constraint. To 

https://www.sciencedirect.com/science/article/pii/S0191261518301814?casa_token=xRte4cglZeAAAAAA:P_7gbtspoSIXic4elsRmmyqRigFhY53SLBdFduhLIosXCoEHY884x6DGg6-K1Nx9NPOuBOgGCnU#bib0048
https://www.sciencedirect.com/science/article/pii/S0191261518301814?casa_token=xRte4cglZeAAAAAA:P_7gbtspoSIXic4elsRmmyqRigFhY53SLBdFduhLIosXCoEHY884x6DGg6-K1Nx9NPOuBOgGCnU#bib0022
https://www.sciencedirect.com/science/article/pii/S0191261518301814?casa_token=xRte4cglZeAAAAAA:P_7gbtspoSIXic4elsRmmyqRigFhY53SLBdFduhLIosXCoEHY884x6DGg6-K1Nx9NPOuBOgGCnU#bib0008
https://www.sciencedirect.com/science/article/pii/S0191261518301814?casa_token=xRte4cglZeAAAAAA:P_7gbtspoSIXic4elsRmmyqRigFhY53SLBdFduhLIosXCoEHY884x6DGg6-K1Nx9NPOuBOgGCnU#bib0008
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address this issue, several researchers have proposed the use of bounded distributions such as the 
lognormal distribution. Moreover, the heterogeneity in sensitivity to other exogenous variables, 
even if can be unbounded over the real line, may follow a distribution which may be skewed to 
the right or left (and not necessarily be normally distributed); in such cases, assuming a normal 
distribution for the response coefficients will generally lead to biased estimates (see Balcombe et 
al., 2009 and Torres et al., 2011). To address this issue, researchers have used non-normal 
parameter distributions to provide flexibility. The consideration of such bounded/flexible mixing 
distributions has the added benefit of avoiding potential misspecification consequences such as 
poorer data fit, inaccurate trade-off computations, and misinformed policy evaluations.1  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Two typical normally-mixed models in the discrete choice literature 
 
In the discrete choice literature, the mixing distribution for unbounded coefficients, when 

allowed to be non-normal, is generally either modeled as (a) a discrete-valued random variable 
vector, or (b) a continuous parametric random variable vector, or (c) a combination of the two (see 
Figure 2). The method of modeling the mixing distribution as a discrete-valued random variable 
vector (see left side branch of Figure 2) may itself be achieved in one of two broad ways. The first 
is to assume a finite number of segments, each segment having a specific fixed coefficient vector 
in the population. Individuals belong to a specific segment, but this segment membership is not 
observable, and so a probabilistic model of segment membership is layered over the segment-

 
1 The MNP approach, once again has a distinct advantage from a computational standpoint over the mixed logit in 
situations where there are fewer alternatives than random coefficients, and many random coefficients may be specified 
to be normal with few left for testing for non-normality. This issue is discussed at length in Bhat and Sidharthan (2012) 
and Bhat and Lavieri (2018).  

Multinomial Logit 
(MNL) 

Normally-Mixed MNL Normally-Mixed Multinomial 
Probit (MNP) 

Dimensionality of untruncated 
integration is K 

Dimensionality of truncated 
(from above) integration is (I–1) 

K = Number of normal random coefficients 
I = Number of alternatives in choice set 
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specific choice model. This approach (see leftmost twig in Figure 2) corresponds to the latent class 
of models, as proposed by Bhat (1997) in a travel mode choice context (see also Greene and 
Hensher, 2003 and Train, 2009). Latent class models are particularly useful in cases when the 
entire mixing vector (across coefficients) takes a finite and small number of possible value states. 
On the other hand, if a discrete distribution is considered separately for each individual random 
coefficient, the result is a non-parametric estimation (see Bastin et al., 2010, Cherchi et al., 2009, 
Dong and Koppelman, 2014, Krueger et al., 2020, and Bauer et al., 2022). Such discrete (non-
parametric) specifications (see right twig under the first branch of Figure 2) allow consistent 
estimates of the observed variable effects under broad model contexts by making regularity and 
smoothness (for instance, differentiability) assumptions on an otherwise distribution-free density 
form. But the flexibility of these methods comes at a high inferential cost because of parameter 
profligateness arising from series-based or other approximations to the density function (Mu and 
Zhang, 2018, Denzer, 2019). Also, consistency is achieved only in very large samples, parameter 
estimates have high variance, and the computational complexity/effort can be substantial 
(Mittelhammer and Judge, 2011).  

The method of modeling the mixing distribution as a continuous multivariate non-normal 
vector (see center branch of Figure 2) typically takes the form of pre-specifying a multivariate 
non-normal distribution (such as a multivariate skew-normal distribution to introduce asymmetry 
and skew, or a multivariate t-distribution to introduce fat tails). An example of this approach is 
Bhat and Sidharthan (2012), who employ a multivariate skew-normal distribution for taste 
sensitivity parameters (see leftmost twig of the center branch in Figure 2). The skew normal 
distribution they use can replicate a variety of non-normal density shapes with heavier left/right 
tails as well as high/low modal values. The skew distribution also includes the normal distribution 
as a special case and the log-normal distribution as a limiting case, thus allowing for both 
boundedness as well as flexibility. Another more general continuous multivariate non-normal 
approach for the mixing distribution tests a variety of different univariate parametric distributions 
for each mixing coefficient (the parametric distributions can be different for different coefficients), 
and then employs a copula to tie the many univariate continuous distributions into a multivariate 
non-normal distribution (see center twig of the center branch in Figure 2). Bhat and Lavieri (2018) 
adopt such a general structure for accommodating non-normal distributions in a mixed random 
coefficients MNP model, combining the different univariate distributions through a Gaussian 
copula. A Gaussian copula has several advantages, including (a) a flexible dependence structure 
across coefficients and (b) ease of simulation compared to other copula structures (see Bhat and 
Eluru, 2009). Bhat and Lavieri (2018) proceed to use a hybrid Maximum Simulated Likelihood 
(MSL) – Maximum Approximate Composite Marginal Likelihood (MACML) inference approach 
to estimate their model. Although a flexible approach, the Bhat and Lavieri (2018) approach 
requires the analyst to assume a continuous distribution for each parameter prior to estimation (or 
at least test many different combinations prior to imposing a specific distributional assumption on 
each coefficient). A common distinct advantage of these continuous mixing distributions, relative 
to the discrete mixing distributions, is parsimony in the number of parameters to be estimated. 
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Figure 2. Discrete choice models allowing for non-normal random coefficients
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The method of modeling the mixing distribution as a combination of a discrete and 
continuous distribution vector (see right side branch of Figure 2) typically takes the form of a finite 
discrete mixture of parametric distributions, including mixture-of-normals, mixture-of-skew-
normals, and mixture-of-skew-t distributions. Such approaches may be considered as 
semiparametric approaches. Of these, the mixture-of-normals has been most commonly used see 
Xiong and Mannering, 2013, Bhat et al., 2016, Buddhavarapu et al., 2016, Li et al., 2018, and 
Orvin and Fatmi, 2020). Theoretically speaking, with a large number of components, this mixture 
distribution can mimic literally any multivariate density function, including the fully 
nonparametric distribution. Therein lies the challenge. Having a large number of components leads 
to (a) substantial non-smoothness in the density function and resulting computational challenges, 
(b) inefficient use of model parameters and resulting estimation challenges (regardless of the 
inference procedure used) due to high sensitivity to starting parameters/prior distribution 
assumptions, (c) the danger of the model becoming singular because of identification issues, and 
(d) potential overfitting tendencies of the inference approaches that can then result in large local 
maxima and potentially unbounded likelihood functions (see, for example, McLachlan and 
Rathnayake, 2014, Zhang and Huang, 2015, Hao and Kasahara, 2022, and Cai and Xu, 2023). Due 
to these reasons, and as stated by Rossi (2014), a statement that remains valid even today, “the 
really interesting question is not whether the mixture-of-normals can be the basis of a non-
parametric density estimation procedure, but, rather, if good approximations can be achieved with 
relative parsimony.” Similarly, in a more recent review of mixture models by McLachlan et al. 
(2019), they state “Arguably the most obdurate methodological problem associated with mixture 
distributions is that of identifying the number of components involved in the distribution 
underlying a set of data”. Furthermore, when the target multivariate density has substantial skew, 
particularly in multiple components, the mixture-of-normals approach can provide distorted and 
misleading inferences because of overfit problems and weak identification of the many 
components (due to the need for an unnecessarily high number of components to mimic skewness), 
which contribute even more to computation/inference problems especially when working with 
limited sample sizes (Lin et al., 2007, Fruhwirth-Schnatter and Pyne, 2010, Everitt, 2013, Lin et 
al., 2016, Gallaugher et al., 2020, Smith et al., 2020, and Dong et al., 2023).  Of course, one can 
move to more general component distributions, such as mixtures of skew-normal, skew-t, and 
other asymmetric and fat-tailed distributions from families of parametric distributions such as the 
generalized hyperbolic (GH) class; these have the benefit of more appropriately representing the 
target distribution with parsimony, but bring additional inference and computational challenges, 
while also leaving unclear about the type of skewness shapes capable of being handled by the 
different mixing distributions (see Fruhwirth-Schnatter and Pyne, 2010 and Lee and McLachlan, 
2022). Besides, as with non-parametric approaches, this general class of semiparametric 
approaches attain favorable statistical asymptotic properties only when implemented using a large 
sample size (see Dong and Lewbel, 2015, Mu and Zhang, 2018). In addition, issues of 
interchangeability of component labels (known as the label-switching problem) need to be 
carefully addressed through appropriate constraints. As discussed in McLachlan et al. (2019), this 
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is particularly so in a Bayesian framework because of the use of  posterior simulations to make 
inferences. 

Overall, non-parametric (discrete) series-based or similar approximations to the density 
function offer the most flexibility, but are saddled with profligateness and computational/inference 
challenges. Somewhere closer to the non-parametric distribution with its flexibility but also 
computational/stability challenges lies the finite discrete mixture-of-parametric distribution class 
(including mixture-of-normals, mixture-of-skew-normals, and mixture-of-t-distributions, with the 
mixture-of-normals being much more limited in flexibility than the mixture-of-skew-normals and 
mixture-of-t-distributions). On the other hand, continuous multivariate non-normal distributions, 
especially based on the copula approach of Bhat and Lavieri (2018), may offer somewhat less 
flexibility, but have definitive parsimony, computation, and inference advantages. However, 
although substantially more flexible than the multivariate normal mixing approach, the Bhat and 
Lavieri (2018) approach requires the analyst to assume a continuous distribution for each 
parameter prior to estimation. In this study, we propose an even more flexible, computationally 
tractable, structurally simpler and parsimonious-in-specification non-normal distribution along 
each univariate dimension (that is, each random coefficient), which are then tied together across 
different random coefficients within a Gaussian copula approach (this methodology is listed as the 
third twig of the center branch labeled “Continuous multivariate non-normal random vector” in 
Figure 2). Our proposed methodology accounts for the normal distribution as a special case of the 
non-normal flexible distribution, as well as can mimic a whole range of skewed and fat-tailed 
univariate distributions, thus eliminating the need to a priori decide on the distributional 
assumption for each coefficient. To do so, we use the Yeo and Johnson (2000) or the YJ 
transformation for each random coefficient, which extends the well-known Box-Cox 
transformation of a non-normal random variable/parameter into a normal random 
variable/parameter using a single parameter. Moreover, this transformation immediately facilitates 
the use of an implicit Gaussian copula to combine the univariate coefficient distributions into a 
multivariate distribution with a flexible dependence structure, thereby harnessing the advantages 
of the Gaussian copula discussed earlier. To our knowledge, our study constitutes the first attempt 
to introduce this transformation approach for random coefficients in a discrete choice model.  

Important to note is that our copula-based method for random coefficients based on the YJ 
transformation offers much more efficiency than other multivariate nonparametric and 
semiparametric distributions for accommodating an unknown multivariate distribution with strict 
unimodality along each univariate dimension. In particular, the YJ transformation appears to do 
remarkably well in comparison to other approaches to accommodate skewness. As an illustration, 
Gallaugher et al. (2020) have compared, using Mardia’s multivariate skewness and kurtosis 
metrics (Mardia, 1970) and multiple datasets for cluster analysis, the performance of two types of 
normal variance mean-mixture based skew distributions with two transformation approaches 
(including the YJ transformation used in this paper). They conclude that “From the analyses on a 
variety of datasets…, it appears that no one method consistently outperforms the others and usually 
the performance is very similar if not identical”. Further, they observe that the transformation 
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method has the distinct advantage of being much more parsimonious, while also performing at 
least as well as the more complicated mixtures of skew distributions. Similarly, Smith et al. (2020) 
state the following “Our empirical work shows that the Yeo-Johnson transformation is particularly 
effective and is quickly calibrated using stochastic gradient ascent (SGA); in most cases, faster 
than calibrating the elliptical or skew-elliptical distributions themselves on the parameter vector.” 
Of course, we must admit that, while parsimonious and offering substantial flexibility to 
accommodate unimodal skew and fat-tailed distributions, the YJ approach is unable to 
accommodate distributions with multimodality along one or more dimensions. We leave this for 
future research, though we suggest one approach in the conclusions section to accommodate 
multimodality in random coefficients through the fusion of the YJ transformation approach with 
the finite discrete mixture approach.  

Our proposed method is applied to understand commuters’ mode choice behavior within the 
context of a fast-evolving urban mobility landscape of a developing economy, as discussed next.  

 
1.1 Urban Mobility and Mode Choice Models in Developing Economies 
The world’s urban population, as a percentage of the total population, has seen a steady increase 
over time, from 47.4% in 2000 to 56.1% in 2020 (World Bank, 2022). Much of this increase may 
be traced to the increasing urbanization trends in developing countries. For example, according to 
a World Bank statistic (World Bank, 2022), India alone increased its urban population percentage 
from 27.6% in 2000 to 34.9% in 2020, representing an urban population percentage increase of 
26.4%. Furthermore, not only is the urban population increasing in developing countries, but so is 
the ownership and use of private vehicles. Again, taking the example of India, the number of 
registered four-wheelers per 1000 persons increased from 6.6 in 2001 to 28.1 in 2019, representing 
a percentage increase of about 325% in four-wheeler registration in less than two decades (Ministry 
of Road Transport and Highways, 2021)! This combination of an increase in urban population and 
private vehicle ownership has resulted in substantial stress on the transportation infrastructure. The 
concomitant rise in traffic congestion and mobile-source emissions, along with the limited ability 
to expand the existing transportation infrastructure, has renewed calls for urban policies to reduce 
private vehicle usage through urban planning initiatives that promote the use of more sustainable 
public transportation and non-motorized modes of transportation. The effectiveness of such 
incentives may be evaluated using travel mode choice models that provide insights into the effects 
of socio-demographics, built environment characteristics, and transportation-related attributes on 
individual mode decisions. Such mode choice and travel behavior-related studies abound in the 
scholarly literature on transportation planning and travel demand. However, compared to the 
western world (primarily North America and Europe), developing countries have seen less 
attention in the area of mobility choice analysis (Masoumi, 2019). At the same time, the travel 
context in developing countries is quite different from that of the western world due to (a) lower 
levels of private-vehicle ownership, with a high prevalence of “captive” non-private travel mode 
riders, (b) high levels of two-wheeler usage as a private motorized mode, especially in South-Asian 
cities, (c) the presence of informal modes of transportation (often termed as “intermediate public 
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transport” or “para-transit”), such as auto-rickshaws in several Indian cities, (d) a rather inadequate 
walking and bicycling infrastructure, and (e) differences in socio-economic characteristics and 
attitudes. Thus, there is a clear need for more emphasis on mobility analysis in developing 
economies. 
  
1.2 Current Paper in Context 
Motivated by the discussion above, the overall objective of the current study is to propose a flexible 
new discrete choice model and utilize the model to understand commuters’ mode choice decisions 
in the context of a developing economy. In doing so, this paper contributes to the literature in at 
least three ways. First, we propose a parsimonious, computationally tractable, and easy-to-specify 
methodological framework based on a random parameter MNP model that allows non-normality 
in parameters without the need to prespecify a specific mixing distribution. The framework 
subsumes the case of normal random parameters as a special case. For the estimation of the model, 
we use a hybrid simulation approach using a combination of Halton draws for the mixing 
distribution (see Halton, 1960, Bhat, 2001, and Bhat, 2003), and Bhat’s (2018) analytic methods 
for computing multivariate normal integrals. To our knowledge, this is the first such model 
proposed in the econometric literature. Second, we apply the proposed model to investigate 
commuters’ mode choice behavior for the case of a developing economy. In particular, we analyze 
workers’ mode choice behavior in the city of Bengaluru, a fast-growing technology hub in southern 
India. Through the empirical analysis, we explore the advantages of non-normal mixing 
distributions on the coefficients of level-of-service variables and the consequent effect on the 
resulting valuation of travel time savings (VTTS) measures. Third, we go beyond simply 
presenting the model estimation results to compute pseudo-elasticity measures that provide the 
direction and magnitude effects of exogenous variables. We then extract information from these 
elasticity measures to identify potentially promising policies to reduce peak-period traffic 
congestion and increase the use of public transportation modes.  
 The rest of the paper is arranged as follows: Section 2 describes the methodological 
framework proposed in this study. Section 3 contains the entire model application section 
including the survey sample description, model results, data fit measures, and policy implications. 
Concluding remarks are provided in Section 4. 
 
2 METHODOLOGY 
2.1 The YJ Transformation 
The Yeo and Johnson (2000) or the YJ transformation, used to transform non-normal data to 
normality and symmetry for the marginal distribution, has recently been gaining increasing 
attention due to its robustness and effectiveness in simplifying computations in econometric 
analysis (see for example, Smith et al., 2020 and Bhat and Mondal, 2022). The YJ transformation 
has the distinct advantage of being a single-parameter transformation (so that only one additional 
parameter needs to be estimated to transform a non-normal distribution to a normal distribution 
for each margin, which leads to parsimony in estimation). Over a wide variety of skewed/fat-tailed 
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situations, and through both simulation and empirical  exercises, it has been shown to be one of 
the most effective transformations (if not the most effective transformation) relative to other 
transformations such as the Manly transformation, the Tukey transformation, and the arc-sine 
transformation (see Osborne, 2010, Jadhav et al., 2023, Watthanacheewakul, 2021, and Marimuthu 
et al., 2022). It extends the restrictive Box-Cox transformation (which is applicable only to the 
positive half of the real line; Box and Cox, 1964) to the entire real line, and, by so doing, brings 
the generality of the BC transformation over the positive real line to the entire real line (note also 
that, when confined to the positive line, the YJ transformation is the BC transformation, thus 
subsuming many distributions on the positive line as special cases -- the square root transformation 
is the BC transformation with a power parameter of 0.5; the corresponding power parameter for 
the inverse transformation is -1; and the natural logarithm transformation power parameter is 0, 
which corresponds to the log-normal distribution).  

The YJ transformation of a random variable/parameter lZ  to an assumed normal random 

variable/parameter lG  (with a mean parameter of lµ  and variance of 2
lσ ) on the real line is as 

follows, with an additional parameter 0< lλ <2: 
2

2

( 1) 1 if 0
2

~ ( , ) ( )
( 1) 1 if 0

l

l l

l
l

l
l l l l

l
l

l

Z Z
G N t Z

Z Z

λ

λ λ

λ
µ σ

λ

− − + −
− < −= = 

+ − >

                                                              (1)                

The transformation above is for a non-normal variable/parameter that can take values over the 
entire real line to the normal distribution. The implied reverse transformation is as follows: 
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                                                                      (2) 

The transformation above allows for an asymmetric distribution for lZ  relative to the 

traditional normal distribution. To illustrate, Figure 3 plots lZ  for lµ =0 and 2
lσ =1, and for 

different values of lλ  (0< lλ <2). When 0< lλ <1, lZ  is skewed to the right with a thicker right tail, 

while if  1< lλ <2, lZ  is skewed to the left with a thicker left tail. When lλ =1, the normal 

distribution is returned for lZ . Thus, the YJ transformation allows for skew and fat tails, depending 

on the estimated value for lλ . The transformation is quite general, and can represent a variety of 
unimodal distributions very closely. As an illustration, Figure 4a shows how a standard extreme 
value distribution may be closely approximated by a YJ transformation with 0.35,lµ =  1.00,lσ =  

and 0.53lλ = . Figure 4b shows how a standard skew normal distribution with a high degree of 

right skew parameter ( 2.065)α =  may be mimicked by a YJ transformation with 0.605,lµ =  

0.35,lσ =  and =0.7lλ . Figure 4c illustrates the same for a standard skew-t distribution with the 
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same high degree of right skew ( 2.065)α =  and six degrees of freedom. The skew-t distribution 
shows fatter tails than the skew-normal, which again is quite well reproduced by the YJ 
transformation with 0.52 0.67, and =0.8.l l lµ σ λ= =  A variety of other distributions can also be 
closely approximated by the YJ transformation, demonstrating its flexibility.  

Now, consider that there are L such non-normal variables/parameters (l=1,2,…, L). Across 
the different variables/parameters 1 2, ,..., LZ Z Z , the direction and intensity of skew/tail can vary. 

For future use, define ( )1 2, ,..., LZ Z Z ′=Z  ( 1 vector)L× , ( )1 2, ,..., ( 1 vector)LG G G L′= ×G , 

1 21 2( ) ( ), ( ),..., ( )
L

-1 -1 -1
λ λ λ Lt G t G t G = =  

-1
λZ t G  ( 1 vector)L× , and so ( ),= λG t Z  where 

1 2( , ,..., ).Lλ λ λ=λ  
 

 
Figure 3. Density of transformed variable for different lambda values 
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Figure 4a: YJ approximation of standard extreme value distribution 

 
Figure 4b: YJ approximation of standard skew-normal distribution (with slant α = 2.065) 

 
Figure 4c: YJ approximation of standard skew-t distribution (with α = 2.065 and 6 dfs) 

 
Figure 4. Ability of YJ transformation to mimic alternative skew/fat-tailed distributions 
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In consumer behavior studies, it is often also necessary to restrict the distribution of 
parameters to be consistent with behavioral notions. For instance, in the context of mode choice 
models, the response coefficient of the travel cost parameter should be strictly negative. A common 
distributional assumption to ensure such a range restriction is to use a log-normal distribution for 
the response coefficient. For this, consider the following  transformation of bounded random 
variable/parameter vH  to a normal random variable/parameter vS  with a mean parameter of vµ  

and variance of 2
vσ ) on the real line, such that vH  is restricted to be negative: 

2~ ( , ) ( ) ln( )v v v v vS N t H Hµ σ = = −

                                                                                                    (3) 

The implied reverse transformation is then: 
1( ) exp( )v v vH t S S−= = −                                                                                                                  (4) 

Consider that there are V such log-normal variables. Let E L V= + , and let 

( )1 2, ,..., ( 1 vector)VH H H V′= ×H , ( )1 2, ,..., ( 1 vector)VS S S V′= ×S , and 
-1 -1 -1

1 2( ) ( ), ( ),..., ( )Lt S t S t S = =  
  

-1H t S ( 1 vector)V × . Thus, ( )= S t H . Define 

( , ) ( 1 vector),E′ ′ ′= ×K Z H  ( , ) ( 1 vector),E′ ′ ′= ×R G S  and 

( ) ( )( ) ( ) , ( ) ( 1 vector)E
′ ′ ′= = ×  

-1 -1 -1
λ λK c R t G t S , so that  ( ) ( 1 vector).E= ×λR c K  Now consider 

a multivariate normal distribution for the transformed R variables/parameter vector. We can then 
write the multivariate cumulative distribution function for the non-normal random vector K in 
terms of the multivariate normal distribution as follows: 

1 2

1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 2

( ) Prob( ) Prob ( ) ], , ,..., , , ,...,

Prob < ( )

Prob ( ), ( ),..., ( ), ( ), ( ),..., ( )

Prob( ) , ( , ,..., , , ,..., ) ,
[

L

L V

L L V V

L V

F z z z h h h

G t z G t z G t z S t h S t h S t h

g g g s s s
λ λ λ

 = < = < = 
 =  
 = < < < < < < 

′= < =

-1
K λ

λ

K c R

R c

R

  

k k k k

k

r r

[ ] 1 2 1 2

( ), 1, 2,..., , ( ), 1, 2,..., ]

; , , ( , ,..., , , ,..., )
ll l v v

R L V

g t z l L s t h v Vλ

µ µ µ µ µ µ

= = = =

′= Φ =θ Ω θ





  r

     (5) 

[ ].; ,RΦ θ Ω  in the equation above is the multivariate normal distribution function of dimension E  

with mean θ and covariance matrix Ω. The implicit copula arises because the mean vector θ and 
the diagonal vector of the Ω (corresponding to the vector 1 2 1 2( , ,..., , , ,..., )L Vσ σ σ σ σ σ ′   ) are simply 
the parameters of the transformed normal variables, so that the only additional parameters to be 
estimated in the resulting Gaussian copula are the off-diagonal elements of Ω. From Equation (5), 
we also get the following: 

[ ] ( )sgn( )( 1)

1 1

; ,( ) 1( )  ( ; , ) , 1 l l
L Vz

R l
l v v

ddFf z
h

λ
φ

−

= =

Φ  
= = = = +  ′ ′ ′  

∏ ∏RK
K

θ Ω
θ Ω





rk dr dr drk r
dk dr dk dk dk

        (6) 
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where ( ; , )Rφ θ Ω r  represents the multivariate normal density function and sgn( )lz takes the value 

of 1 if lz  is positive, the value of -1 if lz  is negative, and the value of 0 if lz  is zero. 
 
2.2 Model Structure 
Consider a multinomial choice context, with the index q for the individual, ) ..., ,2 ,1( Qq = and 
index i for the alternative ) ..., ,2 ,1( Ii = . Consider the random-coefficients formulation in which 
the utility that an individual q associates with alternative i is written as: 

,qi q qi qi qiU ′ ′= + +

 β x γ x ε    (7) 

where qix  is a )1( ×E -column vector of exogenous attributes (without including constants), qix  

is another ( 1)D× -column vector of exogenous attributes (including dummy variables for 
constants, except in one of the I alternative utilities, say the first alternative), qβ  is an individual-

specific )1( ×E -column vector of coefficients that varies across individuals based on unobserved 
individual attributes and with each element allowed to be non-normally distributed (here consider 
that L elements are YJ transformed non-normally distributed, and V elements are log-normally 
distributed, where E=L+V)2. γ  is another ( 1)D× -column vector of coefficients that do not vary 
across individuals, i.e., the sensitivities to the qix  parameters are assumed to be fixed across 

individuals3.  The correspondence of our notations with the previous section should now be clear, 
with qβ  taking the place of K. In essence, the elements of qβ  may be partitioned into two vectors: 

( ) ( )( , ) ( ) , ( ) ( )q q q q q q

′ ′ ′′ ′= = =  
λ λβ c

-1 -1 -1Z H t G t S R . qZ corresponds to the elements that are YJ-

transformed with parameter vector λ  based on the underlying multivariate normally distributed 
vector qG , and qH  corresponds to the elements that are exponentially transformed (for the log-

normal parameters) from an underlying multivariate normally distributed vector qS . Defining 

( , )q q q′ ′ ′=R G S  as a multivariate vector of dimension ( 1)E× , and writing the transformation in 

compact form as in the earlier section yields the expression ( )q q= -1 Rλβ c and 

( ) ( ; , ) ,
q

q
q R q

q

f φ=
′

θ Ω

K

dr
k r

dk
where qk  is a particular realization of qβ , and 

 
2 As discussed earlier, the case of normal distribution is subsumed within the non-normal distribution when λ=1. This 
obviates the need for pre-specifying certain parameters to be normal or non-normal a priori. 
3 If all parameters are assumed to be random, then the 

qix  vector would only (and at least) contain the alternate-
specific constants and the γ vector would contain the alternate specific parameters. This is because the randomness in 
the constants is already absorbed in the kernel error terms and cannot be separately identified. 
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( ) ( )( ) , ( ) ( ), ( , ) .q q q q q q q

′ ′ ′ ′= = =  
-1 -1 -1



λ λk t g t s c r r g s  As in the earlier section, θ represents the mean 

vector of qR , and Ω represents the covariance matrix of qR . That is, qr  represents an E-variate 

realization from the multivariate normal distribution of qR with mean θ and covariance matrix Ω. 

The (I×1)-vector of kernel error terms, 1 2 3( , , , , )q q q q qIε ε ε ε ′=ε    
 , is assumed to have a 

general covariance structure subject to identifiability considerations such that  ~ MVN( , ).qε 0 Θ

( qε  is assumed independent of qβ ). Since only utility differences matter in discrete choice models, 

appropriate identification conditions are required to be imposed. A common approach is to take 
the differences of the error terms with respect to the first alternative; therefore, let 1 1( ),qi qi qε ε ε= −   

and let 1 21 31 1( , , , )q q q qIε ε ... ε=ε . Next, an appropriate scale normalization is required for 

identification. To do so, scale the top left diagonal element of this error-differenced covariance 
matrix to 1. Thus, there are 1)]2/()1[( −×− II  free covariance terms in the )1()1( −×− II  matrix 

1
~Θ . Θ is constructed from 1

~Θ  by adding a top row of zeros and a first column of zeros. 
  

2.3 Model Estimation  
With the results and identification considerations from above, we may write Equation (7), 
conditional on q = qβ k  as follows: 

1 2 1 2| ( ) , ( , ,... , , ,..., ),qi q qi qi qi q q qL q q qVU z z z h h h′ ′= = + + =q q qβ k k x γ x ε k

     (8) 

We now set out some additional notation. Define 1 2( , ,..., )q q q qIU U U ′=U     ( 1×I  vector), 

1 2( , ,..., )q q q qI ′=x x x x  ( EI ×  matrix), 1 2( , ,..., )q q q qI ′=   x x x x (I D×  matrix). Then, we can write 

Equation (8) in matrix form as: 

| ( )  q q q q q q q= = + +

 U β k x k x γ ε        (9) 

It is clear that | ( )q q q=U β k  is multivariate normally distributed: 

| ( ) ~ ( | ( ),q q q I q q qMVN= =V Θ)U β k β k , where | ( ) ( ) | ( )q q q q q q q q = = + = V β k x k x γ β k . 

Let the individual q choose alternative qm . Define another matrix qM  as an identity matrix 

of size ( 1)I −  with an extra column of ‘-1’ values added at the th
qm  column. Let 

| ( ) | ( )q q q q q q q = = = B Vβ k M β k  and .q q′= M MΘ Θ  The parameter vector to be estimated is 

( , , ,Vech( ),Vech( ))′ ′ ′ ′= θ Ω Θδ γ λ , where Vech(Ω) is a column vector obtained by vertically 
stacking the upper triangle elements of the matrix Ω, and Vech(Θ) is another column vector 
obtained by vertically stacking the estimable upper triangular elements of the matrix Θ. The 
likelihood contribution of individual q conditional on q q=β k  is as below: 
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( )( 1)( ) | ( ) | ( ) , ,      q q q I q q qL −  = = Φ − = 
* *Bδ β k β k Θ  (10) 

where 1| ( ) | ( ),q q q q q q
−
Θ= = =*B Bβ k ω β k  1 1,− −= ω ω*

Θ ΘΘ Θ  and ωΘ  is the diagonal matrix of 

standard deviations of Θ. Finally, the unconditional likelihood contribution of individual q is: 

( )

( )

( 1)

( 1)

( ) | ( ) ,   ( )

| ( ) ,   ( ; , ) .

q

q

q

q

q

q

q I q q q q q

k
q

I q q q R q q
qk

L f

d
d

d
φ

=+∞

−
=−∞

=+∞

−
=−∞

  = Φ − =   

  = Φ − =   ′ 

∫

∫

* *

* *

B

B θ Ω

k

β
k

β k k dk

r
β k r k

k

δ Θ

Θ

   (11) 

where ( ; , )R qφ θ Ω r  represents the multivariate normal density function (the second equation above 

follows from Equation 6). The integration is evaluated by using a simulation technique wherein at 
each draw qr  from the multivariate normal distribution, the corresponding non-normal vector 

realization qk  in | ( ) ( ) | ( )q q q q q q q q = = + = V β k x k x γ β k (which is itself embedded in 

| ( )q q q=*B β k ) is computed as ( ).q q= -1
λk c r  A total of 500 Halton draws (see Bhat, 2001; Bhat, 

2003) of qr  is used for each individual to evaluate the integration. The positive definiteness of the 

covariance matrices Ω and Θ are ensured by taking the Cholesky decomposition of each of the 
covariance matrices and estimating the Cholesky elements in the optimization method. 
Furthermore, since a closed form expression does not exist for the multivariate normal integral, 
we used the One-variate Univariate Screening technique proposed by Bhat (2018) for evaluating 
the ( 1)I−Φ  integral. 

 
3 MODEL APPLICATION 
Using our proposed approach, we analyze the intra-city commute mode choice decisions of 
workers in Bengaluru, a major metropolitan city in the southern region of India. As a major center 
of economic growth and the capital of the state of Karnataka, the city of Bengaluru has undergone 
rapid urbanization, especially in the last two to three decades, and continues to witness significant 
urban sprawl. In particular, the rapid growth of the IT hub and influx of workers in the city has led 
to excessive network congestion, environmental-related issues, and tremendous pressure on the 
public transit system (see for example, Harsha et al., 2020). This pattern of urbanization is  
common in major metropolitan centers of developing economies, typically characterized by 
overcrowded systems and a supply-demand imbalance of resources; therefore, the present effort 
provides an important case study for commuters’ mode choice in a typical urban region of a 
developing country.  

The data for the analysis comes from a mode choice survey conducted in Bengaluru. The 
survey collected information on individuals’ modal preferences for different trip purposes, with a 
specific focus on collecting information on the revealed mode choice decisions for their routinely 
traveled destinations. The objective of the current empirical analysis is to explore the advantages 
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of non-normal mixing distributions on the coefficients of level-of-service variables and the 
consequent effect on the resulting valuation of travel time savings (VTTS) measures. In the next 
few sections, we discuss the survey sample, the model results, and important policy implications. 

 
3.1 Sample Data 
The data for this analysis is drawn from a survey administered between February and April of 2022 
to collect information on the routine travel pattern of the residents of the Bruhat Bengaluru 
Mahanagara Palike (BBMP) area of Bengaluru. The survey asked respondents about their routine 
travel destination, along with the purpose and most frequently used mode of their travel to the 
routine destination. For this study, we used the data of only those who reported commuting as the 
purpose of travel to their routine destination. Such commuters were asked about their most 
frequently used primary mode for their commute trips. If a commuter’s trip consisted of a 
combination of two or more modes, the mode with the longest leg (the primary mode) was asked 
to be reported. Six modal alternatives were considered in our analysis: auto-rickshaw, bus, metro, 
walk, two-wheelers, and private car4. The final sample comprises modal information on commute 
trips for 914 individuals. Note that, for each individual, we only consider her/his home-to-work 
leg of the commute trip, i.e., each of the 914 observations corresponds to the home-to-work 
commute trip of the respective individual. The modal sample shares are reported in Table 1 (see 
the top row of the table). As evident, the majority of the commute trips are undertaken using two-
wheelers, with more than 50% sample share. This is followed by bus and metro modes, with 22.4% 
and 14.7% shares, respectively, making up more than 37% share for the public transit modes. The 
mode shares for private cars and auto-rickshaws were found to be 6.4% and 3.3%, respectively. 
Walking has the least share of all the modes at 2.2%. Note that the modal shares provided in Table 
1 are for the entire sample without considering whether each of the six modes was 
feasible/available to an individual. However, in our analysis, we account for the 
availability/feasibility of each alternative for each individual. Walking was considered a feasible 
alternative only when the commute distance was less than 5 kilometers5. As a result, walking was 
a feasible alternative for only 257 individuals. But within the context of these walkable commute 
trips, the walk mode share is a sizeable 7.7%. Public transit modes (the bus and the metro modes) 
were considered feasible/available (as the primary mode of travel), only if the total first and last 
mile access distance between an individual’s home and workplace was less than 5 kilometers. 
Thus, the bus and the metro modes were feasible alternatives for 781 and 253 individuals in the 
sample respectively; within these individuals, the respective modal shares for the bus and metro 
modes were 26.2% and 53.1%. Similarly, personal modes (i.e., cars and two-wheelers) were 

 
4 The final sample collected did not have sufficient users for the ride-hailing mode - only five users reported to have 
used ride-hailing for commute as their primary mode, and therefore these observations were screened out.  
5 In our sample, the maximum distance corresponding to the chosen walk mode is observed to be about four kilometers. 
But, owing to the relatively moderate sample size used in this study that may have missed some walkers with a longer 
commute distance, and the not-too-uncommonly observed one hour of walk commute time prevalent in Indian cities, 
we decided to be more inclusive in considering the walk mode within an individual’s choice set by using a slightly 
more generous threshold of 5 kilometers (which, at an average walk speed of 5 km per hour, would take an hour).  
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considered feasible only if the household owned these personal modes. Among the 289 households 
that had a car available, the car mode share rises to 20.4%, and, among the 755 households who 
had a two-wheeler available, the two-wheeler mode share rises to 61.7%. Due to the widespread 
availability of the auto-rickshaw mode throughout the city of Bengaluru, the auto-rickshaw mode 
was a feasible/available mode in the choice set for all the individuals in the sample (and, for this 
reason, the auto-rickshaw mode was used as the base alternative in our estimations, even though 
it has the second lowest share in the market). 

In addition to the modal sample shares, the survey also collected information on individual 
and household-specific socio-demographic variables, such as gender, age, education status, 
employment type, household income, vehicle ownership, and commute start time. The sample 
descriptive statistics for these variables are reported in Table 1. The sample has a significantly 
higher share of men than women, which is not surprising since a similar trend is also reflected in 
labor force participation rates in India (National Statistical Survey Office, 2021). The sample has 
a fairly good distribution across age categories. In the context of educational qualification, there is 
a high proportion of individuals (36.5%) with less than senior school education, despite the sample 
representing only employed individuals. However, as per the National Statistical Survey Office 
(2012) data, a large proportion (around 50%) of the employed population in India has studied only 
until senior school or less. In the context of household attributes, the sample shows a little over 
43% of households in the middle-income category (between 20,000 and 100,000 rupees monthly 
income). Further, more than 83% of households own a two-wheeler, while only 31.6% of 
households own a car. Finally, in terms of commute characteristics, close to a quarter of 
respondents have a metro-pass, while over two-thirds start their commute from home (to their 
regular workplace) during peak hours.  

The bottom panel of Table 1 presents information on the travel attributes (travel time in 
minutes and travel cost in Rupees) for each of the six modes. The average travel time (and the 
sample standard deviation for time) and the average travel cost (and the sample standard deviation 
for cost) reported for each of the modes are computed by taking the average (and the sample 
standard deviation) across all the individuals for whom the respective modes are available/feasible, 
based on our earlier discussion. For a given commute trip, the travel times (which include the in-
vehicle as well as the out-of-vehicle travel times) for different modes were fetched using the 
Google API (Application Programming Interface), based on the origin (home address), destination 
(workplace address) and the reported start time of the trip. Expectedly, the average travel times for 
public transit modes are the highest with over 47 minutes for the bus mode and close to 39 minutes 
for the metro mode, while that of the private modes and the intermediate public transport (IPT) 
auto-rickshaw modes are on the lower end (below 28 minutes). Similar to the collection of the 
travel time data, the travel cost information for metro and bus was fetched using the Google API. 
For the auto-rickshaw mode, the existing governmental fare structure was used to calculate the 
travel cost for a given home-to-work trip distance. Travel costs for the private modes (private cars 
and two-wheelers) were calculated based on the trip distance, prevalent gas price (90 rupees; that 
is, ₹90 per liter of gas) and by assuming a reasonable vehicle mileage (13 kilometers per liter for 
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private cars and 40 kilometers per liter for two-wheelers). As can be observed from the bottom 
panel of Table 1, the average travel cost for the bus mode is the least among the motorized modes 
of transportation, followed by two-wheelers and metro. Quite expectedly, the average travel cost 
by private cars is at the higher end with a value of over ₹70. The auto-rickshaw mode is reported 
to have the highest average travel cost with a value of just over ₹125 (this is because the fare 
structure for such a mode includes the cost of being privately chauffeured in addition to the vehicle 
operating cost). The reported travel-related attributes’ values for commute trips are very reasonable 
in the context of the city of Bengaluru (see Nayka and Sridhar, 2019, and Sridhar and Nayka, 
2022). 
 
  



19 

Table 1. Details of the sample shares and socio-demographic variables in the data 
Sample shares of the alternatives (Sample size (N) = 914) 

 Auto-
rickshaw Metro Bus Walk Two-

wheeler 
Private 

car 
Sample shares (%) 3.3% 14.7% 22.4% 2.2% 51.0% 6.4% 

Descriptive statistics of the exogenous variables  
Variables Sample share 
Individual specific attributes  
Gender  

Male 71.4% 
Female 28.6% 

Age  
Age 19 - 25 years 19.8% 
Age 26 - 35 years 36.9% 
Age 36 - 45 years 22.7% 
Age greater than 45 years 20.6% 

Education  
Less than 12th grade 36.5% 
Diploma 13.6% 
Undergraduate degree 35.5% 
Graduate and above 14.4% 

Employment status  
Employed in government sector 8.1% 
Employed in private sector 54.5% 
Self-employed/Business 37.4% 

Household characteristics  
Monthly income  

Less than ₹20,000 27.2% 
Between ₹20,000 and ₹100,000 43.4% 
More than ₹100,000 29.4% 

Household two-wheeler count  
Zero two-wheeler 17.4% 
One two-wheeler 51.5% 
Two or more two-wheelers 31.1% 

Household car ownership  
Zero car 68.4% 
One car 27.0% 
Two or more cars 4.6% 

Commute travel characteristics   
Metro-pass availability  

Available 24.2% 
Not available 75.8% 

Commute start time from home  
Peak-hours (8:00-11:00, 16:00-22:00)  67.1% 
Off-peak hours (Other times) 32.9% 

Travel attributes  

 Auto-
rickshaw Metro Bus Walk Two-

wheeler 
Private 

car 
Travel Time in 
minutes 

Mean 23.73 38.95 47.51 36.50 25.36 27.30 
Standard deviation 14.50 19.78 24.88 11.54 14.60 15.30 

Travel Cost in ₹ Mean 125.70 31.00 19.86 NA 21.51 71.38 
Standard deviation 88.00 10.85 6.29 NA 15.53 52.20 
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We are unable to examine the representativeness of the sample compared to the population 
of Bengaluru workers, because almost all census data in India contain information for the 
population as a whole, and not subpopulation groups such as workers. However, the sample may 
be compared to the gender distribution of the workforce in the city of Bengaluru for a check on 
representativeness, for which the census data is available. Our sample, with 28.6% women, is fairly 
representative of the 25% women in the Bengaluru workforce (Census of India, 2011). Further, 
the average commute distance in our sample is 10.86 kms, which is very close to the average 
commute distance for a typical urban dweller in India (Statista, 2019). 

 
3.2 Model Results 
In our estimation process, we explored several functional forms for the exogenous variables 
including a linear form, dummy variable categorization, count variable forms, as well as several 
interactions of explanatory variables. The dummy variable categorization provided the best fit for 
most variables except for the travel time and travel cost variables (which came out to be best in 
continuous form) and two count variables (number of two-wheelers/private cars). The final model 
specification was obtained after a systematic process of testing alternative combinations of 
explanatory variables based on statistical fit and parsimony considerations. Importantly, a log-
normal distribution for the travel cost coefficient is assumed in our study to restrict the response 
coefficient to be negative across all individuals (and thus, avoiding the breakdown of VTTS 
computation due to the singularity problem), while an unrestricted non-normal distribution (as 
proposed in this paper) is assumed for the travel time response coefficient. The model results are 
presented in Table 2. These results provide the effect of exogenous variables on the utility of the 
different modes. The auto-rickshaw mode of transportation is considered the base alternative in 
our multinomial choice context for the introduction of the effects of alternative-invariant 
exogenous variables. A ‘--’ in the table for a specific cell indicates that the corresponding row 
variable has no statistically significant impact on the corresponding column mode. 
 
Individual characteristics 
Our results from Table 2 indicate that there are significant gender differences in modal preference. 
Men generally have a higher inclination toward public transportation (bus and metro), as well as 
two-wheelers and cars, than women. These results are consistent with previous findings (see, for 
example, Mahadevia and Advani, 2016, in the context of an Indian city). Public transportation 
modes are often overcrowded in metropolitan cities in India, posing several challenges related to 
safety and security issues for women. Moreover, in a society with systematic asymmetries in 
gender roles, men still are the “primary” users of household-owned private vehicles, which is 
reflected in the lower usage of private cars among working women (Ram and Dhawan, 2018). 

As found in several earlier studies, age is also a key determinant of modal preferences. 
Older individuals (aged above 45 years) are disinclined toward the use of the metro alternative, 
presumably because of the high crowding levels that this mass transit system experiences 
(Panambur and Sushma, 2019). Our results also suggest that middle-aged individuals (age 36-45 
years) have the highest preference for the use of bus and walk modes compared to older as well as 
younger-aged workers. The latter result, in particular, may be attributed to the younger 
generation’s desire for a fast-paced lifestyle that makes slower modes of transportation, such as 
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buses and walking, less attractive. Middle-aged individuals also appear to associate a higher utility 
to the two-wheeler mode of travel relative to their younger and, especially older, peers, while 
middle-aged and older workers have a higher propensity for the use of private cars compared to 
their younger peers in the 19-25 year age group. This is consistent with the notion that young adults 
at the prime of their physical shape are less troubled by travel discomfort and inconvenience, and 
may also be more environmentally conscious, and so are less drawn toward the use of private cars 
(Masoumi, 2019). On the other hand, the results indicate that individuals with higher formal 
education levels (undergraduate degree or higher) are drawn more toward the use of private cars 
and less inclined (for those with a graduate degree or higher) toward the walk mode, presumably 
because of higher time pressure experienced by these individuals compared to individuals with a 
lower formal level of education (Batur et al., 2019). Finally, within the group of individual 
characteristics, our results suggest that workers who are self-employed or engaged in business 
have a lower preference for public transportation (metro and bus) and walk mode compared to 
individuals employed in government or private jobs. 

 
Household demographics 
Not surprisingly, workers from households with higher levels of monthly income (income greater 
than ₹20,000) have a higher preference for private modes of transportation (two-wheelers and 
private cars) compared to those from lower-income households, while those in the highest income 
category (monthly income of more than ₹100,000) have the lowest inclination to use the public 
transportation (metro) mode. Within the context of the two-wheeler mode, there is an increased 
preference toward this mode for middle-income households (₹20,000- ₹100,000) compared to 
other income groups, an observation which is common in typical Indian cities (see for example, 
Shirgaokar, 2014). Also, as one would expect, workers in households with a higher number of 
two-wheelers reveal a greater preference for two-wheeler use, and those in households with a 
higher number of private cars are more inclined toward private vehicle use.  
 
Commute-related characteristics 
Among commute characteristics, those holding a metro-pass, quite naturally, are predisposed 
toward the use of the metro system, though we acknowledge that this is more an association than 
a causal effect in that those who are predisposed toward the use of the metro system are the ones 
more likely to purchase the metro-pass in the first place. Interestingly, such pass holders are also 
more likely to use two-wheelers for their work commute, presumably because of the comparable 
“convenience in navigation” between these two modes – the metro mode is generally unaffected 
by road traffic congestion, and the two-wheeler mode is relatively easier to navigate in congested 
cities like Bengaluru (compared to other motorized modes). Thus, in scenarios when the metro 
mode may be overcrowded or infrequent in service, these individuals (who hold a metro-pass and 
also own a two-wheeler) may tend to use their two-wheelers that provide a comparable level of 
travel time reliability to that of the metro mode. Finally, peak-period commuters have a generic 
predisposition toward the use of two-wheelers and private cars, if such vehicles are available in 
their household, perhaps as a way of retaining some sense of control and comfort during the slow 
traffic movement periods of the day (Ramakrishnan et al., 2020).  
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Table 2. Mode choice model results 

 Variables 
Auto-

rickshaw Metro  Bus Walk Two-wheeler Private Car 
  (Base) Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat 
Individual  characteristics 
Gender (base: Female)                       
Male   0.512 1.88 0.201 1.94 --   0.751 3.18 0.628 2.72 
Age (base: the omitted categories in each 
mode)                       
Age 19-25   --   --    --    0.194 2.29 --   
Age 26-35   --    --    --    0.299 3.01 --    
Age 36-45       0.329 1.99 0.418 1.81 0.641 3.04 0.306 2.13 
Age over 45 years   -0.383 -1.89 --    --    --  0.102 1.99 
Education (base: Less than 
Undergraduate degree)                       
Undergraduate degree   --    --    --    --    0.217 1.93 
Graduate or more   --    --    -0.223 -1.78 --    0.217 1.93 
Employment type (base: Govt. or private)                     
Self-employed/Business   -0.580 -3.01 -0.448 -3.32 -0.504 -2.09 --    --  
Household characteristics 
Monthly Income (base: Less than ₹ 
20,000)                       
₹ 20,000 to ₹ 100,000   --   --    --    0.188 1.89 0.267 1.90 
More than ₹ 100,000   -0.431 -1.90 --    --    0.122 1.93 0.267 1.90 
Number of two-wheelers   --    --    --    0.129 2.13 --    
Number of four-wheelers   --    --    --    --    0.394 2.61 
Commute travel characteristics 
Metro-pass availability (base: Not 
available)                       
Metro-pass available   1.104 4.44 --    --    0.273 2.25 --    
Commute start time (base: Off-peak)                       
Peak-hours     --   --    --    0.089 1.62 0.282 1.95 
Travel attributes (non-normally distributed) 
Travel time (TT in 100 minutes): 
[unrestricted non-normal distribution]  
Mean estimate                                                                                   -0.690 (-3.56) 
Std dev.                                                                                    0.305  (2.22) 

Transformation parameter ΤΤλ  1.424  (2.56) 
Travel cost (TC in ₹ 100 ): 
[log-normally distributed]  
Mean estimate -0.152 (-4.44) 
Std dev. 0.215  (1.89) 
Copula Correlation - TT and TC coef. 0.075  (0.96) 
Constant   0.601 1.719 0.532 2.09 0.396 1.53 -0.171 -0.52 -0.354 -1.24 

NOTE: “--” indicates that the corresponding variable is insignificant. 
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Travel attributes 
As expected, the mean of the travel time and travel cost coefficients are negative (see the bottom 
row panel of Table 2), highlighting the general disutility associated with travel times and cost6. 
Our results also indicate the presence of significant unobserved heterogeneity (randomness) in the 
coefficients associated with travel time and travel cost. As proposed in this study, we observe 
significant non-normality in the unrestricted distribution of the travel time coefficient. In 
particular, our results suggest that the random coefficient associated with the travel time variable 
is significantly left-skewed, reflecting a fatter left tail in the coefficient distribution. The estimated 
mean of the corresponding normally-transformed variable for this coefficient is -0.690, the 
estimated standard deviation is 0.305, and the estimated transformation parameter ( ΤΤλ ) is 1.424. 
The mean and standard deviation are both statistically different from zero, while the t-statistic in 
the table of 2.56 is with respect to a ΤΤλ  value of one (indicating that the estimated distribution of 
the travel time coefficient is different from that of a normal distribution). As mentioned earlier, a 
log-normal distribution was assumed for the travel cost coefficient to avoid the breakdown of the 
VTTS computation; the estimated mean and standard deviation for this distribution are -0.152 and 
0.215, respectively. The estimated Gaussian copula correlation between the travel time and travel 
cost coefficients was very low and not statistically significant in the current empirical context (we 
show the estimated copula correlation in Table 2 just for completeness, though the model estimates 
and log-likelihood values hardly changed when the correlation was constrained to zero).  

The significant difference of the estimated ΤΤλ  parameter relative to the value of 1 is 
already indicative of a non-normality of the travel time parameter, as discussed above. But, to 
formally compare our model with a model that restricts the time parameter to normal (while 
maintaining a log-normal distribution for the travel cost parameter), we estimated a separate 
random MNP (which we call the N-MNP) model (results not shown to conserve on space). The 
travel time coefficient mean and standard deviation estimates for the N-MNP model turn out to be 
-0.739 and 0.463, respectively, and the mean and standard deviation estimates for the travel cost 
coefficient (in the negative log-normal form) are -0.131 and 0.192, respectively.7 We plot the 
distribution of the travel time coefficient obtained from our proposed non-normal model as well 
as that obtained from the N-MNP model in Figure 5. The non-normality in the coefficient 
distribution of the travel time variable should be evident from this figure, which essentially 
indicates a lower sensitivity to travel time in the commuter population as estimated by the N-MNP 
model compared to that estimated by our proposed model. For completeness, a similar comparative 
plot for the travel cost distribution is provided in Figure 6 (where the log-normal distribution in 

 
6 The travel time variable in our analysis includes the sum of in-vehicle and out-of-vehicle travel times. During our 
model building process, we also estimated separate coefficients for in-vehicle and out-of-vehicle travel times; 
however, they did not turn out to be statistically different. Therefore, in our final model, we specified a single 
coefficient for the travel time variable.   
7 Even in this N-MNP model, the copula correlation between the travel time and cost coefficients was almost zero in 
our empirical context, and not statistically significant even at the 65% confidence level; also, as in the F-MNP model, 
there was essentially no difference in the model estimates or the log-likelihood value at convergence in the N-MNP 
model when the copula correlation was dropped. 
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our proposed specification is compared with the log-normal distribution in the N-MNP model). 
Several key insights may be taken away from these plots. First, the travel time coefficient appears 
to have a higher spread (more heterogeneity) compared to the travel cost coefficient, suggesting a 
broader range of sensitivities for travel time. This may be attributed to the growing use of ICT and 
technology-related platforms during travel, especially for those who are not active in the act of 
driving/riding. That is, based on one’s technology-savviness, there is likely to be a wide 
heterogeneity in travel time sensitivity, especially in the context of short-term daily travel (a reason 
why we did not explicitly restrict the distribution of the travel time coefficient to be exclusively 
negative). Second, for the travel time coefficient distribution, the results from our proposed model 
suggest that only 1.2% of the population has a positive valuation of commute travel time 
(represented by the area enclosed by the density function on the right of the zero abscissa), while 
the results from the N-MNP model suggest a percentage of 5.5% (see Figure 5, where the area 
enclosed by the density function of the travel time from the normal MNP to the right of the zero 
abscissa is larger than the area enclosed by the non-normal density function from our proposed 
model). Overall, our non-normal model bounds the travel time distribution to a more “expected” 
parameter space compared to the normal MNP, although we do not explicitly bound the travel time 
coefficient distribution. Third, while it may seem that the travel time coefficient distribution plots 
from our model and the more restrictive N-MNP model are not very different, this is also an artifact 
of the Y-axis scaling. With a fine resolution for the Y-axis scale, the difference can visually seem 
more (or less) profound. That is the reason for the use of the ΤΤλ  t-statistic test (to see if this 
parameter is statistically different from the value of 1, which it is) and the data fit tests in Section 
3.3. To support this, we have used the same Y-axis and X-axis scales for Figures 4 and 5, which 
should make clear how different the travel time distributions are in Figure 5. Fourth, as expected, 
we achieve a similar shape for the two log-normally distributed travel cost coefficients (although 
the travel cost distribution from the N-MNP model is marginally shifted to the left compared to 
that obtained from our proposed model, indicating a higher sensitivity to travel cost in the 
commuter population as estimated by the N-MNP model relative to our proposed model; see 
Figure 6). The differences in the travel time and travel cost coefficients obtained from our proposed 
model and the N-MNP model have implications for the VTTS estimate, as discussed next.  
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Figure 5. Travel time coefficient distribution plots for normal distribution in N-MNP 

model and proposed unrestricted non-normal distribution 
 

 
Figure 6. Travel cost coefficient distribution plots for N-MNP model and proposed (YJ) 

model 
 
VTTS estimate 
For the VTTS estimate, we compute the median VTTS (rather than the mean) from the travel cost 
and travel time distributions since it is a better measure of central tendency in cases where there is 
a possibility of straddling extreme values (for example, when the travel cost coefficient, which 
appears in the denominator, takes a value very close to zero)8. The VTTS median estimate is 
computed by drawing 10,000 realizations from the bivariate copula distribution of the time and 

 
8 Moreover, a finite mean does not always exist for complex distributions, especially complex ratio distributions, while 
the median besides being more robust toward extreme values, always exists, and therefore provides a better measure 
of central tendency (see Miller, 2015). 
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cost coefficients, computing the implied VTTS for each bivariate realization by taking the ratio of 
the time to cost coefficient draws, and then computing the median value across the 10,000 
realizations. The median VTTS estimate for our proposed flexible MNP (or F-MNP) model turned 
out to be ₹55.6/hour, which is a very reasonable estimate for commute trips for an Indian 
metropolitan city (see Athira et al., 2016). The median VTTS estimate from the N-MNP model 
which ignores the non-normality in travel time distribution turned out to be ₹51.2/hour, which is 
about 8% lower (underestimation) than that computed from our proposed model. This VTTS 
underestimation from the N-MNP model is consistent with the general lower sensitivity to travel 
time and higher sensitivity to travel cost from the N-MNP model, as discussed in the previous 
section. In Figure 7, we plot the VTTS distributions (obtained from the random draws) for our 
proposed F-MNP and N-MNP models. For both the models, the percentage of individuals 
predicted to have a negative VTTS, of course, reflects the percentages of individuals predicted to 
have a positive valuation to travel time sensitivities obtained earlier (1.2% and 5.5% respectively). 
  

  
Figure 7. VTTS distributions for N-MNP model and proposed flexible MNP (F-MNP) 

model 
 
Constants 
The alternate specific constants at the bottom of Table 2 do not have any meaningful interpretation 
and simply provide adjustments to the utility values after accommodating the exogenous variables.  
 
Covariance matrix 
As indicated in Section 2, only the covariance matrix of the error differences is estimable (with 
the scale for one of the error differences normalized to one); in our empirical context, we 
normalized the first diagonal element of the error-differenced covariance matrix to one, the 
difference being taken with respect to the auto-rickshaw mode. The differenced error covariance 
matrix is not interpretable (unless a structural assumption is imposed on the covariance matrix), 
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because multiple (undifferenced) error covariance matrices can originate from the same 
differenced covariance matrix. In the differenced error covariance matrix, a total of six elements 
turned out to be significant at an 85% confidence interval – the four non-normalized variance terms 
in the diagonal and two off-diagonal elements corresponding to the error differenced covariance 
term between bus and metro, and the error differenced covariance term between metro and two-
wheeler (all differences taken with respect to the base auto-rickshaw mode). To conserve on space, 
and because of interpretation challenges, we do not present the differenced covariance matrix here, 
but it is available at 
https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MNPYJ/OnlineSupp.pdf.  
 
3.3 Data Fit Measures 
The flexible multinomial probit model (F-MNP) provides important insights regarding the effects 
of several sociodemographic, household, and travel-related attributes. However, it is also 
important to consider the data fit provided by such a model relative to (a) the N-MNP model that 
ignores the non-normal distribution of the random parameters as well as (b) a non-random MNP 
(we call this MNP) model that entirely ignores the randomness in the parameters. The three models 
can be compared using simple pair-wise nested likelihood ratio tests because the MNP model is a 
nested (restricted) version of the N-MNP model and the N-MNP model, in turn, is a nested 
(restricted) version of the F-MNP model. We also evaluate the data fit of the three models 
intuitively and informally at both the disaggregate and aggregate levels. At the disaggregate level, 
we compute the likelihood-based measures (including the adjusted rho-bar squared value and the 
Bayesian Information Criterion or BIC) as well as an average (across individuals) probability of 
correct prediction of the observed choice.9 At the aggregate level, we compute the predicted shares 
of each mode from the three models and then compute the weighted average percentage error 
(WAPE) value (the weighting here is based on the actual observed share of each mode). The results 
of the data fit evaluations are provided in Table 3.  
 
 
 
 
 
 
 
 
 

 
9 The adjusted rho-bar squared value is  computed as 2

ˆ( )1
(c)

ρ −
= −

δL M
L

, where ˆ( )δL  is the log-likelihood value at 

convergence, L(c) represents the log-likelihood function at constants-only, and M is the number of parameters 
estimated in the model (excluding the constants). The Bayesian Information Criterion (BIC) is computed as 

( ) ( )ˆ( ) 0.5 #  of model parameters including constants log sample sizeL − + × × δ .  

https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MNPYJ/OnlineSupp.pdf
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Table 3. Data fit measures 
Metric Proposed F-MNP N-MNP MNP 

Disaggregate fit measures 
Log-likelihood at convergence -566.26 -569.44 -576.82 

Number of non-constant parameters10 48 48 46 

Log-likelihood at constants-only  -743.53 -743.53 -743.53 

Adjusted Rho-squared value 0.174 0.170 0.162 

Bayesian Information Criterion or BIC 746.93 750.11 750.68 

Average probability of correct prediction 0.641 0.638 0.631 

Likelihood ratio (LR) test: N-MNP vs MNP - LR = 14.76> 𝜒𝜒(2,0.05)
2 =5.991 

Likelihood ratio test: Proposed F-MNP vs N-
MNP LR = 6.36> 𝜒𝜒(1,0.05)

2 =3.841 - 

Aggregate fit measures 

Modes Observed share (%) Predicted share (%) Predicted share (%) Predicted share (%) 

Auto-rickshaw 3.3% 3.5% 3.6% 3.4% 
Metro 14.7% 15.0% 15.2% 15.2% 
Bus 22.4% 27.5% 28.0% 28.7% 
Walk 2.2% 1.3% 1.2% 1.2% 
Two-wheeler 51.0% 47.3% 46.7% 46.2% 
Four-wheeler 6.4% 5.4% 5.3% 5.3% 
Weighted Absolute Percentage Error  11.2% 12.8% 13.8% 

 
The likelihood-based fit measures and the average probability of correct prediction from the 

proposed F-MNP model indicate a better fit relative to both the N-MNP and the MNP models (see 
top row panel of Table 3). The pairwise likelihood tests also confirm that our proposed flexible 
model is statistically superior to the relatively restrictive models. In terms of aggregate data fit too 
(see bottom row of the panel), the proposed F-MNP model outperforms the N-MNP and the MNP 
models. Across all the choice alternatives, the weighted average (weighted on the observed shares) 
of the absolute percentage error is 11.2% for the proposed model which is superior to the WAPE 
of 12.8% and 13.8% for the other two models respectively. These differences are moderate because 
of the high skewness of the modal share distribution in our empirical context (the predictive 
capability of the two-wheelers substantially impacts the WAPE values, while the prediction 
accuracy of those modes with very little market shares is hardly consequential). However, such an 
observation is context-specific, and the results from the disaggregate and aggregate measures 
overall indicate a superior fit for our proposed model. 

To ensure that the data fit of the proposed F-MNP model is not simply an artifact of 
overfitting on the overall estimation sample, we evaluate the performance of the proposed F-MNP 
model and the model that ignores unobserved heterogeneity – the MNP model, on various market 
segments of the estimation sample (Ben-Akiva and Lerman,1985, page 208, refer to such 

 
10 For the proposed F-MNP model and the N-MNP model, the number of non-constant parameters is set to 48, ignoring 
the copula correlation coefficient that was almost zero in both models. As discussed in Section 3.2, the log-likelihood 
values at convergence for both models were essentially the same with or without this copula correlation.  
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predictive tests as market segment prediction tests). These tests examine the performance of the 
models for different market segments. In instances when an out-of-sample predictive evaluation 
test is unavailable, such market-segmentation tests offer a robust means for assessing data fit. At 
a disaggregate level, we compute the implied predictive log-likelihood and compare the models 
using an informal chi-squared predictive log-likelihood ratio test. At an aggregate level, we 
compute the predicted and actual (observed) shares for each market segment in the same manner 
as for the full estimation sample, and then evaluate the performance of the two models using the 
WAPE measure. To conserve space, Table 4 presents these data fit statistics for nine market 
segments based on selected exogenous variables (gender, age, education, employment status, 
monthly income, household two-wheeler count, household car ownership, metro-pass availability, 
and commute start time from home). For each selected variable, the data fit for the market segment 
with the greatest number of observations is presented (for example, for the gender variable, Table 
4 provides the data fit for men, because this segment represents 71.4% of the total sample). The 
results show that the informal predictive log-likelihood ratio tests (see the third numeric row of 
Table 4) reject the MNP model in preference for the F-MNP model for each market segment (at 
0.10 significance level for one segment and at 0.05 significance level for all other segments), and 
also indicate that the predicted shares from the F-MNP mode are closer to the true shares than the 
predicted shares from the MNP model for each market segment (see the final numeric row of Table 
4 for each segment). These observations provide additional support and validation that the 
proposed F-MNP model offers a robust data fit and that the superior predictions provided in Table 
3 are not simply an artifact of overfitting.
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Table 4. Aggregate and disaggregate measures of fit on various market segments of the estimation sample 

Market Segment Gender: Male Age: Over 26-35 years Education: Less than 
Undergraduate 

Measures of Fit Proposed 
F-MNP model MNP Model Proposed 

F-MNP model MNP Model Proposed 
F-MNP model MNP Model 

Number of observations 653 337 458 
Mean log-likelihood -402.91 -409.13 -207.64 -211.10 -282.74 -287.65 
Informal predictive 
likelihood ratio test 12.45 > 𝜒𝜒(3,0.05)

2 =7.815 7.09 > 𝜒𝜒(3,0.10)
2 =6.251 9.83 > 𝜒𝜒(3,0.05)

2 =7.815 

WAPE 10.9% 13.3% 10.7% 12.7% 12.1% 14.3% 
 

Market Segment Employment status: Private/Govt. 
sector Monthly Income: ₹20000 -₹100000 Two-wheeler count: One 

Measures of Fit Proposed 
F-MNP model MNP Model Proposed 

F-MNP model MNP Model Proposed 
F-MNP model MNP Model 

Number of observations 572 396 471 
Mean log-likelihood -353.12 -358.68 -244.21 -248.97 -290.44 -295.24 
Informal predictive 
likelihood ratio test 11.11 > 𝜒𝜒(3,0.05)

2 =7.815 9.52 > 𝜒𝜒(3,0.05)
2 =7.815 9.60 > 𝜒𝜒(3,0.05)

2 =7.815 

WAPE 11.6% 13.9% 11.1% 13.8% 10.8% 13.3% 
 

Market Segment Car ownership: Zero Metro-pass: Not available Commute start time: Peak-hours 

Measures of Fit Proposed 
F-MNP model MNP Model Proposed 

F-MNP model MNP Model Proposed 
F-MNP model MNP Model 

Number of observations 625 693 613 
Mean log-likelihood -385.39 -392.11 -427.46 -433.86 -378.75 -384.34 
Informal predictive 
likelihood ratio test 13.45 > 𝜒𝜒(3,0.05)

2 =7.815 12.81 > 𝜒𝜒(3,0.05)
2 =7.815 11.18 > 𝜒𝜒(3,0.05)

2 =7.815 

WAPE 10.9% 13.3% 11.9% 14.1% 10.0% 12.2% 
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3.4 Elasticity Effects and Policy Implications 
The coefficients in Table 2 provide the exogenous variable effects on the utilities of the choice 
alternatives; however, they do not directly provide a sense of the direction/magnitude effects of 
each variable on the discrete outcomes in terms of their impact on the overall shares. Therefore, 
we compute aggregate-level “pseudo-elasticity effects” of the exogenous variables to characterize 
the impact of each variable. In the current analysis, we have three types of exogenous variables: 
categorical variables (they are gender, age category, educational level, employment type, monthly 
income category, metro pass holder status, commute time category), count variables (they are two-
wheeler count and four-wheeler count), and continuous variables (these are travel time and travel 
cost variables).  For each of the binary category variables (gender, employment type, metro pass 
holder status, commute time category), we first predict the average share of each mode in the 
sample for the “base” level (which is typically the “0” for the binary variable), and then predict 
the average shares for the “treatment” level (which is typically the “1” for the binary variable) for 
the entire sample. The average “pseudo” elasticity effect is then reported as the difference between 
the “treatment” and the “base” shares as a percentage of the “base” share. For the multi-category 
(more than two) variables (such as age category, educational level, and monthly income category), 
we use a similar procedure except that we consider the lower extreme category as the “base” level 
and the higher extreme category as the “treatment” level, to keep our presentation simple. For the 
count variable of two-wheeler and four-wheeler numbers, we use the count of “1” as the “base” 
category and the count of “2” as the “treatment” category. Finally, for the continuous variables, 
we increase (or decrease) the value of the variable by 25% and express the percentage change with 
respect to the original shares (i.e., keeping the original values of the continuous variables as the 
“base”). Since our model specification includes two non-normal random parameters, the 
calculation of the shares is based on 500 random datasets (corresponding to the generation of the 
non-normal parameters), which are averaged at the end to obtain the “base” and “treatment” shares 
in each case discussed above.  

Table 5 provides the pseudo-elasticity effects for our proposed F-MNP model. The 
numbers in the table may be interpreted as the percentage change in the shares of each mode due 
to a change in the exogenous variable. For example, the first numeric entry of -32.74% in the table 
indicates that the share of men choosing the auto-rickshaw mode is 32.74% less than the share of 
women choosing the auto-rickshaw mode. Other numerical entries in Table 5 may be interpreted 
in a similar manner. Our analysis can help inform several policy decisions, which we discuss next. 

  
3.4.1 Policy implications 
The results from Table 2 and the “pseudo” elasticity metrics from Table 5 can be used to identify 
traffic congestion alleviation strategies by encouraging a shift from private modes of transportation 
to more sustainable public transportation/walk modes. First, the elasticity effects indicate that older 
workers (over 45 years of age) are substantially more inclined toward the use of private cars 
compared to their younger peers (about 81.6% more likely to choose a private car). This large 
percentage increase is likely because no other modes provide as much convenience and comfort 
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to older workers as does a private car. A possible way to make public transportation more attractive 
to older workers is to provide free feeder services to metro rail stations, lower-priced or free 
rail/bus passes for seniors, reserved seats or even reserved compartments for older citizens to ease 
the impact of overcrowding, and dedicated access and egress walkways inside landmark stations. 
Similarly, individuals with high formal education degrees, and who are self-employed, are also 
observed to have a predisposition toward private cars. An approach to draw these individuals away 
from private cars would be to offer public transportation services that are fast and provide a smooth 
ride during the journey to open up the possibility of using travel time productively 
(reading/working), even if at the expense of an elevated cost. Dedicated bus lanes that are not 
prevalent in many developing economies could also be another approach to achieve fast public 
transportation services. Second, in addition to making non-private vehicle travel more attractive, 
a complementary approach would be to discourage private vehicle travel through the use of tolls, 
congestion pricing and taxes. According to Table 5, an increase of 25% in private car travel costs 
would lead to a decrease in private car share by about 20% from the current car share. This suggests 
that imposing congestion pricing in highly congested central business districts (CBDs) or work 
zones could be effective in discouraging the use of private cars. Table 5 also indicates a substantial 
jump (by 184.9%) in the share of the private car mode when household vehicle ownership increases 
from one car to two private cars. Progressively higher taxes on a car purchase as the number of 
cars owned by a household increases can be one way to reduce private vehicle ownership. 
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Table 5. “Pseudo” elasticity effects 

Variable Base Treatment Auto-
rickshaw Metro Bus Walk Two-

wheeler 
Private 

Car 

Individual and household characteristics 

Gender Female Male -32.74% 1.01% -13.45% -18.23% 21.56% 41.58% 

Age Less than =25 Greater than 45 -1.18% -17.26% 12.43% 58.39% -12.29% 81.61% 

Education Below Undergraduate Graduate or more 0.24% -1.78% -5.20% -80.37% -0.65% 97.53% 

Employment type Govt./Private job Self-employed/Business 68.06% -30.15% -48.42% -96.13% 43.63% 80.27% 

Monthly income < ₹20,000 > ₹100,000 -25.30% -29.94% -14.61% -20.80% 24.60% 46.45% 

Two-wheeler count 1 2 -10.29% -4.94% -11.70% -28.16% 13.46% -15.14% 

Four-wheeler count 1 2 -47.02% 0.12% -18.77% -27.61% -1.85% 184.90% 

Commute travel-related characteristics 

Metro pass holder No Yes 2.77% 125.22% -14.22% -67.60% -6.86% -47.59% 

Peak hour commute No Yes -28.39% -4.72% -14.41% -25.49% 5.55% 50.42% 

Trip Level Attributes 

Auto-rickshaw travel time 25% decrease 5.81% -0.16% -0.41% -1.94% -0.51% -0.55% 

Metro travel time 25% decrease -0.26% 5.01% -0.90% 0.61% -0.83% -1.30% 

Bus travel time 25% decrease -3.11% -1.16% 5.73% 1.26% -1.95% -4.11% 

Two-wheeler travel time 25% decrease -2.51% -2.01% -3.04% -1.99% 3.51% -4.61% 

Private car travel time 25% decrease -1.94% -0.24% -0.61% -0.44% -0.99% 8.79% 

Auto-rickshaw travel cost 25% increase -24.36% 0.14% 1.31% 7.93% 0.61% 1.66% 

Metro travel cost 25% increase -0.59% -2.85% -0.39% 0.26% 1.11% 0.79% 

Bus travel cost 25% increase 1.69% 0.69% -3.28% 1.78% 1.34% 2.39% 

Two-wheeler travel cost 25% increase 1.29% 1.46% 3.81% 2.21% -3.33% 3.33% 

Private car travel cost 25% increase 3.49% 0.48% 1.61% 0.61% 0.89% -20.06% 
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Third, congestion reduction measures can also be based on work timing policies. In terms 
of elasticity effects, Table 5 indicates that the share of private car use is 50% higher during the 
peak period relative to the off-peak period, with a concomitant reduction in public transportation 
and walk mode usage during the peak period. This is presumably because the public modes are 
slow and crowded during peak periods, while the walk mode experiences packed crowds during 
peak periods and poses traffic safety risks. In this context, staggered work hours can help induce 
some of the commute traffic to off-peak periods (see, for example, Yildirimoglu et al., 2021). This 
not only can reduce overall commute travel, but also, based on our results, increase public 
transportation usage and decrease private mode usage for the commute trips shifted to the off-
peak. Such a flexible work policy may be particularly palatable in an environment where there is 
more acceptance of flexible work arrangements in terms of location and timing. Finally, a generic 
consideration in many developing cities is the accessibility to public transit systems, including the 
city of Bengaluru. While the bus mode is available to most of the workers in the dataset (about 
85%) based on their home and work locations, the metro mode is available to only about one-third 
of the workers (see the discussion on availability/feasibility of modes provided in the first 
paragraph of Section 3.1). Therefore, increasing accessibility to public transit systems is important 
for sustainability. In a policy-specific analysis, we decreased the out-of-vehicle travel time (as part 
of the total travel time) for the bus and the metro modes by 50% and compared the modal shares 
to that of the “base” case. This analysis was specific to a subset of the sample in which at least one 
of the public transit modes (bus and metro) was available to the user. Based on the availability 
criteria specified earlier, this out-of-vehicle travel time reduction resulted in an 8% increase in the 
combined share of both modes, and about a 10% decrease in the private car mode share. Thus, 
enhancing the accessibility of the public transit network by improving supply-side facilities, such 
as implementing dedicated feeder routes, increasing the number of stops or stations located within 
a reasonable walking distance of high-density residential areas, and expanding the transit network, 
particularly the metro mode, can potentially result in a significant shift in commute mode shares 
from private transportation to sustainable modes of travel. 

 
3.4.2 Consequences of ignoring non-normality in parameter distribution 
In this section, we briefly discuss the pitfalls of ignoring non-normality in the parameter 
distribution of travel attributes. To highlight this issue, we compute the “pseudo” elasticity effects 
for the N-MNP that ignores the non-normality in the distribution of the travel time coefficient (the 
corresponding table is suppressed to conserve on space) and compare these with the results from 
the F-MNP model. Although there are a few fairly significant differences in the “pseudo” elasticity 
effects of the sociodemographic variables between the two models, we limit our discussion to the 
differences in the elasticity effects of the travel attributes. Our analysis from Table 5 indicates that 
reducing the travel times of buses and metro by 25% leads to an increase of about 8.7% 
(=5.01+5.73-1.16-0.9) share in public transportation usage. A similar decrease in travel time, as 
estimated by the N-MNP model, suggests an increase of 6.3% share in public transportation use. 
Although the underestimation from the N-MNP model seems moderate, it can be enough to 
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discourage investments in the design of exclusive bus lanes or in decisions related to improving 
the supply side of metro services. Similarly, comparing the “pseudo” elasticities for the travel cost 
increase treatment, our proposed model results suggest that private car use share would reduce, on 
average, by about 20% when travel costs for cars are increased by 25%, while the N-MNP model 
indicates a decrease of about 17% in the private car use. Once again, though the difference seems 
small, it can be enough to misinform the evaluation and economic analysis of critical policies such 
as those associated with congestion pricing and purchase taxation.  

Another result of ignoring non-normality in travel time and travel cost coefficients, as 
evident from the discussion in Section 3.2, is the underestimation of the VTTS, which can have 
significant economic and travel demand-related consequences. The VTTS metric is often used in 
cost-benefit analysis in transportation infrastructure investments. Moreover, toll prices, exclusive-
lane usage, and time-of-day based congestion pricing strategies are all generally based on VTTS 
estimates (see, for example, Börjesson et al., 2023). But applying an adjustment factor off an 
already erroneously computed VTTS value will bias results and compound errors in future scenario 
planning. 

 
4 CONCLUSION 
There is a critical need to address issues associated with traffic congestion and environmental 
considerations in developing economies, including ways to shift travelers from private non-
sustainable modes to sustainable public and non-motorized transportation modes. In this context, 
mode choice behavior studies can provide important insights. In our current study, we propose a 
new flexible random parameter multinomial probit (F-MNP) model that allows for non-normality 
in parameter sensitivity. Using the YJ transformation technique, we construct an implicit Gaussian 
copula to form a multivariate distribution of the random coefficients with a flexible dependence 
structure. The proposed model is estimated using a hybrid approach of simulation-based likelihood 
estimation and analytic approximation of multivariate normal integrals.  
 Using our model, we investigate the commute mode choice behavior of workers in the 
Indian city of Bengaluru. The data is drawn from a survey administered from February to April of 
2022 to collect information on the routine travel pattern of the residents of Bengaluru. The survey 
asked respondents about their routine travel destination, the purpose and most frequently used 
mode of travel to the routine destination. For this study, we used the data of only those who 
reported commuting as their routine travel. The survey also elicited information on individual 
characteristics, household demographics, and travel-related attributes. Results from our analysis 
indicate that sociodemographic variables (including gender, age, education level, employment 
type, household income, and the number of privately owned vehicles), commute characteristics 
(metro pass availability, commute start time), and mode-related attributes (travel time and travel 
cost) significantly impact the commute mode choice decision. Importantly, our results indicate the 
presence of unobserved taste heterogeneity in the sensitivities to the travel time and travel cost 
variables; moreover, the distribution of the travel time coefficient is found to be significantly non-
normal with a fat left tail and thin right tail. In terms of data fit, our proposed model statistically 
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outperforms the traditional MNP model as well as the N-MNP model that imposes normality on 
the travel time coefficient. By undertaking market segmentation tests, we also show that the 
improved data fit of our proposed model is not due to overfitting. The model estimates are 
subsequently translated to VTTS and pseudo-elasticity measures, and policy implications are 
identified. The consequences of ignoring non-normality are also discussed.  

One important limitation of our empirical study is that it did not have a sufficient number 
of ride-hailing mode users (only five users reported to have used ride-hailing for commute, and 
therefore these observations were removed from the dataset). Moreover, the sample size was 
relatively small, although adequate to estimate the proposed model. But the limited sample size 
precluded us from setting aside a separate out-of-sample set as we opted to utilize the entire sample 
for model estimation purposes. Future efforts should focus on using a larger sample size to include 
consideration of all possible modes and the interaction effects of different exogenous variables, as 
well as on setting aside an exclusive out-of-sample validity set for prediction evaluation. 

An important limitation of our methodological approach is that the YJ transformation is 
not able to accommodate multimodality of random coefficients. A possible approach to handle 
such multimodality is to transform the target multivariate random coefficient distribution to a 
mixture-of-normals distribution rather than to a normal distribution (this appears as the rightmost 
twig in Figure 2). Equation (1) would then take the following extended YJ transformational form: 
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Such an approach would be even more general than the mixture-of-normals approach because of 
the transformation, and should have the benefit of more appropriately capturing skew and fat tails 
with fewer mixture components. Of course, the issues discussed earlier related to the challenges 
in the estimation of mixture models within the context of econometric methods will need to be 
borne in mind. Cai and Xu (2023) have recently considered such an extended YJ approach for the 
statistical clustering of a univariate continuous process. But, as they acknowledge, their Bayesian 
approach does not address the case of an econometric model framework for a continuous outcome, 
leave alone within an econometric framework for other limited-dependent outcomes. Besides, even 
within their simple univariate continuous outcome clustering exercise, they observe that their 
approach cannot handle many mixture components. Thus, accommodating a fusion of a YJ 
approach and a mixture approach within a discrete choice model for random coefficients, and 
developing approaches to estimate such a model, is a substantial challenge that we leave for future 
research. More generally, the issue of how to introduce non-normality of random coefficients in 
discrete choice models remains a wide area for additional research. For instance, even within just 
the finite discrete mixture of parametric continuous distributions class of approaches, there are so 
many different possibilities for the component distributions, as discussed in a recent overview by 
Lee and McLachlan, 2022. Most of these approaches have been examined for the simple clustering 
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analysis of univariate continuous processes, with relatively little work into examining the different 
mixture approaches for the econometric modeling of continuous or limited-dependent variable 
models. Thus, just within the transportation discrete choice field, we are not aware of any study 
that has used a discrete mixture-of-skew normal distributions or a discrete mixture-of-skew-t 
distributions for random coefficients, and only a handful of studies that have used a discrete 
mixture-of-normals for random coefficients (as discussed in the introduction section). Given the 
situation discussed above, we leave a comparison of our YJ-based approach with the vast 
landscape of other approaches, including the mixture-of-normals approach, to future studies, 
especially because the main emphasis of this paper is to introduce a new way to consider non-
normality for random coefficients. Besides, the basis of the effectiveness of an approach should 
not rest on application to a single empirical context. As Lee and McLachlan (2022) state, there are 
pros and cons of the many different ways to introduce non-normality, and “appropriate choices of 
models will depend on the application at hand ….and factors and features ….such as computational 
affordability, ease of interpretation, and facilitation of downstream analysis”. From a 
methodological perspective, we have proposed, and demonstrated the value of, the YJ 
transformation approach for random coefficients relative to the more traditional normal mixing 
approach, and positioned our flexible formulation as a valuable addition to the toolbox of discrete 
choice modelers, which also has clear theoretical and conceptual advantages of parsimony in 
parameters and ease in estimation relative to most other approaches to incorporating non-
normality. Of note also is that the YJ transformation can be used both in a frequentist context as 
well as within a variational inference approach in a scalable approximate Bayesian inference 
context to approximate high-dimensional target distributions with skews and heavy tails (see Bean 
et al., 2016, Smith et al., 2020, and Loaiza-Maya et al., 2022, Cai and Xu, 2023). Substantively, 
the results from our investigation provide useful insights regarding commuters’ mode choice 
behavior in the city of Bengaluru. To conclude, we hope our study will spur many other 
investigations of travel choices using flexible discrete choice model structures, especially in the 
context of developing economies.  
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