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ABSTRACT 

This paper proposes an estimation approach for count data models with endogenous covariates. 

The maximum approximate composite marginal likelihood inference approach is used to 

estimate model parameters. The modeling framework is applied to predict crash frequency at 

urban intersections in Irving, Texas. The sample is drawn from the Texas Department of 

Transportation (TxDOT) crash incident files for the year 2008. The results highlight the 

importance of accommodating endogeneity effects in count models. In addition, the results 

reveal the increased propensity for crashes at intersections with flashing lights, intersections with 

crest approaches, and intersections that are on frontage roads.  

 

Keywords: Count data; treatment-outcome models; accident analysis; generalized ordered 

response; flashing light control. 



 

1 

1. INTRODUCTION 

This paper develops an estimation approach for count data models with endogenous covariates, 

where the endogenous covariates are based on a multinomial probit discrete outcome model. The 

proposed formulation model constitutes a specific version of the generalized Roy model that is 

referred to as the treatment effects model (see Heckman and Vytlacil, 2005 and Bhat and Eluru, 

2009). In the empirical context studied in the paper, the type of control at an intersection 

constitutes the treatment. The type of control is represented in five categories: (1) no traffic 

control (including intersections with no control and intersections with some minimal form of 

control such as turn marks and marked lanes), (2) yield sign control on one more approaches 

with no other form of control, (3) stop sign control on one or more approaches, (4) flashing light 

control (one or more approaches having a flashing red or yellow light), and (5) regular signal 

light control. The count outcome in the empirical context is the number of crashes at urban 

intersections. In this case, the type of traffic control may itself be determined by the frequency of 

crashes, as, in fact, is explicitly noted in the Manual on Uniform Traffic Control Devices or 

MUTCD (FHWA, 2009). For instance, the total entering volume of traffic on the approach 

roadways to an intersection may directly impact both the type of control as well as the frequency 

of crashes, creating an “endogeneity” of the type of traffic control in crash frequency analysis. 

But if the entering volume were an observed variable, then this type of “endogeneity” is easily 

accommodated by including the entering volume as an explanatory variable, along with traffic 

control type, in the modeling of crash frequency. More generally, if the determination of the 

control types at intersections were random conditional on observed characteristics, a traditional 

count model for crash frequency would suffice. However, many unobserved factors may affect 

both control type and crash frequency, rendering the random conditional (on observed 

characteristics) assumption untenable. For instance, at intersections with an unobserved 

terrestrial/topographic feature that limits sight distance, flashing lights may be installed instead 

of a stop sign. That same unobserved feature may be responsible for a lower or a higher 

frequency of crashes (one can argue that motorists are more careful when they encounter some 

unobserved topographic feature, resulting in a lower frequency of crashes; alternatively, it could 

also be that the unobserved feature results in a higher frequency of crashes). If one of these two 

situations exists, but is ignored, it would generate an inconsistent, spurious, and biased effect of 

flashing lights on intersection crash frequency.  Of course, there are many other application 



 

2 

contexts where our proposed model formulation should be useful, including the type of insurance 

plan (“treatment”) and the number of doctor visits (outcome), residential location type 

(“treatment”) and the number of cancer incidents (outcome), the intensity of lighting at a train 

station and the number of crimes at the station, and one of many other contexts where count 

models are used to model the outcome decision. However, in the development of the model 

formulation in this paper, as in the empirical analysis context of the paper, the focus will be on 

traffic control type and the frequency of crashes at urban intersections.  

Methodologically speaking, our parametric multinomial discrete-count model uses a 

general multinomial probit (MNP) specification for the treatment and ties this MNP model with a 

count model. In particular, we use Castro, Paleti, and Bhat’s or CPB’s (2012) recasting of a 

univariate count model as a restricted version of a univariate generalized ordered-response probit 

(GORP) system. In addition to providing substantial flexibility to accommodate high or low 

probability masses for specific count outcomes, the latent variable-based count specification of 

the GORP system provides a convenient mechanism to tie the count outcome with the MNP 

treatment model. In this regard, our proposed model (which we will refer to as the Count model 

with endogenous multinomial probit selection, or the CEMPS model) has some similarity with 

Bhat (1998) and Munkin and Trivedi’s (2008) ordered probit model with endogenous selection, 

but with four important differences. First, the outcome variables in the earlier models were 

ordinal variables, while the outcome variable in our CEMPS model is a true count variable that 

can take on any non-negative integer value.  Second, the earlier models did not allow random 

response variations (or unobserved heterogeneity) in the sensitivity to exogenous factors in both 

the selection (or treatment) component as well as the outcome component. On the other hand, it 

is now well established that ignoring such response variations when present will lead to 

inconsistent and biased parameters estimates in both multinomial discrete response models as 

well as count models (see Chamberlain, 1980, Bhat, 1998). For instance, variations in the effect 

of entering volume on the type of control installed at an intersection and on crash frequency may 

result from the complex interactions between unobserved intersection characteristics and 

motorist learning/adaptation behavior in response to different levels of traffic volume. 

Accommodating such unobserved heterogeneity effects is not simply an esoteric econometric 

effort, but can have very real implications for accurately assessing the overall effects of variables 

on the outcome of interest (for example, to design countermeasures to reduce crash frequency in 
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our empirical context; see Anastasopoulos and Mannering, 2009, Castro et al., 2013, and 

Mannering and Bhat, 2014). Third, we allow unobserved heterogeneity in the treatment effects 

themselves rather than a priori positing fixed treatment effects. For example, even after 

controlling for endogeneity effects, the “true” effect of control type on crash frequency itself 

may vary across intersections due to such unobserved intersection geometric features as curb 

radii and approach configuration. Fourth, unlike Bhat (1998), we use an MNP-based treatment 

model rather than a very restrictive multinomial logit treatment model, and use a simple 

frequentist inference approach rather than Munkin and Trivedi’s relatively cumbersome 

Bayesian estimation approach. The frequentist approach is based on an analytic (as opposed to a 

simulation) approximation of the multivariate normal cumulative distribution (MVNCD) 

function that appears in the full likelihood function of the proposed model. Bhat (2011) discusses 

this analytic approach, which is based on earlier works by Solow (1960) and Joe (1996). The 

approach involves only univariate and bivariate cumulative normal distribution function 

evaluations in the likelihood function.  

In summary, and to our knowledge, this is the first formulation and application of a 

flexible count outcome model with a multinomial probit selection model, which also 

accommodates unobserved heterogeneity effects.  

 

2. MODEL FORMULATION 

2.1. The Selection (Treatment) MNP Model 

In the usual random discrete response model formulation, write the unobserved continuous 

random latent variable influencing the probability that intersection q is controlled by traffic 

control type i as follows: 

qiqiqqiU ξ+′= xβ   (1) 

where qix  is a )1( ×D -column vector of exogenous attributes (including a dummy variable for 

each control type alternative except a base control type), qβ  is an individual-specific )1( ×D -

column vector of corresponding coefficients that varies across intersections based on unobserved 

intersection attributes, and qiξ  captures the idiosyncratic (unobserved) intersection 

characteristics that impact the latent propensity of control type i being installed at intersection q 

(in the rest of this paper, we will refer to qiU  as the propensity of control type i  being installed at 
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intersection q). We assume that the error terms qiξ  are multivariate normally distributed across 

control types i for a given intersection q: ),(~),...,,( 21 Λ0ξ IIqIqqq MVN′= ξξξ , where 

),( Λ0IIMVN  indicates an I-variate normal distribution with a mean vector of zeros denoted by 

I0  and a covariance matrix .Λ  Such a specification captures the possibility that, for instance, 

topographical and unobserved features that hinder the approach line of sight to an intersection 

(and therefore increase or decrease the occurrence of crashes) may also impact the propensity of 

flashing lights or full signal lights being installed at the intersection. It also allows for 

unobserved features to impact different control type propensities differently. Of course, the 

precise reasons for covariances and heteroscedasticity in the underlying latent propensities across 

control types are, by definition, not observed, but it is not difficult to conceive of reasons why 

such effects may exist. At the least, it behooves the analyst to consider a general covariance 

matrix (but see identification issues discussed later) rather than a priori assuming an independent 

and identically distributed covariance matrix for qξ .1 Also, to allow variation in the effect of 

observed intersection characteristics due to unobserved intersection attributes (as discussed in the 

previous section), we consider qβ  as a realization from a multivariate normal distribution: 

)~,(~ Ωbβ Dq MVN . The vectors qβ  and qξ  are assumed to be independent of each other. For 

future reference, we also write qq βbβ ~
+=  , where ( )Ω0β ~,~~

DDq MVN .2  

The model above may be written in a more compact form by defining the following 

vectors and matrices: ),...,,( 21 ′= qIqqq UUUU  1( ×I  vector),  ),...,,,( 321 ′= qIqqqq xxxxx  DI ×(  

matrix), bxV q=q  1( ×I  vector), )',...,,( 21 qIqq ξξξ=qξ  1( ×I  vector),  qq xΩxΩ ′=
~

q

�
 

)matrix( II × , and IIqq ×+= (ΛΩΩ
�

 matrix). Also, for later use, partition qΩ
�

so that the first 

alternative’s propensity covariance component is separated from those of the remaining 

                                                            
1 The specification here can be further enhanced by allowing spatial dependence either through a spatial lag or 
spatial error specification in Equation (1) to accommodate possible interactions in the propensity to have a specific 
type of control type installed in upstream and downstream intersections or proximally spaced intersections. 
However, this is left as a future exercise, though such specifications have been used in the safety literature in simpler 
econometric models than the joint model proposed here (see Mannering and Bhat, 2014 for a review). 
2 Alternative distribution forms (rather than the multivariate normal distribution used here) may be tested for the 
coefficient vector βq. However, this complicates the econometrics in the joint model proposed here, and so is left as 
a direction for future research. 
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propensity covariances attributable to random coefficients: 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′
=

>>

>

1,1,

1,

qq1

q1q1
q ΩΩ

ΩΩ
Ω ��

��
�

. Then, we 

may write, in matrix notation, qqq ξVU +=  and ).,(~ qIMVN ΩVU qq  Also, let 

)(),,( 21 qqIqqq miuuu ≠′= …u  be an (I–1)×1 vector, where qm  is the actual observed control type 

at intersection q, and ).( qqmqiqi miUUu
q

≠−= Then, ,1−< Iq 0u because control type qm  is the one 

installed at intersection q.  

In the context of the formulation above, several important identification issues need to be 

addressed. First, a constant cannot be identified in the utilities for one of the I alternatives. 

Similarly, intersection-specific variables that do not vary across alternatives can be introduced 

for I–1 control type alternatives, with the remaining alternative being the base (but see also the 

fifth identification consideration discussed below; in the rest of this paper, we will use the first 

alternative, corresponding to the “no control” type alternative, as the base alternative). Second, 

the coefficients associated with the constants specific to each alternative have to be fixed 

parameters, because their randomness is already captured in the covariance matrix Λ . Third, 

only the covariance matrix of the error differences is estimable. Taking the difference with 

respect to the first alternative, only the elements of the covariance matrix 1Λ  of 11 qqiqi ξξε −= ,

1≠i  are estimable. However, the condition that 1−< I0*
qu  takes the difference against the 

observed control type qm  at intersection q. Thus, during estimation, the covariance matrix 
qmΛ  

qq qmqiqim ξξε −= , qmi ≠ is desired. Since qm  will vary across intersections q, 
qmΛ  will also vary 

across intersections. But all the 
qmΛ  matrices must originate in the same covariance matrix Λ  for 

the original error term vector qξ . To achieve this consistency, Λ  is constructed from 1Λ  by 

adding an additional row on top and an additional column to the left. All elements of this 

additional row and column are filled with values of zeros. 
qmΛ  may then be obtained 

appropriately for each intersection q based on the same Λ  matrix. Fourth, an additional scale 

normalization needs to be imposed on 1Λ . For this, we normalize the first diagonal element of 

1Λ  to the value of one. Fifth, in MNP models where the variables are all specific to the 

observational units (intersections in the current paper) and whose values do not vary across 

alternatives, empirical identification issues need to be considered. In particular, as discussed by 
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Keane (1992) and Munkin and Trivedi (2008), identification is tenuous unless exclusion 

restrictions are placed in the form of at least one intersection characteristic being excluded from 

each control type propensity in addition to being excluded from a base alternative (but appearing 

in some other control type propensities). In our application, such exclusion restrictions were 

identified based on the estimation of a simpler independent MNP model (Λ  fixed to the identity 

matrix) and removing intersection variables that turned out to be statistically insignificant in 

impacting specific control type propensities. 

With the normalizations above on the Λ  matrix, the covariance matrix qΩ takes the form 

below: 

⎥
⎦

⎤
⎢
⎣

⎡ ′
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ′Ω
=+=

−

−

>>

>

1Λ0
0

ΩΩ
Ω

ΛΩΩ
1

1

1,1,

1, 0

I

I

qq1

q1q1
qq ��

��
�

.  (2) 

 

2.2. The Count Outcome Model 

Consider the recasting of the count model using a specific functional form for the generalized 

ordered-response probit (GORP) structure as follows: 

qqy η++′= qqqq Aρwδ* , qq ly =  
qq lqqlq y ,

*
1,if ψψ <<− ,  ......},2 ,1,0{∈ql ,   (3)  

( )
qq l

l

r

r
q

q
lq c

r
rc

ϕθ
θ

ψ
θ

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Γ
Γ
−

Φ= ∑
=

−

0

1
, !

)(
)(

1
, 

θλ
λ
+

=
q

q
qc , and qzγ′=eqλ .  

In the above equation, *
qy  is an underlying latent continuous crash propensity variable 

corresponding to intersection q that maps into the observed count ql  through the qψ vector 

(which is a vertically stacked column vector of thresholds .) ,..., ,,,( 2101, ′∞− qqqq ψψψψ   qδ  is an 

intersection-specific )1( ×C -column vector of coefficients on a conformable )1( ×C -column 

vector of observable covariate vector qw  (not including a constant), Aq is an (I–1)×1-column 

vector of binary (0/1) indicator variables for the absence/presence of each control type (except 

the base “no control” type) at intersection q ])',...,([ 32 qIqqq aaa=A . Thus, for intersection q with 

observed control type ),1( ≠qq mm  1=
qma  and all other elements are zero; if ,1=qm  all 

elements of Aq take a value of zero. qρ  is a corresponding intersection-specific vector of  

structural control type “treatment” effects (relative to the base category of “no control”) on the 
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frequency of crashes at intersection q.  qη  is a random error term representing unobserved 

factors influencing the latent variable *
qy , and therefore the observed counts. It is assumed to be 

standard normal distributed.3 γ is another ( 1~ ×C )-column vector of parameters corresponding to 

another vector of observable covariates zq (including a constant). 1−Φ  in the threshold function 

of Equation (3) is the inverse function of the univariate cumulative standard normal. θ is a 

parameter that provides flexibility to the count formulation, and, as we will see later, serves the 

same purpose as the dispersion parameter in a traditional negative binomial model (θ >0). )(θΓ  

is the traditional gamma function; ∫
∞

−−=Γ
0

1)( dtet tθθ . The threshold terms in the qψ  vector 

satisfy the ordering condition (i.e., )....210, qq,q,q,q ∀∞<<<<− ψψψψ 1  as long as  

.....2101 ∞<<<<− ϕϕϕϕ  The presence of these ϕ  terms provides substantial flexibility to 

accommodate high or low probability masses for specific count outcomes, beyond what can be 

offered by traditional treatments using zero-inflated or related mechanisms. For identification, 

we set ,, 11 qq, ∀−∞=−∞= −− ψϕ  and .00 =ϕ  In addition, we identify a count value 

......}),2 ,1,0{( ** ∈ee  above which ......}),2 ,1,0{( ∈eeϕ is held fixed at *e
ϕ ; that is, *ee ϕϕ =  if 

,*ee >  where the value of *e  can be based on empirical testing. For later use, let 

),,( *21 ′=
e

ϕϕϕ …φ  ( 1* ×e  vector).   

 To proceed, define ,),( ′′′= qqq Aws  and .),( ′′′= qqq ρδμ  Assume that qμ  is a realization 

from a multivariate normal distribution with mean vector d and covariance Γ~. It is not necessary 

that all elements of qμ  be random; that is, the analyst may specify fixed coefficients on some 

exogenous variables in the model, though it will be convenient in presentation to assume that all 

elements of qμ  are random. Also, note that the submatrix of Γ~corresponding to the coefficient 

vector of qρ  should be diagonal, because each intersection is controlled by a single control type. 

With the definitions above, Equation (3) may be equivalently written as: 

                                                            
3 The exclusion of a constant in the vector wq  of Equation (3) and the use of the standard normal distribution (as 
opposed to a non-standard normal distribution) for the error term ηq are innocuous normalizations (see Zavoina and 
McKelvey, 1975; Greene and Hensher, 2010). 
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qqqqy η+= sμ'* , qq ly =  
qq lqqlq y ,

*
1,if ψψ <<− ,  ......},2 ,1,0{∈ql ,   (4)  

( )
qq l

l

r

r
q

q
lq c

r
rc

ϕθ
θ

ψ
θ

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +Γ
Γ
−

Φ= ∑
=

−

0

1
, !

)(
)(

1
, 

θλ
λ
+

=
q

q
qc , and qzγ′=eqλ .  

The specification of the GORP model in the equation above provides a very flexible 

mechanism to model count data. It subsumes the traditional count models as very specific and 

restrictive cases. In particular, if the vector qμ is degenerate with all its elements taking the fixed 

value of zero, and all elements of the φ  vector are zero, the model in Equation (4) collapses to a 

traditional negative binomial model with dispersion parameter θ. If, in addition, ,∞→θ  the 

result can be shown to be the Poisson count model. Also, note that the non-linear functional form 

for the effects of the variables in the qz vector on the thresholds allows identification for any 

variables that are common in the qz and qs  vectors. Further, we can write ),,(~* Γ
I

qq DNy  where 

qqD sd′=  and ,1~1 Γ+=′+=Γ
�I

qq sΓs  where .~
qq sΓs ′=Γ

�
 

In the empirical context of crash counts at intersections, CPB interpret the GORP 

recasting of the count model as follows. There is a latent “long-term” crash propensity *
qy  

associated with intersection q that is a linear function of a set of intersection-related attributes 

qw  and the endogenous intersection control type variables .qA  On the other hand, there may be 

some specific intersection characteristics (embedded in qz  within the threshold terms) that may 

dictate the likelihood of a crash occurring at any given instant of time for a given long-term crash 

propensity *
qy  (there may be common elements in qw  and qz ). Thus, two intersections may 

have the same latent long-term crash propensity *
qy , but may show quite different observed 

number of crashes over a certain time period because of different *
qy - to - qy  mappings through 

the cut points ( qy  is the observed count variable).  

 

2.3. The Joint Model System 

The count model of the previous section can be estimated independently of the MNP-based 

control type model of Section 2.1. However, doing so would assume that the observed control 

type at intersections has nothing to do with the frequency of crashes, thus resulting in the 
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inference that the estimates related to the elements of the qρ  vector provide the “treatment” 

effect if specific control types are put in place at an intersection. However, as discussed earlier in 

Section 1, there is reason to believe that the unobserved factors contained in the elements of the 

error vector qξ  may also be manifested in the error term qη . If this is the case, a non-random 

assignment of control types to intersections is being used to make inferences about the potential 

engineering effect of using different control strategies. But, assessing this engineering effect is 

effectively equivalent to a thought experiment in which differences in crash frequency are to be 

evaluated following the random assignment of control types to intersections. Econometrically 

speaking, the challenge then is to attempt to compute this engineering effect from a non-

randomly assigned observed sample by accommodating the covariance effects between the 

vector qξ  and the error term qη .  

Of course, as already discussed in Section 2.1, only differences in the control type 

propensities matter in the MNP model, and so, without loss of generality, we accommodate the 

covariance between  qξ  and qη  by specifying their joint covariance matrix as follows 

,
1

~where,~
0

10

00
~

1

1

⎥
⎦

⎤
⎢
⎣

⎡
′

=⎥
⎦

⎤
⎢
⎣

⎡ ′
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′

′

= −

−

Ξ
ΞΛ

Σ
Σ0
0

Ξ
ΞΛ0

0
Σ 1

1
1

1I

I

 (5) 

where Ξ is the )1)1( ×−I  column vector of the covariance elements of the error differences 

11 qqiqi ξξε −= , 1≠i  in the discrete response model with the qη  error term in the count model. 

Now, consider the )]1)1[( ×+I  vector [ ]′′= *, qq yUG . Let ),( ′′= qqq DVH . Then, 

),,(~ )1( qΣHG q+IMVN  where 

.
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The positive definiteness of the covariance matrix qΣ can be ensured by making certain that the 

covariance matrices Ω~  (covariance matrix of )~
qβ ,  the diagonal covariance matrix Γ~ 

(covariance matrix of qμ ), and the covariance matrix 1Σ~  (covariance matrix of the error 

differences 11 qqiqi ξξε −= , 1≠i  in the discrete response model and the qη  error term in the 

count model) are each positive definite. This is considered by using a Cholesky-decomposition 

of these three matrices, and undertaking the estimation with respect to these Cholesky-

decomposed parameters (see Greene, 2012 for a discussion of the Cholesky-decomposition of a 

symmetric positive definite matrix). Note also that the first diagonal element of 1Σ~  is 

normalized to one for identification, which can be ensured by fixing the first diagonal element of 

the Cholesky matrix to one. Further, the last diagonal element of 1Σ
~  also is normalized to one 

(this is the variance of the error term qη ). To maintain this restriction, the corresponding 

diagonal element of the Cholesky matrix is written as ∑
−

=

−
1

1

21
I

j
Ijh , where the Ijh  elements are the 

Cholesky factors in the last row I.  

To develop the likelihood function, define qM  as an identity matrix of size I with an 

extra column added at the th
qm  column (thus, qM  is a matrix of dimension )).()( 1II +×  This 

th
qm  column of qM  has the value of ‘-1’ in the first )1( -I  rows and the value of zero in the final 

row. Then, the vector )(~ * ′′= qqq yuG (of size I×1) is distributed as follows: )ΣHG qqIq MVN ~,~(~~
, 

where qqq HMH =~
 and qqqq MΣMΣ ′= ~  . The likelihood that intersection q has control type qm  

installed and has a crash frequency of ql is equivalent to the joint probability that 1−< Iq 0u  and 

qq lqqlq y ,
*

1, ψψ <<− . Defining ,),',,~,, ,~,( ′′′′′′′= θϖ φγΓdΛΩb  where Λ represents the vector of 

upper triangle elements of Λ  (and similarly for other covariance matrices), Δω  for the diagonal 

matrix of standard deviations of matrix Δ, ),;(. ΔαEF  for the multivariate normal cumulative 

distribution function of dimension E with mean vector α  and covariance matrix Δ,  and 

);(. *ΔEΦ  for the multivariate standard normal cumulative distribution function of dimension E 



 

11 

and correlation matrix *Δ  such that 11* −
Δ

−
Δ= ωΔωΔ , the likelihood function contribution from 

intersection q may be written as: 

( ) ( )
( ){ } ( ){ } .~~,~~,
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The likelihood function of the observed sample is then developed as .)(∏=
q

qLL ϖ  The 

expression in Equation (7) may be computed using simulation-based methods or an analytic 

approximation approach to approximate the multivariate normal cumulative distribution 

(MVNCD) functions. Typical simulation-based methods can get inaccurate and time-consuming 

as the dimensionality increases. On the other hand, the analytic approximation approach of Joe 

(1995) and Bhat (2011) is based solely on univariate and bivariate cumulative normal 

distribution evaluations, regardless of the dimensionality of integration, which considerably 

reduces computation time compared to other simulation techniques to evaluate multidimensional 

integrals. This is the approach used in the current paper.  

 
 

3. SIMULATION STUDY 

In this section, we evaluate the ability of the analytic approximation to recover the parameters for 

the joint MNP-count model proposed in this paper, as well as assess the ability of the asymptotic 

standard errors from the analytic procedure to provide an estimate of the finite sample error for 

the typical size of samples employed in estimation.  

 

3.1. Experimental Design 

We consider three signal control type alternatives in the simulation experiments. Assume two 

independent variables for each of the three alternatives in the MNP model. The coefficient vector 

qβ  for intersection q is assumed to be a realization from a multivariate normal distribution with a 

mean vector b = (1.5, –1) and covariance matrix Ω~  as follows: 
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Then, there are three Cholesky matrix elements to be estimated in ΩL ~  ( 00.11~ =Ωl ,

).10.1,60.0 3~2~ == ΩΩ ll  Collectively, these elements, vertically stacked into a column vector, 

will be referred to as .~Ωl   

For the count variable, we consider an exogenous variable in the qw vector generated 

again from a standard univariate distribution. In addition, dummy variables corresponding to the 

choice of the second and third alternatives from the three signal type alternatives are included as 

structural effects in the count specification through the qA vector. The coefficient vector qμ  for 

intersection q is assumed to be a realization from a multivariate normal distribution with a mean 

vector )5.1,1,1( −−=d  and a diagonal covariance matrix as follows: 
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There are three Cholesky matrix elements to be estimated in ΓL ~  ( 5.01~ =Γl ,

).0.1,707.0 3~2~ == ΓΓ ll  Collectively, these elements, vertically stacked into a column vector, 

will be referred to as .~Γl The dispersion parameter θ  is fixed at 2, and the ),,( *21 ′=
e

ϕϕϕ …φ  

vector (labeled φ  here) is set so that ).75.0()( 1 == ϕφ  We consider an exogenous variable in the 

qz vector (embedded in the threshold function) generated again from a standard univariate 

distribution. The corresponding coefficient (labeled as )1γ  is set to 0.5. 

 The covariance matrix that generates the jointness among the dependent variables (that is, 

the covariance matrix of the error differences 11 qqiqi ξξε −= , 1≠i  in the discrete response model 

and the qη  error term in the count model) is specified as follows: 
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In the above 1Σ
~  matrix, the first element is normalized (and fixed) to the value of 1, as is the 

third diagonal element.  The sub-matrix of the first two columns and the first two rows of 1Σ
~  

corresponds to the matrix 1Λ , which is the covariance matrix of the propensity differentials of 

the second and third alternatives (with respect to the first alternative) in the traffic control type 

variable. In the simulation exercise, for convenience, we fix the covariance of q21ε  and qη  to 

zero (as reflected by the zero entry in the first row and third column of 1Σ
~ . There are three 

Cholesky matrix elements to be estimated in 
1Σ

L ~  ( 6.01~ =
1Σ

l , ).6.0,8.0 3~2~ ==
11 ΣΣ ll  Collectively, 

these elements, vertically stacked into a column vector, will be referred to as .~
1Σ

l  

The set-up above is used to develop the covariance matrix Σ~ for the error vector 

.),,,( 321 ′= qqqqq ηξξξτ  The mean vector ( )′= 321 ,, qqqq VVVV  for the latent variable vector 

( )′= 321 ,, qqq UUUqU  is also computed. Then, for each of the 2000 observations, a specific 

realization of the qτ  vector is drawn from the multivariate normal distribution with mean 40  and 

covariance structure Σ~ . The realization corresponding to )',,( 321 qqqq ξξξ=ξ  is added to the 

mean vector qV  to obtain the realization of the vector qU for each observation. The alternative 

with the highest value from the vector qU  is then picked, and designated as the chosen 

alternative for each observation. Next, the value for qqqqy η+′= sμ*  is generated, and is translated 

into an observed count based on the computed threshold values  

The above data generation process is undertaken 50 times with different realizations of 

the qτ  vector to generate 50 different data sets, each with 2000 observations. The estimator is 

applied to each data set to estimate data specific values of ( ) .,,,,,,, ~11~~
′′′′′′

1ΣΓΩ db lll γϕθ  A single 

random permutation is generated for each individual (the random permutation varies across 

individuals, but is the same across iterations for a given individual) to decompose the 

multivariate normal cumulative distribution (MVNCD) function into a product sequence of 
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marginal and conditional probabilities (see Section 2.1 of Bhat, 2011).4 The estimator is applied 

to each dataset 10 times with different permutations to obtain the approximation error. 

 

3.2. Performance Evaluation 

The performance of the proposed inference approach in estimating the parameters of the 

proposed model and the corresponding standard errors is assessed as follows: 

(1) Estimate the parameters for each data set and for each of 10 independent sets of 

permutations. Estimate the standard errors (s.e.) using the Godambe (sandwich) estimator 

(Godambe, 1960). 

(2) For each data set s, compute the mean estimate for each model parameter across the 10 

random permutations used. Label this as MED, and then take the mean of the MED 

values across the data sets to obtain a mean estimate. Compute the absolute percentage 

(finite sample) bias (APB) of the estimator as: 

100
 valuetrue

 valuetrue-estimatemean 
×=APB  

(3) Compute the standard deviation of the MED values across datasets, and label this as the 

finite sample standard error or FSEE (essentially, this is the empirical standard error). 

(4) For each data set, compute the mean standard error for each model parameter across the 

10 draws. Call this MSED, and then take the mean of the MSED values across the 30 

data sets and label this as the asymptotic standard error or ASE (essentially this is the 

standard error of the distribution of the estimator as the sample size gets large). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula as computed 

using the MACML inference approach for the finite sample size used, compute a relative 

efficiency (RE) value as: 

100
FSEE
ASE

×=RE  

                                                            
4 Technically, the MVNCD approximation should improve with a higher number of permutations in the MACML 
approach. However, when we investigated the effect of different numbers of random permutations per individual, 
we noticed little difference in the estimation results between using a single permutation and higher numbers of 
permutations, and hence we settled with a single permutation per individual. 
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(6) Compute the standard deviation of the parameter values around the MED parameter value 

for each data set, and take the mean of this standard deviation value across the data sets; 

label this as the approximation error (APERR).   

 

3.3. Simulation Results 

The results of the simulation experiments are presented in Table 1. These results indicate that the 

proposed method does very well in recovering the parameters, as can be observed by comparing 

the mean estimates of the parameters with the true values. The absolute percentage bias (APB) is 

no more than 10% for any parameter (see column titled “Absolute Percentage Bias”. The overall 

APB across all the parameters is only 3.1%. Among all the parameters, the dispersion parameter 

of the underlying negative binomial distribution, θ, is recovered least accurately with an APB 

value of 9.3%. The reason for this is that this parameter appears very non-linearly in the model 

system of Equation (4), and through the 
qlq,ψ  threshold parameters. Besides, the threshold 

parameters do not change very substantially as the θ parameter increases and asymptotically 

approaches a Poisson distribution. As a result, it is difficult to pin down the value of the θ 

parameter through estimation, leading to higher APB values. Similarly, the parameter 3~
1Σ

l  also 

has a relatively large APB of 8.3%. This parameter determines the Ξ  part of the  1Σ
~  covariance 

matrix that is responsible for generating the covariance between the MNP control type model 

with the count model of the number of crashes. Again, small changes in this element do not have 

too much effect on the likelihood function in Equation (7), and thus it is somewhat more difficult 

to pin down the value of this parameter. In any case, from a magnitude standpoint, it is clear that 

there is very little difference between the mean estimate of the parameters from the MACML 

method and the true parameter values.   

The finite sample standard errors (FSSE) are small and are on an average about 13% of 

the true value of the parameters, indicating good empirical efficiency of the proposed estimator 

for the model. Another observation from the FSSE estimates is that these estimates (as a 

percentage of the mean estimates) are generally lower for the mean parameters of the vectors qβ  

and qμ  (i.e., for the for b vector and d vector elements) than for the corresponding Cholesky 

elements of the covariance matrices of these vectors (i.e., for the Γ~l  and Ω~l vector elements). In 

particular, the ASE estimates (as a percentage of the mean parameter values) are, on average, 
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about 13% for the mean parameters of the vectors qβ  and qμ  relative to 17.5% for the Cholesky 

elements of these vectors. This is to be expected since the mean parameters enter into the 

likelihood function of Equation (7) rather linearly (through the mean vector qH~ ), while the 

Cholesky elements enter much more non-linearly through the qΣ  covariance matrix. Among the 

other parameters, the ASE values for the θ and 3~
1Σ

l  parameters are relatively high in both 

absolute magnitude as well as a percentage of the mean estimate (the FSEE of the θ  parameter is 

20% of the mean θ estimate, while the FSEE of the 3~
1Σ

l  parameter is 21% of the mean 3~
1Σ

l  

estimate), reinforcing the finding earlier that these parameters are more difficult to recover than 

other parameters.  

The finite sample standard errors and the asymptotic standard errors obtained are also 

close, with the relative efficiency (RE) value between 0.8-1.2 for all but three parameters. The 

efficiency values are outside this range for the Cholesky elements 
1~Γl  and 1~

1Σ
l , and the 

dispersion parameter θ. However, for the Cholesky parameters, the relatively high RE value is an 

artifact of the very low FSEE values in the first place. Indeed, in terms of testing whether these 

parameters are different from zero, there is no change in inference whether one uses the FSEE or 

the ASE. Compared to all other parameters, the difference between the FSEE and ASE is highest 

(in magnitude) for the θ parameter. This is consistent with the findings from earlier that the θ 

parameter appears to be the most difficult to pin down, which implies that accurate and precise 

estimation of this parameter, as well as the accuracy of the ASE estimate for this parameter from 

finite samples, would be particularly improved with large sample sizes. But, again, even for this 

parameter, there is effectively no difference in inference whether the FSEE or ASE is used to test 

if the model collapses to a Poisson model or not (as indicated earlier, the Poisson model results if 

;∞→θ  even when one uses a very conservative bound of 4 to replace ∞ in this test, both the 

FSEE and ASE return the same result that the Poisson model is rejected). Overall, across all 

parameters, the average relative efficiency is 1.11, indicating that the asymptotic formula is 

performing well in estimating the finite sample standard error. Further, as for the FSEE values, 

the ASE estimate, on average across all parameters, is only 16.5% of the mean estimate, 

indicating very good efficiency even using the ASE estimate for the FSEE. 
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Finally, the last column of Table 1 presents the approximation error (APERR) for each of 

the parameters, because of the use of different permutations. These entries indicate that the 

APERR is on an average only 0.010 and the maximum is only 0.028. More importantly, the 

approximation error (as a percentage of the FSEE or the ASE), averaged across all the 

parameters, is of the order of 7.5% of the sampling error. This is clear evidence that even a single 

permutation (per observation) of the approximation approach used to evaluate the MVNCD 

function provides adequate precision, in the sense that the convergent values are about the same 

for a given data set regardless of the permutation used for the decomposition of the multivariate 

probability expression.  

 

3.3.1 Effects of Ignoring the Joint Distribution of the Error Structures 

This section presents the results of the estimation when the endogeneity of the treatment variable 

(in our case, the endogeneity of the intersection control type) on the count outcome (in our case, 

the frequency of crashes at an intersection) is ignored.  That is, we examine the effect of 

constraining 3~
1Σ

l  to zero when the data actually reflects a correlation. The simulation results for 

this restricted model (which we label as the “independent model”) is presented in Table 2. For 

comparison purposes, we also present the results of the joint model proposed in the current 

paper. For the purpose of Table 2, we run only 50 estimations for each of the independent and 

joint models, corresponding to each of the 50 data sets generated as per the experimental design 

of Section 3.1. That is, we use only one set of permutations per data set to evaluate the MVNCD 

functions and do not run ten estimations per data set with different sets of permutations. We do 

so rather than run 10 replications because, as we presented in the earlier section, the 

approximation error in the parameters is negligible for any given data set. However, for each 

data set, we use the same set of permutations for the joint model and the independent model, so 

that we are able to appropriately compare the ability to recover parameters from the two models. 

In addition, we also compute a likelihood ratio test (LRT) statistic between the joint and 

independent models for each data set. This statistic needs to be compared against the table chi-

squared value with one degree of freedom, which is equal to 3.84 at the 5% level of significance. 

In this paper, we identify the number of times (corresponding to the 50 data sets) that the LRT 

value rejects the independent model in favor of the joint model.   
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As can be observed from Table 2, the APB values are higher for almost all parameters in 

the independent model. The overall APB across all parameters is 7.5% in the independent model 

relative to only 2.6% in the joint model (as discussed earlier, the joint model results in Table 2 

are slightly different from those in Table 1 because we use only one set of permutations for the 

estimates in Table 2). Moreover, when confining attention to the count model estimates, the APB 

in the independent model rises to 10.4% relative to only 2.1% for the joint model. This is a more 

appropriate comparison than comparing the APB across all parameters, since ignoring the 

covariance (when present) renders the count model estimates inconsistent while leaving the MNP 

estimates still consistent. Further, the largest bias is in the d3 parameter, as can be observed in 

the sharp decrease in the d3 parameter estimate to a value of -0.755 in the independent model 

(leading to a 32.5% APB for this parameter in the independent model).  This is to be expected 

because the 3~
1Σ

l  element is associated with the correlation between (1) the propensity difference 

of the third alternative from the first and (2) the count propensity effect of the third alternative 

relative to the first. In particular, if unobserved factors that increase the likelihood of the third 

treatment (or alternative) relative to the first also increase the propensity of the count variable, 

ignoring this correlation will lead to an understatement of a “true” reduction in the count 

propensity due to the third treatment. Intuitively, if, for example, full phased traffic signals are 

placed at intersections with intrinsically high propensities of incidents (due to unobserved factors 

of these intersections), then ignoring this positive correlation will dilute the “true” reduction in 

crashes due to converting an intersection with no control to that with a full-phased traffic signal.    

The LRT test toward the bottom of Table 2 clearly indicates that the joint model rejects 

the independent model in all the 50 data sets, further reinforcing the need to consider jointness in 

the MNP and count components when present.  

 

4. APPLICATION TO INTERSECTION ACCIDENT COUNTS 

4.1. Background 

Motorized vehicle use is a routine part of life for most American households. Motorized vehicles 

enable face-to-face connectivity with far-flung friends or relatives, as well as facilitate 

participation in daily activities. However, motorized vehicle use is not without its risks. 

Motorized vehicle crashes can cause property damage, injuries, and fatalities. Indeed, the leading 

cause of death for people between the ages of 11 and 27 is motorized vehicle crashes, according 
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to the National Highway Traffic Safety Administration (NHTSA) (NHTSA, 2013). In 2011, an 

average of 89 people died daily from motor vehicle crashes, which is about 1 person every 16 

minutes (NHTSA, 2013). The Center for Disease Control estimates the 2005 lifetime costs for 

fatal and non-fatal motor vehicle occupant injuries at around $70 billion, an estimate which 

includes treatment costs, rehabilitation, and lost productivity (CDC, 2011). The US National 

Safety Council estimates the average cost of a death from a motor vehicle crash at $1.42 million 

(2011). A crash with only property damage and non-disabling injuries has an average economic 

cost of $9,100 (National Safety Council, 2011). In 2011, 2.2 million people were non-fatally 

injured in motor vehicle crashes, and another 3.7 million crashes led to property damages 

(NHTSA 2013).  

Motor vehicle crashes often occur at intersections, as turning maneuvers and even 

proceeding straight through an intersection can bring a vehicle into conflict with other vehicles 

whose drivers are pursuing their own path of travel. Among all roadway-related crashes, NHTSA 

estimates that 40% occur at intersections (NHTSA, 2010). In the pool of serious intersection 

crashes (those involving one or more fatalities), 60% occur at urban intersections. It is no 

surprise, therefore, that many earlier transportation and roadway safety studies have examined 

the frequency and severity of intersection crashes as a function of intersection control 

characteristics, roadway design features, and traffic volumes, with the ultimate objective of 

suggesting possible countermeasures to reduce such crashes (see, for example, CPB, 2012, 

Haque et al., 2010, Huang and Chin, 2010, Mitra, 2009, and Haleem and Abdel-Aty, 2010). 

However, none of these studies consider the potential endogeneity of “independent” variables 

such as intersection control type when modeling the frequency of crashes, as we do in the current 

paper. Alternatively, some studies have attempted to examine the effects of flashing lights 

through before-after studies at intersections that changed night-time flashing conditions to 

regular signal phasing (see, for example, Gaberty and Barbaresso, 1987, Barbaresso, 1987, 

Polanis, 2002, and Srinivasan et al., 2008). But these studies once again do not consider the 

possibility that the flashing lights may have been placed in the before case at a sample of 

intersections in a selective manner, and thus they ignore potential endogeneity considerations. 

Besides, these studies are typically based on observations on a very small number (12 to 15) of 

intersections.  
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4.2. The Data 

Our analysis uses crash data drawn from the Texas Department of Transportation (TxDOT) 

Crash Record Information System (CRIS). The CRIS compiles police and driver reports of 

crashes into multiple text files, including complete crash, vehicle, person, and weather-related 

details for each crash.5 In this study, crashes designated as intersection or intersection related 

were extracted from the CRIS data base.6 We further confined attention to intersections from 

Irving, Texas. This is because the CRIS does not include traffic flow information on intersection 

approach movements, a variable that has been well established as a key determinant of 

intersection crash risk propensity (see Quddus, 2008 and CPB). However, the North Central 

Texas Council of Governments offers a listing of 24-hour weekday traffic counts in its planning 

area, as well as an online map interface to visualize the count records. The visualization showed 

very good coverage across the many (>1000) intersections in the city of Irving. From this traffic 

count data, we extracted out the two-way flows on the approach streets for each intersection in 

Irving (of course, at some intersections, such as T-intersections or one-way approaches to an 

intersection, total one-directional flows were used as the approach volume on the appropriate 

approach streets). The sum of the flows on all approach streets to an intersection was computed 

to obtain an estimate of the total daily entering traffic at the intersection.  

For this study, we further confined attention to 1032 intersections from Irving that had 

the same intersection control type installed (as obtained from the crash records) throughout the 

CRIS data collection period of 2003-2009.7  

                                                            
5 The Texas law enforcement agency officially maintains the records of those crashes reported by police and drivers 
that involve property damage of more than $1,000 and/or the injury of one or more individuals (of course, records of 
crashes that involve fatalities on the spot are also maintained). Thus, the CRIS does not include minor crashes that 
involve only property damage of less than $1,000. However, in the rest of this paper, we will not belabor over this 
distinction, and will use the CRIS crashes as the measure for all crashes. 

6 TxDOT defines a crash as being intersection-related if it occurs within the curb-line limits of the intersection or on 
one of the approaches/exits to the intersection within 200 feet from the intersection center point. 
7 A handful of residential and local collector road intersections among the 1032 intersections did not have (in the 
NCTCOG data base) traffic counts on one or more approach streets. In such instances, rather than discarding such 
intersections, we used imputation procedures to estimate approach volumes. Also, for 52 of the 1032 intersections, 
the CRIS data base did not have a control type. For these, we identified the control type through visual identification 
based on Google Street View. Of the 52 intersections, two intersections were signalized, 44 were stop controlled, 
three were yield-controlled, and the remaining three intersections fell into the 'no control' category. These control 
types had not changed over time (based on visual identification over time). A final note regarding control types. 
Intersections that operated under flashing lights on one or more approaches for part of the nights (and as normal 
signals during the day) were designated as being under flashing light control. This is because we are using a 24-hour 
period for analysis, and also because intersection locations operating under flashing lights during any time may lead 
to driver confusion even during regular signal phasing operation (see Hunter et al., 2011).  
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4.2.1. The Dependent Variable Statistics 

The dependent variables in the model are the intersection control type and the count of crashes. 

In our analysis, the latter variable corresponds to crashes in 2008 at each of the 1032 

intersections in the sample.  

The intersection control type statistics in Table 3a indicate that about 35% of the 

intersections do not have any traffic control (such as residential street intersections, or 

intersections with minimal form of traffic control devices such as center stripes/dividers, turn 

marks, and marked lanes on one or more approaches). A substantial fraction of intersections are 

also controlled by stop signs (36.5%), while flashing light intersections are also represented in 

the sample (3.0%).  

The distribution of crashes across the intersections is provided in Table 3b, and ranges 

from 0 to 21. The total number of crashes across the 1032 intersections is 959, yielding a mean 

number of crashes of 0.929 per intersection. A large fraction of the intersections (651 of the 1032 

intersections, or 63% of intersections) did not have any reported crashes in 2008. As discussed in 

Section 1, our recasting of the count model as a GORP model incorporates the flexibility of 

handling such “excess” zeros if the explanatory variables are unable to accommodate this spike 

in zero count.  

 

4.2.2. Independent Variable Characteristics 

The characteristics of the 1032 intersections, in terms of the independent variables used in the 

model, are summarized in Table 4. The statistics in the table are, for the most part, self-

explanatory. In terms of roadway alignment, the CRIS data base does not define what exactly is a 

vertical grade and how if differs from a crest. This designation was made by the peace officer 

responsible for recording details of the crash. In general, an approach roadway is considered to 

have a vertical grade if there is a reasonable vertical slope that has not yet crested before the 

intersection point. On the other hand, an approach roadway is considered to have a crest if it has 

a vertical slope that crests very close to the intersection point.  

The final variable in Table 4 is a Flow Split Imbalance factor (FSIMB), as introduced by 

CPB, and formulated as follows: 

,
21

21

VV
VVFSIMB

+
−

=  (11) 
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where 1V  and 2V  correspond to the daily traffic volumes on the major and minor roadways, 

respectively ( 21 VV ≥ ). The FSIMB factor can take a value between zero (when there is no 

imbalance in flows on the approach roads) and one (when there is complete imbalance in the 

flows, theoretically obtained when there is zero flow on the minor road). In the sample, the mean 

FSIMB statistic is 0.626, indicating that, on average, the major road volume is 4.35 times the 

minor road volume at the sampled intersections. 

 

4.3. Variable Specification and Model Formulation 

The variables in Table 4 are of two distinct types – the number and configuration of entering 

roads, the approach roadway type combination, the approach roadway alignment, and whether 

the intersection location is on a frontage road are categorical variables.  On the other hand, the 

daily entering volume is a continuous variable, while the FSIMB factor is continuous but 

bounded between 0 and 1. The base category for the categorical variables is as follows: (a) four 

entering roads (for the number and configuration of entering roads), (b) At least one approach 

road is a non-city street (for approach roadway type combination) (b) straight and level approach 

streets (for approach roadway alignment), and (d) none of the approaches is a frontage road (for 

whether an intersection location is on a frontage road). For the continuous daily entering volume 

variable, we attempted alternative functional forms, including the linear form, the natural 

logarithm form, a piecewise linear form, and dummy variables for different threshold values. 

Further, various interactions of the continuous and the categorical variables were also considered 

whenever adequate observations were available to test such interaction effects, such as between 

traffic volume and roadway alignment, and number of entering roads and traffic volume. But 

none of these interaction terms came out to be statistically significant. The final model was 

obtained based on goodness of fit, intuitiveness, and parsimony considerations. In some cases, 

we retained variables even if they were not statistically significant at the 5% level of significance 

because of intuitive considerations and also because the results should be useful for further 

exploration of crash determinants in future studies. At the same time, we checked that the 

inclusion of these statistically insignificant (at the 5% level of significance) variables did not 

much affect the magnitude of effects or statistical significance of other variables.  
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4.4. Model Estimation Results 

We first discuss the effects of variables in the MNP model of intersection control type as well as 

the elements of the covariance matrix 1Λ  for the error differences of the control type 

propensities (Section 4.4.1), next the impacts of variables on the long term crash propensity in 

the count model (Section 4.4.2), subsequently the determinants of the thresholds in the count 

model (Section 4.4.3), and finally the elements of the covariance matrix Ξ between the control 

type propensity differentials and the count long-term propensity (Section 4.4.4).  

 

4.4.1 Intersection Control Type MNP model 

Table 5 presents the MNP model results for the joint model proposed in the current paper. The 

MNP model is estimated with the “no traffic control” alternative as the base alternative. If a ‘-’ 

appears for a row variable in Table 5 corresponding to a column alternative, it implies that the 

column alternative forms a base alternative along with the “no traffic control” alternative (for the 

effect of the row variable).  

The constants do not have any intuitive interpretation; they combine any unobserved 

biases with adjustment factors that accommodate the continuous sample values of the entering 

volume and FSIMB variables. Among the other variables, a T-intersection has, on average, a 

lower propensity of being under stop sign control relative to being under yield sign control or no 

control at all; however, there is heterogeneity in this coefficient, as observed by the (marginally 

significant) standard deviation on this coefficient. According to the results, 90% of T-

intersections have a higher propensity of being in “no control” or “yield control” states than in a 

“stop sign control” state. A T-intersection is also less likely, on average, to be under flashing 

light control relative to the no control or yield control states, and the least likely to be in a signal 

controlled state. Finally, under the category of “number and configuration of entering roads”, the 

results indicate that Y-intersections have the lowest propensity to be under a signal control state, 

and the most likely to be in a yield control state. All of the above results are not surprising, given 

that T and Y intersections tend to be at low-volume, low-speed residential street locations, where 

“no control” or yield control are likely to be the most prevalent (see the Manual on Uniform 

Traffic Control Devices or MUTCD; FHWA, 2009). 

When all the approach streets of an intersection are city streets (as opposed to one or 

more of the approach streets being a non-city street), the intersection is more likely to be 
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controlled by a stop sign. In the category of approach roadway alignment variables, the presence 

of a vertical grade increases the likelihood of having flashing lights at the intersection, while the 

presence of a crest elevates the probability that flashing lights or signal lights will be placed at 

the intersection. These results are reasonable, because the presence of vertical grades and crests 

reduces sight distance. In such conditions, forms of control such as stop signs that can be seen 

only when close enough to the intersection may not be adequate. On the other hand, flashing 

lights and signals can be mounted high and be seen from far away, surmounting vertical grade or 

crest-related visual limitations. Indeed, the MUTCD advises the use of several warning signs to 

warn the motorists of the dangers ahead.  

The total daily entering traffic volume variable, as defined in Section 4.2, was introduced 

in several ways, but the best data fit was obtained using a simple logarithmic transformation of 

the daily entering volume. High entering volume locations are most likely to be controlled by 

signal control. This is consistent with the warrants for signal placement, as documented in the 

MUTCD (FHWA, 2009). High entering volume locations are least likely to be under a no control 

or a stop-sign control state. Finally, after controlling for total entering traffic volume, Table 5 

indicates that the split of traffic between the major and minor roads also plays an important role 

in control type placement. In particular, a higher value of the FSIMB factor (minor road 

approach volume being very less relative to major road approach volume) implies a higher 

propensity of the intersection being in no control than in other states, yield control relative to 

other forms of control, stop control relative to flashing lights and signals, and flashing lights 

relative to complete signal phasing. This is intuitive, since, as documented in the MUTCD, the 

hierarchy of control placement is inversely related to the level of flow imbalance (a higher 

imbalance leads to fewer conflict points at the intersection).   

A general specification was considered for the covariance matrix 1Λ  of the error 

differences of the control type propensities (taken with respect to the “no control” alternative’s 

propensity). But, in our empirical context, we could not reject the null hypothesis that this matrix 

has ones in its diagonals and 0.5 entries in its off-diagonals. This, of course, is equivalent to an 

independent and identical distribution specification for the original error terms (that is, the Λ

covariance matrix of the original error terms turns out to be an identity matrix multiplied by 0.5). 

However, this result is specific to the current empirical context. In general, one needs to specify 

the more general model proposed in this paper before testing for more restrictive variants. Also, 
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it should be noted that the random parameter on the T-intersection variable does generate 

heteroscedasticity across the overall random components of the control type propensities.  

 

4.4.2. Long Term Crash Risk Propensity 

The constant term in the long term crash risk propensity (or simply crash risk propensity from 

hereon) is normalized to zero, as discussed in Section 2.2 (see the column entitled “long term 

propensity” under “count parameters” in Table 5). The other results indicate that intersections 

with T configurations have a higher crash propensity relative to Y intersections and regular four-

legged intersections. This may seem inconsistent with the studies of Abdel-Aty and Wang (2006) 

and Srinivasan et al. (2008), both of which found that three-legged intersections are less prone to 

crashes than four-legged intersections (presumably because the former type of intersections 

presents “fewer vehicle conflict points” than the latter). But these earlier studies included only 

signalized intersections in their samples, while our study includes all kinds of control types at 

intersections. Further, the net effect at T intersections will be a combination of the crash risk 

propensity and the threshold effect, which we discuss in the next section. As we will note when 

we compute the overall elasticity effects, we do find that three-legged intersections are less prone 

to crashes relative to four-legged intersections. But our study disentangles the “risk” effect from 

the “translation of the risk to actual crash outcome” effect.  

Intersections with approach streets that are all city streets have a lower crash risk 

propensity, perhaps because of their location and the generally lower speeds of travel on these 

city streets relative to non-city streets. As expected, intersections with approaches involving 

vertical grades, horizontal curves, or a crest are more prone to crashes, because of limiting sight 

distance considerations (see Savolainen and Tarko, 2005 for a similar result). The problem seems 

most acute for the case of crest approaches, consistent with such approaches creating the most 

problems associated with sight distance (but see also discussion in the next section). Table 5 also 

suggests that a higher FSIMB factor increases the crash risk propensity; that is, intersections 

where the volumes on the minor and major roadways are relatively unbalanced are more crash-

prone than intersections where the minor and major roadways have about the same traffic 

volume (this is after controlling for total entering traffic volume). This perhaps reflects the fact 

that such intersections tend to require more gap-related judgment on the part of those 
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approaching the intersection on the minor roadways. However, this effect is not statistically 

significant.    

The traffic control type variables are considered to be endogenous in the proposed model. 

Thus, the effects of the control type variables in Table 5 are “cleansed” of unobserved factors 

that generate a correlation between the propensity of a specific control type being installed and 

the crash risk propensity at an intersection. For completeness, we report the results for the effects 

of all control type dummy variables on crash risk propensity in Table 5, though the ones for yield 

and stop control types are (statistically speaking) no different from having no control. Also, 

while we tested for unobserved heterogeneity in the effects of these control type variables 

(treatment effects) rather than a priori positing fixed treatment effects, our results did not find 

any statistically significant unobserved heterogeneity effects. The positive and highly statistically 

significant parameters in Table 5 for flashing lights and signal control indicate a higher crash 

propensity for these types of controls relative to when there is no control (note that this is after 

controlling for a whole suite of other factors, as already discussed). This effect is particularly 

large for flashing lights (red or yellow) on one or more approaches, an observation also made by 

Poškienė and Sokolovskij (2008). This may be a reflection of confusion on the part of drivers 

regarding how to respond on seeing a flashing light  

 

4.4.3 Threshold Parameters 

The thresholds are responsible for the “instantaneous” translation of the long-term crash risk 

propensity to whether or not a crash occurs at any given time (that is, they determine the 

mapping of the latent propensity to the observed count outcome). The thresholds in Equation (4) 

are functions of the φ  and γ vector, and the θ scalar. Among these, the elements of the vector φ  

provide flexibility to accommodate spikes in specific values of counts. However, in our 

estimations, none of these elements were statistically significant, indicating that there was no 

need to adjust the thresholds beyond accounting for the effects of exogenous variables on these 

thresholds through the γ vector. The column labeled “threshold estimates” in Table 5 represents 

these effects of exogenous variables.  

The constant does not have any particular interpretation. For the other variables, a 

positive coefficient shifts all the thresholds toward the left of the crash propensity scale, which 

has the effect of reducing the probability of zero crashes (see CPB). On the other hand, a 
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negative coefficient shifts all the thresholds toward the right of the crash propensity scale, which 

has the effect of increasing the probability of zero crashes. The effect of the variable 

corresponding to T intersection configuration indicates an increase in the probability of zero 

crash outcomes (decrease in probabilities of non-zero crash outcomes) at intersections with T 

configurations relative to other intersection configurations (for a given long-term crash 

propensity). That is, the translation of risk into the occurrence of a crash is depressed for T 

intersections, perhaps because the fewer conflict points (compared to four-legged intersections) 

and more conventional flow (compared to Y intersections) at T intersections allows drivers to 

more easily take evasive maneuvers even as they see a crash in the making. In combination with 

the approach roadway configuration effects on the long term crash propensity, the net 

implication is that, while the risk of crashes is higher at T intersections, these intersections also 

offer more of “out” to prevent a crash. 

The estimate on the “all approach roadways are city streets” variable suggests that, given 

two intersections with the same crash risk propensity, an intersection with all city street 

approaches has a lower probability of zero crashes (higher probability of non-zero crashes) than 

an intersection with at least one non-city street approach. This indicates that motorists have less 

of an “out” as a crash starts to develop on city streets relative to on non-city streets. Thus, 

motorists may not be able to get into a different lane or maneuver in a different direction because 

of other simultaneous movements taking place and because of the clearly delineated and 

channeled traffic movements at intersections with city street approaches. The effect of the 

decreased risk propensity at intersections with city street approaches, combined with the elevated 

probability of a crash outcome given a certain risk propensity at such intersections, is another 

indication (as with the T intersection case discussed earlier) of the complex interplay that is at 

work in terms of crash frequency at intersections. A similar situation is also at work, but in the 

reverse, for intersections with a crest approach and intersections with a high flow split imbalance 

(the last parameter under the column “threshold estimates”). While crest intersections and 

intersections where the volumes on the minor and major roadways are relatively unbalanced are 

more crash-prone than non-crest intersections, and intersections where the minor and major 

roadways have about the same traffic volume, respectively, it also appears that crest intersections 

and intersections with unbalanced volumes offer more of an option to “wiggle out” from a crash 

waiting to happen. The other results indicate a lower probability of zero crashes (higher 
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probability of non-zero crashes) for intersections with a frontage road approach (compared to 

intersections without a frontage road approach) and intersections with high entering volumes. 

These results are not surprising, and suggest more difficulty in preventing a crash at such 

intersections due to more conflict points (see Haleem et al., 2010 and Oh et al., 2009) and less 

room to maneuver out of crash situations.  

Finally, the last row presents the estimate of θ and its standard error. To test against a 

Poisson distribution assumption within the cumulative inverse function in the thresholds, one can 

obtain the inverse of θ and its standard error (using the delta method). This estimate can then be 

tested against a value of zero. The corresponding statistic is 4.83, clearly rejecting the simple 

Poisson distribution assumption in favor of the negative binomial distribution used here.  

 

4.4.4 Error Covariance 

Many different specifications were considered for the covariance vector Ξ between the control 

type propensity differentials (in the MNP model) and the crash risk propensity error (in the count 

model). Of these, only the elements corresponding to the covariance between the stop sign and 

flashing light propensity errors (relative to the “no control” propensity error) with the crash risk 

propensity turned out to be of some statistical significance. The covariance between the stop sign 

propensity (relative to the “no control” propensity) and the crash risk propensity was 0.208 (t-

statistic of 1.23) and the covariance between the flashing light propensity (relative to the “no 

control” propensity) and the crash risk propensity was -0.439 (-2.82). A convenient, and not 

unreasonable, way to interpret these covariance terms would be to assume that the error 

covariance between the “no control” propensity and the crash risk propensity is zero. Then, the 

implication is that unobserved factors that increase the propensity of stop control being installed 

at an intersection also increase crash risk propensity at the intersection. But unobserved factors 

that increase the propensity of flashing lights being installed decrease crash risk propensity. The 

latter result suggests that flashing lights are generally located at relatively low crash risk 

propensity locations (after controlling for a suite of observed factors that impact crash 

propensity). This is an interesting result, and suggests that drivers internalize risky situations and 

drive cautiously at such intersection locations. This reduces crash risk propensity (not unlike the 

case of severe-injury crashes decreasing at times of rainy/snowy conditions because motorists 

drive more slowly during such conditions; see, for example, Khattak and Knapp, 2001). At the 
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same time, traffic engineers may also put up flashing lights at what they deem to be high crash 

risk intersections. The net result is that flashing lights may get placed, in a twist of what is 

intended, at locations of low frequency of crashes. This observation is also of practical value. It 

suggests that traffic engineers may be placing flashing lights at what they (and motorists) 

perceive as locations that may be prone to crashes, but because motorists also perceive this and 

drive more cautiously, the net result is that such intersections actually have a lower crash 

occurrence. The specific implication is that rather than deciding on the type of control at an 

intersection based primarily on limited sight distance or other geometry/volume considerations, 

traffic engineers may want to consider placing more emphasis on observed crash frequency in 

deciding the control type. Also, a broader implication is that countermeasures to reduce crashes 

should perhaps not be targeted as much on what are readily perceived by motorists to be risky 

situations, but focus on situations that are inappropriately perceived by motorists as safe 

situations when there are hidden dangers lurking. That is, the focus on countermeasures should 

be on those intangibles that do not get registered as being risky situations, rather than on 

geometry and other obvious (to motorists) “risky” factors.    

 Another observation from the results is that ignoring the unobserved covariance between 

the control type propensities and crash risk propensity (that is, ignoring the endogeneity of 

control type) leads to a substantially under-estimated positive effect of flashing lights on crash 

propensity. Specifically, in an independent model that ignores the above covariance, the 

coefficient on the flashing light control variable was only 0.985, instead of 2.136 in the joint 

model of Table 5. That is, the negative covariance between the flashing light propensity and 

crash risk propensity dilutes the “true” positive causal impact of flashing light signals on crash 

propensity. The results reinforce the results from earlier studies (for example, Srinivasan et al., 

2008 and CPB, 2012) that flashing lights increase the number of crashes. However, the results 

are indicative that this is not because flashing lights are placed at high crash risk propensity 

locations in the first place (indeed, our results indicate that the opposite is true), and is suggestive 

of driver confusion when an intersection operates in flashing light mode. If anything, the results 

imply that the driver confusion due to flashing lights may have been understated in earlier 

studies that ignore the endogeneity of control type. 

 In terms of the log-likelihood at convergence, the joint CEMPS model proposed here had 

a value of -2158.84, while the corresponding independent model had a value of -2161.36. The 
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likelihood ratio test for testing the endogeneity of signal control type in the crash count model 

returns a value of 5.057, which is greater than the corresponding chi-squared table value with 

two degrees of freedom (corresponding to the two covariance terms in the vector Ξ) at the 0.1 

level of significance. Thus, the count model with exogenous signal control type is rejected in 

favor of the joint model estimated in this paper (note also that the covariance term between the 

flashing light propensity and crash risk propensity is statistically significant at beyond the 0.01 

level of significance, as indicated by the t-statistic of 2.82 on this parameter).   

 

4.5 Assessing Elasticity Effects and Treatment Effects  

4.5.1. Procedure for Elasticity Effects of Non-Signal Control Type Variables 

The parameters on the exogenous variables in Table 5 do not directly provide the magnitude of 

the effects of variables on crash frequency. To do so, we compute the aggregate-level “elasticity 

effects” of variables to discern the magnitude and direction of variable impacts. Specifically, we 

examine the effects of variables on the expected number of crashes at each intersection, given the 

intersection characteristics. This effect itself can be computed unconditionally of the traffic 

control type at an intersection, or after controlling for the moderating effect of traffic control 

type. Appendix A provides the details. With those preliminaries, one can compute the aggregate-

level “elasticity” as a measure of the aggregate percentage change in crash frequency due to a 

change in an exogenous variable. For dummy variables, the procedure is as follows: (1) set the 

value of the dummy variable to zero for all intersections in the sample and compute the expected 

aggregate number of crashes, (2) set the value of the dummy variable to one for all intersections 

in the sample and compute the expected aggregate number of crashes, and (3) compute the 

effective percentage change in the expected total number of crashes across all intersections in the 

sample by taking the difference between the expected number of crashes obtained in step (2) and 

step (1) and dividing by the result from step (1). To compute the aggregate level “elasticity” 

effect of a multinomial exogenous variable (such as the number of entering roads), the procedure 

is as follows: (1) set the value of the multinomial variable to the base category for all 

intersections in the sample and compute the expected aggregate number of crashes, (2) set the 

value of the multinomial variable to each other non-base category for all intersections in the 

sample and compute the expected aggregate number of crashes for each of the non-base 

categories, and (3) compute the effective percentage change for each non-base category relative 
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the base category. For continuous variables, we increase the value of the variable by 10% for 

each intersection and compute the percentage change in the expected total number of crashes per 

year across all intersections. For the FSIMB factor that is contained between 0 and 1, we increase 

the factor by 0.1 at each intersection. 

The “elasticity” effects and their standard errors are presented in Table 6 for the non-

control variables. The first entry in the table indicates that the number of crashes at T 

intersections is, on average, 34.6% less than the number of crashes at four-legged intersections 

unconditional of intersection control type, and 24.5% less than the number of crashes at four-

legged intersections conditional on intersection control type. The higher magnitude of the 

unconditional elasticity effect is because T intersections are less likely to be controlled by 

flashing light and signal systems relative to four-legged intersections, and the presence of 

flashing light and signal systems increase crash risk propensity. As a result, when unconditioned 

out, the results recognize the lower likelihood of flashing light and signal control systems at T 

intersections, while the conditional elasticities do not take this into consideration. Other entries 

may be similarly interpreted. The zero entry for the conditional elasticities for Y intersections is 

because the results indicate no statistically significant differences between Y intersections and 

four-legged intersections in the count model (after controlling for the intersection control type). 

However, signal control is unlikely to be in place at Y intersections (see the MNP model results), 

which, because of the higher crash risk propensity at signal controlled intersections, implies a 

lower (unconditional) count of crashes at Y intersections relative to four-legged intersections (as 

reflected by the entry “-6.8”, though this is not statistically significant).  

The results also summarize the effects of other variables that have opposite effects on the 

crash risk propensity and on the thresholds. For instance, if all approach roadways are city 

streets, this decreases crash propensity, but also reduces the probability of zero crashes through 

the threshold effects. When these effects are taken together, and over the entire population of 

intersections, the results suggest that, in general, an intersection with all city street approaches is 

13.4% more likely to have crashes compared to an intersection with at least one non-city street. 

Other results may be interpreted similarly.  

Overall, the results reveal that intersections with a crest on one approach (or on more than 

one approach) and intersections with a frontage road approach are the most crash-prone among 

the set of categorical independent variables, suggesting particular attention to such intersections. 
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Specifically, the number of crashes is projected to be about 150% (or about 2.5 times) higher, on 

average, at an intersection with a crest approach relative to an intersection with straight and level 

approaches. Similarly, the number of crashes is projected to be again about 150% (or about 2.5 

times) higher, on average, at an intersection on a frontage road than at an intersection that is not 

on a frontage road. While the crash-related effect of a crest approach may be attributed to sight 

distance limitations, the increased crash rate at frontage road intersections may be perhaps 

because motorists are not reducing speed enough after exiting off a highway (and as they 

approach an intersection on a frontage road). Further investigation of this effect will be helpful in 

improving intersection designs as well as for appropriate outreach and dissemination campaigns 

to inform the driving public. 

 

4.5.2 Procedure for Treatment Effects for Traffic Control Type Variables 

The observed data for each intersection includes the installed traffic control type and the 

frequency of crashes. Using the proposed model, we would like to assess the impact of traffic 

control type (the “treatment”) on crash frequency (“the outcome”), after controlling for other 

observed and unobserved variable effects.  An important measure to do so is the Average 

Treatment Effect (ATE) (see Heckman and Vytlacil, 2000 and Heckman et al., 2001). The ATE 

measure provides the expected crash frequency change for a random intersection if it were 

controlled by a specific control type i as opposed to another control type ij ≠ . The measure is 

estimated as follows: 

[ ] .)1|()1|(1ATE
1 0
∑ ∑
=

∞

=

∧

⎟
⎠

⎞
⎜
⎝

⎛ ==−==⋅=
Q

q k
qjqqiqij akyPakyPk

Q
  (12) 

 The analyst can compute the ATE for all the combinations of control types. Here, we 

focus on the common case of deciding between a flashing light operation and a full signal 

operation. According to the joint model (that jointly models intersection control type and crash 

outcomes), if a randomly selected (after controlling for other factors) intersection is controlled by 

a flashing light control rather than a full signal control, then the intersection is likely to have, on 

average, 2.9 more annual crashes. The t-statistic for the test against zero is 2.8, indicating that 

flashing lights pose significantly more risk of traffic accidents than signal control. In terms of 

percentage, a flashing light controlled intersection, on average, will have 208% more crashes 

(standard error of 89%) relative to a fully signal controlled intersection; that is, the count of 
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crashes is projected to be 3 times higher at a flashing light-controlled intersection relative to a 

fully signal controlled intersection (after controlling for other factors). Hunter et al. (2011) also 

report a similar finding, and attribute this to confused driver behavior as drivers approach 

flashing lights. Interestingly, and consistent with the discussion in Section 4.4.4., the independent 

model (that ignores the endogeneity of intersection control type when modeling crash outcomes) 

shows a relatively small and statistically insignificant annual crash increase of 0.41 crashes 

(33%) if an intersection is controlled by flashing lights rather than signals. This demonstrates the 

importance of accommodating endogeneity considerations, and suggests that traffic engineers 

should think more than twice before using flashing light control.  

 

5. CONCLUSIONS 

In this paper, we propose a formulation and estimation approach for count data models with 

endogenous covariates. Our parametric multinomial discrete-count model uses a general 

multinomial probit (MNP) specification for the treatment and ties this MNP model with a count 

outcome model. The approach uses a recasting of a univariate count model as a generalized 

ordered-response probit (GORP) system, and allows random response variations (or unobserved 

heterogeneity) in the sensitivity to exogenous factors in both the treatment component as well as 

the outcome component, as well as accommodates potential heterogeneity in the treatment 

effects themselves on the count outcome. To our knowledge, this is the first formulation and 

application of a flexible count outcome model with a multinomial probit selection model, which 

also accommodates unobserved heterogeneity effects. An analytic approximation for the 

multivariate cumulative normal distribution is used to estimate the proposed model.  

A simulation experiment is undertaken to evaluate the ability of the analytic 

approximation to recover the model, as well as to assess the ability of the asymptotic standard 

errors from the analytic procedure to provide an estimate of the finite sample error for the typical 

size of samples employed in estimation. These experiments show that our estimation approach 

recovers the underlying parameters very well and is efficient from an econometric perspective.  

The experiments also reveal the biases that accrue in the parameter estimates if endogeneity in 

covariates is ignored.   

The empirical analysis uses crash data from intersections in the City of Irving, Texas. The 

data is drawn from the Texas Department of Transportation (TxDOT) Crash Record Information 
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System (CRIS). Several intersection characteristics are used as explanatory variables, and the 

control type indicators are treated as endogenous variables. The results show the important 

effects (on both the control type and count of crashes) of (a) the number and configuration of 

entering roadways, (b) whether the approach roadways are all city streets or not, (c) approach 

roadway alignment, (d) whether or not at least one of the approach roadways is a frontage road, 

and (e) total intersection traffic volume as well as the distribution of the volume between the 

major and minor roads. Specifically, the number of crashes is projected to be about 150% (or 

about 2.5 times) higher, on average, at an intersection with a crest approach relative to an 

intersection with straight and level approaches. Similarly, the number of crashes is again 

projected to be about 150% (or about 2.5 times) higher, on average, at an intersection on a 

frontage road than at an intersection that is not on a frontage road. Also, a flashing light 

controlled intersection, on average, is predicted to have 208% more crashes relative to an 

observationally equivalent fully signal controlled intersection; that is, the count of crashes is 

projected to be 3 times higher at a flashing light-controlled intersection relative to a signal-

controlled intersection.  

A practical implication of our results is that countermeasures to reduce crashes should 

perhaps not target what are readily perceived by motorists to be risky situations, but rather focus 

on situations that are inappropriately perceived by motorists as safe situations when there are 

hidden dangers lurking. That is, the focus of countermeasures should be on those intangibles that 

do not get registered as being risky situations, rather than on geometry and other obvious (as 

perceived by motorists) factors.    

  To summarize, this paper proposes and demonstrates the use of a count model with 

endogenous covariates. While the empirical context in the current paper pertains to intersection 

crashes, the proposed model should be applicable in a wide variety of contexts and in many 

different fields.  
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Appendix A: Computation of the Expected Number of Crashes 

 

The unconditional effects of variables on the expected number of crashes at intersection q 

unconditional of control type may be computed as: 

( ) ,),1()(
0 1
∑∑
∞

= =

⋅===
k

I

i
qqiq kkyaPyE  (A.1) 

where ),1( kyaP qqi ==  is the probability that intersection q has control type i and k crashes. 

Although the summation in the equation above extends until infinity, we consider counts only up 

to k = 21, which is the maximum crash frequency observed in the dataset (in all subsequent 

formulas, we will retain the summation to ∞, though it will be understood that the summation is 

taken only until k = 21). This should not affect the elasticity computations because the 

probabilities associated with higher crash outcomes are very close to zero. Note also that, in 

Equation (12), the impact of a variable on the expected number of crashes may be through the xq 

vector, through the wq vector, through the zq vector, or through more than one of these vectors.  

Alternatively, one can compute the effect of a variable after controlling for the moderating effect 

of control type by writing the expected number of crashes at intersection q as: 

( ) .)()(
0
∑
∞

=

⋅==
k

qq kkyPyE                                                                        (A.2) 

In either case, the expected aggregate numbers of crashes is then computed by summing the 

above intersection-level number of crashes across all intersections Q.  
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Table 1. Simulation Results for 50 Datasets of 2000 Observations Each 
 

Parameter Component 
of 

Parameter Estimates Standard Error Estimates 

True Mean 
Estimate APB FSSE ASE RE APERR 

b1 MNP  1.500  1.464 2.4% 0.175 0.177 1.02 0.013 

b2 MNP -1.000 -0.956 4.4% 0.155 0.125 0.80 0.008 

1~Ωl  MNP  1.000  0.983 1.7% 0.163 0.149 0.91 0.012 

2~Ωl  MNP  0.600  0.604 0.6% 0.141 0.138 0.97 0.010 

3~Ωl  MNP  1.100  1.028 6.5% 0.189 0.164 0.87 0.012 

d1 Count  0.500  0.505 0.9% 0.046 0.045 0.99 0.001 

d2 Count -0.500 -0.502 0.4% 0.087 0.096 1.10 0.003 

d3 Count -1.000 -1.047 4.7% 0.118 0.137 1.16 0.011 

1~Γl  Count  0.500  0.492 1.6% 0.060 0.085 1.40 0.003 

2~Γl  Count  0.707  0.697 1.5% 0.158 0.164 1.04 0.006 

3~Γl  Count  1.000  1.040 4.0% 0.129 0.151 1.17 0.009 

θ Count  2.000  2.186 9.3% 0.396 0.561 1.41 0.028 

φ1 Count  0.750  0.755 0.6% 0.069 0.074 1.08 0.003 

γ1 Count  0.500  0.494 1.3% 0.039 0.042 1.09 0.001 

1~
1Σ

l  MNP  0.600  0.587 2.2% 0.081 0.127 1.56 0.015 

2~
1Σ

l  MNP  0.800  0.776 3.0% 0.115 0.133 1.16 0.012 

3~
1Σ

l  Joint  0.600  0.650 8.3% 0.128 0.142 1.11 0.026 

Across all Parameters   3.1% 0.132 0.148 1.11 0.010 
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Table 2. Effects of Ignoring Endogenous Effects 
 

Parameter Component 
of True 

CEMPS Independent 

Mean 
Estimate APB Mean 

Estimate APB 

b1 MNP  1.500  1.463 2.5%  1.459 2.8% 

b2 MNP -1.000 -0.957 4.5% -0.952 5.0% 

1~Ωl  MNP  1.000  0.984 1.6%  0.985 1.5% 

2~Ωl  MNP  0.600  0.601 0.2%  0.601 0.2% 

3~Ωl  MNP  1.100  1.034 6.4%  1.026 7.1% 

d1 Count  0.500  0.504 0.8%  0.490 1.8% 

d2 Count -0.500 -0.504 0.9% -0.548 8.8% 

d3 Count -1.000 -1.028 2.7% -0.755 32.4% 

1~Γl  Count  0.500  0.481 3.9%  0.433 15.4% 

2~Γl  Count  0.707  0.700 1.0%  0.672 5.2% 

3~Γl  Count  1.000  1.033 3.2%  0.987 1.2% 

θ Count  2.000  2.117 5.5%  1.633 22.4% 

φ1 Count  0.750  0.752 0.3%  0.789 5.0% 

γ1 Count  0.500  0.496 0.9%  0.504 1.0% 

1~
1Σ

l  MNP  0.600  0.581 3.3%  0.573 4.6% 

2~
1Σ

l  MNP  0.800  0.772 3.7%  0.762 4.9% 

Overall mean value across 
parameters  2.6%  7.5% 

Mean log-likelihood at convergence -3265.9 -3276.9 

Number of times the likelihood 
ratio test (LRT) statistic favors the 

CEMPS model 

All fifty times when compared with 
84.32

95.0,1 =χ value (mean LRT statistic is 21.3)
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Table 3a. Intersection Control Type  

 
Type of Traffic Control Percentage 

No traffic control or minimal traffic control 34.6% 
Yield sign   6.1% 
Stop sign 36.5% 
Flashing light   3.0% 
Regular signal light 19.8% 

 
 
 
 

Table 3b. Crash Frequency Distribution across Intersections 
 

Number of 
Crashes 

Number of 
Intersections 

Percentage of 
total 

Cumulative 
percentage 

0 651 63.1% 63.1% 

1 195 18.9% 82.0% 

2 77 7.5% 89.4% 

3 30 2.9% 92.3% 

4 24 2.3% 94.7% 

5 19 1.8% 96.5% 

6 10 1.0% 97.5% 

7 6 0.6% 98.1% 

8 5 0.5% 98.5% 

9 2 0.2% 98.7% 

10 5 0.5% 99.2% 

11 2 0.2% 99.4% 

12 1 0.1% 99.5% 

13 1 0.1% 99.6% 

15 1 0.1% 99.7% 

16 1 0.1% 99.8% 

20 1 0.1% 99.9% 

21 1 0.1% 100.0% 
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Table 4.  Sample Characteristics (1032 Observations) 
 

Variable Sample share

Number and Configuration of Entering Roads   

Three   

T-intersection 32.9% 

Y-intersection  7.0% 

Four 60.1% 

Approach Roadway Type Combination   

All approach roadways are city streets 84.6% 

At least one approach roadway is a non-city street 15.4% 

Approach Roadway Alignment   

Straight and level approach streets 81.4% 

At least one approach has a vertical grade  7.8% 

At least one approach roadway has a horizontal curve  6.3% 

At least one approach roadway has a hillcrest  4.4% 

Is Intersection Location on a Frontage Road  

None of the approaches is a frontage road 92.8% 

At least one approach roadway is a frontage road  7.2% 

Descriptive statistics 

  Minimum Maximum Mean Std. Dev. 

Total daily entering volume (vehicles/day) 200.000 78288.000 14517.210 13235.758 

Flow split imbalance (FSIMB) factor 0.000 0.997 0.626 0.306 
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Table 5. Estimation Results (and t-statistics) for the MNP and Count Model – Joint Model 
 

Variables 

Joint MNP and Count Model 

MNL Parameters Count Parameters 

Yield Stop Flashing Signal 
Long-
term 

propensity 

Threshold 
Estimates 

Constant -2.887 
(-4.42) 

0.423 
(2.38) 

-4.619 
(-4.39) 

-7.798 
(-13.97) 

0.000 
(fixed) 

-5.070 
(-5.15) 

Number and Configuration of Entering Roads 
(base is “four entering roads”)       

Intersection is a T-intersection - -0.629 
(-1.67) 

-0.609 
(-2.43) 

-0.993 
(-6.32) 

0.671 
(2.06) 

-1.252 
(-2.15) 

           Standard Deviation - 1.891 
(1.45) - - - - 

Intersection is a Y-intersection 0.863 
(5.30) - - -0.835 

(-3.19) - - 

Approach Roadway Type Combination 
(base is “at least one approach road is a non-
city street”) 

      

All approach roadways are city streets - 0.279 
(2.06) - - -0.324 

(-1.14) 
0.570 
(1.29) 

Approach Roadway Alignment (base is 
“straight and level approach streets”)       

At least one approach has vertical grade - - 0.469 
(1.92) - 0.460 

(3.22) - 

At least one approach has  horizontal 
curvature - - - - 0.454 

(2.99) - 

At least one approach has a crest - - 0.829 
(2.79) 

0.416 
(1.63) 

1.996 
(4.77) 

-1.483 
(-2.91) 

Is Intersection Location on a Frontage Road 
(base is “none of the approaches is a frontage 
road”) 

      

At least one approach roadway is a 
frontage road - - - - - 1.025 

(3.90) 

Traffic Volume-Related Variables       

Logarithm of daily entering volume 
(veh/day) 

0.257 
(3.33) - 0.494 

(4.42) 
0.953 

(15.81) - 0.487 
(4.78) 

Flow split imbalance (FSIMB) factor -0.599 
(-2.25) 

-0.793 
(-4.58) 

-1.544 
(-4.52) 

-1.989 
(-8.77) 

0.424 
(1.03) 

-1.234 
(-1.77) 

Intersection Control Type (base is “no 
control”)       

Yield control type - - - - 0.200 
(1.09) - 

Stop control type - - - - -0.164 
(-0.66) - 

Flashing lights  control type - - - - 2.136 
(5.00) - 

Signal control type - - - - 0.675 
(4.86) - 

θ         0.589 
 (Standard error: 0.201) 



 

45 

 
Table 6. Elasticity Estimates of Non-Control Variables (estimate with std. error in 

parenthesis) 
 

Variable Unconditional Conditional 

Number and Configuration of Entering Roads (base 
is “four entering roads”)   

Intersection is a T-intersection -34.59   (9.68)   -24.52   (12.84) 

Intersection is a Y-intersection -6.81  (5.82) 0.00   (0.00) 

Approach Roadway Type Combination 
(base is “at least one approach road is a non-city 
street”) 

  

All approach roadways are city streets 13.41  (23.79) 20.95  (24.86) 

Approach Roadway Alignment (base is “straight and 
level approach streets”)   

At least one approach has vertical grade 81.42  (22.90) 58.38  (21.24) 

At least one approach has  curvature 57.80  (25.26) 53.11  (23.20) 

At least one approach has a crest 150.36 (32.85) 97.10  (27.90) 

Is Intersection Location on a Frontage Road (base is 
“none of the approaches is a frontage road”)   

At least one approach roadway is a frontage road 157.94  (65.30) 154.71 (63.78) 

Traffic Volume-Related Variables   

Logarithm of daily entering volume 5.81  (0.64) 4.07  (0.83) 

Flow split imbalance (FSIMB) factor -8.68  (2.02) -6.00 (2.12) 

 


