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ABSTRACT

In many spatial analysis contexts, the variable of interest is discrete and there is spatial

clustering of observations. This paper formulates a model that accommodates clustering along

more than one dimension in the context of a discrete response variable. For example, in a travel

mode choice context, individuals are clustered by both the home zone in which they live as well

as by their work locations. The model formulation takes the form of a mixed logit structure and

is estimated by maximum likelihood using a combination of Gaussian quadrature and quasi-

Monte Carlo simulation techniques. An application to travel mode choice suggests that ignoring

the spatial context in which individuals make mode choice decisions can lead to an inferior data

fit as well as provide inconsistent evaluations of transportation policy measures.

Keywords: Mixed logit model, multi-level analysis, spatial analysis, quasi-Monte Carlo

sequences, data clustering, Gaussian quadrature, simulation-based econometric estimation,

travel mode choice modeling. 



1.  INTRODUCTION1.  INTRODUCTION1.  INTRODUCTION1.  INTRODUCTION

The recognition and explicit consideration of data clustering has led to several

applications of multi-level analysis in the past few years. Data clustering arises in many analysis

contexts. For example, individuals are grouped into households, workers are grouped into work

places, students are grouped into classes or schools, and residences are grouped into spatial

zones. In all these instances, elementary units (individuals, workers, students, and residences)

are grouped into higher-level units (households, work places, classes/schools, and spatial zones).

Such clustering implies either a natural or acquired differentiation in characteristics of

elementary units across higher-level units in addition to variations in elementary units within

a higher-level unit. Multi-level analysis recognizes the multiple levels at which the analysis

needs to be undertaken; i.e., at the micro-level of elementary units and at the macro-level of

higher level units. 

Multi-level analysis (also labeled as variance-components analysis or hierarchical

modeling) has been applied in several fields, including education (Goldstein et al., 1993),

sociology (Hox and Kreft, 1994), medicine (Goldstein et al., 1994), and geography (Jones and

Duncan, 1996). In the past few years, the application of multi-level analysis has been

particularly burgeoning in the field of geography since geographical analysis is intrinsically

spatial and involves the grouping of elementary units of interest (for example, households and

individuals) into higher level spatial clusters (such as neighborhoods, communities, and traffic

analysis zones). In such a spatial clustering context, it is important to recognize and preserve

between-place heterogeneity (i.e., intrinsic differences across spatial clusters; see Jones and

Duncan, 1996). There are several reasons for this. First, spatial autocorrelation is likely to be

the norm in geographic analysis since elementary units in the same aggregate spatial unit are

likely to be similar in ways not accounted for by observed characteristics of the elementary or

aggregate spatial units (Jones and Bullen, 1994). Ignoring such spatial autocorrelation generally

results in mis-estimated standard errors in linear models and (in addition) inconsistent parameter
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estimation in non-linear models. Second, spatial heterogeneity is a natural occurrence in

geography with relationships varying in different ways across spatial contexts. Ignoring this

heterogeneity can result in structural instability, especially in non-linear models. Third, the

spatial units on which data is available for analysis are likely to be a random sample of the

population of spatial units. Consequently, the analyst must recognize that the variations in

response across spatial units occur because of sampling variance as well as real differences

between places. If these two different sources of variation are not distinguished, the result is

incorrect estimation of the effect of any explanatory variables defined at the spatial unit (see

Bryk and Raudenbush, 1992 for empirical illustrations of this issue). Fourth, heterogeneity

among aggregate spatial units and heterogeneity among elementary units needs to be

differentiated. As indicated by Jones and Duncan (1996), ignoring this differentiation and

modeling the behavior of interest at a single level invites the pitfalls of either the ecological

fallacy when the level of analysis is solely at the aggregate spatial level (i.e., failing to recognize

that it is the elementary units which act and not aggregate spatial units) or the atomistic fallacy

when the analysis is pursued entirely at the elementary unit level (i.e., missing the spatial

context in which elementary units behave).

Multi-level analysis satisfies the requirements of a geography that recognizes and

accounts for the spatial context within which elementary units act. It accommodates spatial

autocorrelation, spatial heterogeneity, higher-level context, and simultaneous handling of the

micro-scale of elementary units and the macro-scale of places. Jones and Bullen (1996), Bullen

et al., 1997, Hox and Kreft (1994), Goldstein (1995), and Jones and Duncan (1995), among

other studies, discuss multi-level analysis at length. These studies also discuss the inadequacy

of fixed-part expansion methods that attempt to capture spatial variations by including dummy

variables for each spatial unit and/or including an observed contextual variable that varies over

space. Essentially, fixed-part expansions are equivalent to single-level analysis and ignore the

fact that the aggregate spatial units on which data is available for analysis are a random sample

of the population of spatial units.
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Two important issues associated with multi-level analysis are the functional form of the

model structure and the type of clustering. Each of these issues is discussed in the subsequent

two sections. Section 1.3 discusses the objective of the paper.

1.1.  Functional Form1.1.  Functional Form1.1.  Functional Form1.1.  Functional Form

The functional form of the model depends on the type of dependent variable of interest.

When the dependent variable is continuously distributed (such as an achievement score in

education or housing price in geography), one can use a model structure that is linear in the

fixed and random parts or use a structure that is non-linear in one or both of the fixed and

random parts (non-linear model). In the multi-level modeling literature, the linear structure has

been the one most commonly used. When the dependent variable is in the form of a proportion

(such as a mortality rate or an examination pass rate), the nature and range of the response

variable requires the use of a nonlinear relationship between explanatory variables and the

response. Typically, a linear predictor of the explanatory variables is developed and a non-linear

link function (such as a logit or probit link function) is assumed to relate the expected value of

the response variable with the linear predictor. Stochasticity is introduced by assuming a

particular distributional form (generally a binomial distribution) for the response variable

conditional on the linear predictor. Such a structure is referred to as a generalized linear model

since the inverse link function transformation of the dependent variable can be related linearly

to the explanatory variables and estimation proceeds in a manner similar to that of a continuous

dependent variable (see Goldstein, 1995, Chapter 7 or Neuhaus and Segal, 1997). When the

dependent variable is in the form of multiple category proportions or in the form of counts, the

generalized linear model structure still applies with minor modifications to the approach with

a single proportion response variable.

In the multi-level literature, substantial attention has been centered on the dependent

variable types discussed above. However, relatively little (if any) attention has been directed

toward the case when a response variable is observed in multiple categories and is intrinsically
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discrete (rather than being observed as proportions). Examples of such variables of interest

include residential location choice of households and work trip travel mode choice of

individuals.

1.2.  Clustering Type1.2.  Clustering Type1.2.  Clustering Type1.2.  Clustering Type

Multi-level analysis has been, for the most part, restricted to the case when elementary

units are nested within one and only one aggregate spatial unit; that is, a strictly hierarchical

structure holds. For example, housing units are clustered in a district or students are clustered

in schools. However, there are natural instances when elementary units can be classified into

more than one higher-level unit. For example, when analyzing the academic performance of

students, one might need to consider the clustering based on the school attended as well as by

the neighborhood in which the student stays. Such cross-classifications of the elementary units

breaks down the hierarchical structure of traditional multi-level analysis and makes model

estimation more cumbersome. Goldstein (1987; 1994) discusses random cross-classification

models for continuous response variables. But, to the authors' knowledge, equivalent methods

for the case of random cross-classification with a discrete response variable have not been

formulated and applied.

1.3.  Objective of Paper1.3.  Objective of Paper1.3.  Objective of Paper1.3.  Objective of Paper

The objective of this paper is to formulate and apply a methodology that accommodates

cross-classification in the context of a multi-level analysis of a multiple-response discrete

variable. The model development and application in the paper will be in the context of work

travel mode choice. A multi-level situation arises naturally in this context since travel

impedances (costs and times) are typically generated at the traffic zone level. Traditional mode

choice analysis applies the same zone-to-zone impedance measures to all individuals with the

same residence and work zones, thereby not distinguishing between the individual making the

trip and the residence/work zones of individuals. Zone-to-zone impedance is considered an
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attribute of each individual, resulting in a confounding of individual heterogeneity (variations

in impedance measures across individuals in the same home/work zones) and place

heterogeneity (variations in impedance measures across zonal pairs). It is imperative that we

disentangle these two different sources of heterogeneity by formulating a model at the micro-

level of individuals as well as the macro-level of traffic zones. In addition, since there are likely

to be unobserved factors associated with both an individual's work place as well as residence

location that might affect the travel mode decision, we have a classic case of cross-classification

(spatial auto-correlation) of individuals by work location as well as by residence zone. 

2.  THE MODEL STRUCTURE2.  THE MODEL STRUCTURE2.  THE MODEL STRUCTURE2.  THE MODEL STRUCTURE

In the tradition of utility-maximization models, the utility that an individual q

(q=1,2,...Q) in residence zone h (h=1,2,...H) and work location w (w=1,2,...W) associates with

an alternative i (i=1,2,...I) may be written as:

(1)

where is a scalar utility term for alternative i associated with the residence zone h and

work location w of the individual, is a vector of individual-associated variables, is

a corresponding coefficient vector, and is an unobserved standard extreme value random

term that represents idiosyncratic individual differences in utility after allowing for differences

due to observed individual characteristics and zonal-level utility differences. is assumed

to be independently and identically (IID) distributed (across alternatives and individuals). 

          Equation (1) represents the micro-level utility model for individuals. We now allow the

scalar utility term to vary across residence and work place zones in a higher-level

macro-model:

(2)
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where is a column vector of 1's and 0's with a 1 in row i and 0 everywhere else, is a

vector of the "average" effect of unobserved variables on the utilities associated with the

modes, is a vector of observed zonal-level attributes affecting the utility of mode i (for

example, travel times and costs), and are random terms that capture unobserved

variations across home-zones and work-zones, respectively, in the utility associated with mode

i (due to identification considerations, will be a column vector of 0's for a base alternative).

are assumed to be normally distributed and identically distributed across home

zones and work locations, respectively: .

Next, define Then, the micro- and

macro-models of equations (1) and (2) can be combined to form:

(3)

The usual independence assumptions among all error terms is invoked. Also, are

assumed to be independently distributed across home zones and work zones, respectively. Note

that if (variance of and (variance of are equal to zero for all modes i,

then it implies that there are no mode-specific utility differentials across home zones and work

places. This situation corresponds to the standard multinomial logit model. 

The utility function of equation (3) generates a spatial autocorrelation pattern as follows.

For two individuals in the same home zone and work location, the covariance between their

utilities for mode i is For two individuals in the same home zone, but different work

locations, the covariance is For two individuals in the same work location, but different

home zones, the covariance is And for two individuals in different home zones and work

locations, the covariance is zero. All cross-mode correlations are, by specification, zero.

In addition to autocorrelation, the utility specification in equation (3) also leads to spatial

heteroscedasticity across modes. As discussed in Bhat (1995), heteroscedasticity leads to a

competitive structure that does not exhibit the IIA (Independence from irrelevant Alternatives)
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property of the multinomial logit model. Specifically, as the variance of for

alternative i increases, changes in the systematic component of alternative i or of other

alternatives are likely to have a smaller impact on the choice share of alternative i. Intuitively,

we can explain this by noting that the overall error term sets the

relative weights of the systematic and uncertain components in estimating the choice

probability. The larger the variance of the overall error term of an alternative, the more

tempered is the effect (on the choice probability of the alternative) of changes in the systematic

utility of that alternative or of other alternatives. This property will be clearly apparent in the

policy evaluations conducted in section 4.3.

In utility maximization-based choice modeling, it is only the utility differences that

matter in the choice process. Hence appropriate normalization conditions have to imposed on

the deterministic part  in equation (3). Also, the variance of the home zone and work

location random terms must be restricted to zero for a base alternative (equivalently, the random

terms must be uniformly zero across home zones and work locations,

respectively, for the base alternative). Assume that the zero variance restriction is applied to the

first alternative (so, effectively, Then the other

variance terms can be interpreted as a measure of the spatial variation across home zones and

work locations in relative utility of other alternatives compared to the first alternative.

Conditional on terms, the probability of choice of mode i

for individual q in residence zone h and work location w can be written in the usual multinomial

logit form (see McFadden, 1978):

(4)
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The unconditional probability can be subsequently obtained as:

(5)

 

where F is the univariate cumulative normal distribution.

3.  MODEL ESTIMATION3.  MODEL ESTIMATION3.  MODEL ESTIMATION3.  MODEL ESTIMATION

The estimation of the model must recognize the correlation patterns across elementary

units generated by the macro-level spatial units of residence zone and work location. The

parameters to be estimated include the vector, the home zone-based standard deviation

parameters and the work location-based standard deviation

parameters

3.1.  Likelihood Function Development3.1.  Likelihood Function Development3.1.  Likelihood Function Development3.1.  Likelihood Function Development

The development of the likelihood function for estimation requires additional notation.

Define a column vector dw of dimension W, with each row of the vector being associated with

a work location . If wN=w, the corresponding row of dw has a value

of one; otherwise, the value is zero. Also,define a (Wx1) vector ,

each of whose elements is distributed In general, and for reasons that will become

clear later, the vectors defined above should be associated with the spatial dimension with lower

number of spatial units. In the empirical analysis of the current paper, the number of work

locations is smaller than the number of residence zones and, therefore, the vectors above are

defined with respect to the work location dimension. Equation (4) can now be written as:
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(6)

Let Th be the set of individuals q whose residence zone is h. Then, conditional on the

scalar terms (i=2,3,...I) and the vectors , the likelihood function

for the joint mode choice of all individuals q in home zone h takes the form:

(7)

 

where Mqi is a dummy variable taking the value 1 if individual q chooses mode i and 0

otherwise. 

Individuals not in the same residence zone h can have the same work location. So one

cannot condition out the vectors in equation (7) since the equation is specific to a single

home zone h. But we can condition out the scalar terms (i=2,3,...I) to obtain the likelihood

function for the joint choice of all individuals q in home zone h conditioned only on

the vectors as:

(8)

Next, the likelihood function for all individuals q across all home zones h (h = 1,2,...H)

conditioned on the vectors takes the following form:

(9)

Finally, the unconditional likelihood function of the entire choice sample can be obtained as:
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                                                                                (10)
where represents the multivariate normal cumulative distribution. 

The inner integration (in parenthesis) in the above equation involves a (I-1)-dimensional

integral and is independent of the number of household zones in the sample. The outer integral,

on the other hand, involves a (I-1)*W-dimensional integral which is dependent on the number

of work locations (note that each vector is of dimension W). Thus, it is most efficient to

choose the spatial classification with the higher number of units for the inner integration and the

spatial classification with lower number of units for the outer integration.

3.2.  Numerical Quadrature and Quasi-Monte Carlo methods3.2.  Numerical Quadrature and Quasi-Monte Carlo methods3.2.  Numerical Quadrature and Quasi-Monte Carlo methods3.2.  Numerical Quadrature and Quasi-Monte Carlo methods

The inner and outer integrals in equation (10) cannot be evaluated analytically because

they do not have a closed-form solution. One of two approaches may be adopted for computing

the integrals: numerical quadrature methods or Monte-Carlo simulation methods. Numerical

quadrature methods generally provide precise approximations at a speed acceptable for

maximum likelihood estimation when the dimension of integration is less than 3-4 (see Bratten

and Weller, 1979; Sloan and Joe, Chapter 1, 1994). But when the dimension exceeds this, one

has to resort to simulation techniques to approximate the integral.

In travel mode choice modeling (and in many other choice contexts), the number of

alternatives I is usually less than 4-5. Thus, one can use the quadrature method for the (I-1)-

dimensional inner integration. This is particularly helpful because in each function iteration of

the likelihood maximization, H inner integrals need to computed. Quadrature is efficient here
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since use of simulation techniques would require several draws for each of the H integrals as

opposed to a single "quadrature draw" corresponding to the multivariate quadrature points.

The outer integrals in equation (10) have to be computed by simulation since its

dimensionality will, in general, be greater than 5. Within the framework of simulation methods,

one might employ standard Monte Carlo methods (which use pseudo-random sequences) or

quasi-Monte Carlo methods (which use quasi-random sequences).

The standard Monte Carlo integration involves the drawing of N points pseudo-randomly

in the multi-dimensional domain of integration. It is the most common approach in simulation

methods, sometimes refined by variance reduction techniques such as importance sampling or

antithetic variates (see Brownstone and Train, 1996, Revelt and Train, 1998 and Bhat, 1998 for

recent applications of the standard Monte Carlo integration method). Unfortunately, the

convergence rate of the standard Monte Carlo method is rather slow and at a rate of ,

where R is the number of draws. 

The quasi-Monte Carlo method fills the domain of the integration space more uniformly

than the standard Monte Carlo method. Basically, quasi-random sequences achieve this through

their "clever" sub-random draws of sample points so that the sample points are maximally

spread-out (or "maximally" avoiding of each other). The convergence rate for quasi-random

sequences is much faster than for the standard Monte Carlo method for a very broad range of

integrands. In particular, the upper bound for the asymptotic convergence rate of quasi-random

sequences is of the order of (lnR)d-1/R, where d is the dimensionality of the integral (see

Niederreiter, 1992; Chapter 4). In the average case, however, Wozniakowski (1991) has shown

a much faster convergence rate. Further, Owen (1995, 1997, 1998) has shown that some

scrambled versions of quasi-random sequences have a convergence rate of (lnR)d-1/R3.

Computational experiments comparing the performance of standard and quasi-random Monte-

Carlo methods have clearly established that the integration error associated with the latter

method is significantly less than that associated with the former method for a variety of test

functions, variation ranges, and characteristic functions. Thus, for a given error tolerance level,
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     1A gauss procedure to generate the Halton sequence for a prime base r is available in Feenberg and Skinner (1994).

the quasi-random simulation of integrals requires significantly less number of simulation points

or "draws" relative to the standard Monte-Carlo method (see Morokoff and Caflisch, 1995;

Press et al., 1992, Chapter 7; Brately and Fox, 1988; and Bratley et al., 1992).

The field of quasi-Monte Carlo simulation methods for multi-dimensional integration

has been receiving substantial attention in recent years with increasingly sophisticated quasi-

random sequences being proposed (see, for example, Sloan and Wozniakowski, 1998; Owen,

1998; Mullen et al., 1995; Kocis and Whiten, 1997). Krommer and Ueberhuber (1994) provide

an extensive review of quasi-random sequences. Among these sequences are those that belong

to the family of r-adic expansion of integers: the Halton, Faure, and Sobol sequences (see

Bratley et al., 1992 for a good review). In this paper, we will use the Halton sequence in the

quasi-Monte Carlo simulation because of its conceptual simplicity.

3.3.  The Halton Sequence3.3.  The Halton Sequence3.3.  The Halton Sequence3.3.  The Halton Sequence

The Halton sequence is designed to span the domain of the S-dimensional unit cube

uniformly and efficiently (the interval of each dimension of the unit cube is between 0 and 1).

In one dimension, the Halton sequence is generated by choosing a prime number r (r>=2) and

expanding the sequence of integers 0,1,2,..g,...G in terms of the base r:

(11)

So g (g=1,2,...G) can be represented by the r-adic integer string The Halton

sequence in the prime base r is obtained by taking the radical inverse of g (g=1,2,...G) to the

base r by reflecting through the radical point1: 

(12)
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The sequence above is very uniformly distributed in the interval (0,1) for each prime r. The

Halton sequence in S dimensions is obtained by pairing S one-dimensional sequences based on

S pairwise relatively prime integers,  (usually the first S primes):

  
(13)

3.4.  Likelihood Evaluation3.4.  Likelihood Evaluation3.4.  Likelihood Evaluation3.4.  Likelihood Evaluation

The evaluation of the likelihood function of equation (10) is discussed in this section.

The portion of equation (10) in parenthesis (the inner integration) is the likelihood function for

the joint choice of individuals q in home zone h conditioned on the vectors (see equations

8 through 10).  We can write this inner  integrat ion af ter  defining

as:

(14)

The above integration is now in an appropriate form for application of a multi-dimensional

product formula of the Gauss-Hermite quadrature for given values of and

the vectors (see Stroud, 1971).

To evaluate the outer integral in the likelihood function using the Halton sequence,

define . Then the likelihood function can be written as:

(15)

where is the standard multivariate cumulative normal distribution. The dimension of

integration above is (I-1)*W. The simulation technique to evaluate the integral involves

generating the Halton sequence (equation 13) in (I-1)*W dimensions for a specified number of
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"draws" G (essentially, a Halton "matrix" Y of size G x [(I-1)*W]). However, the Halton

sequence is uniformly distributed over the multi-dimensional cube. To obtain the corresponding

multivariate normal points over the multi-dimensional domain of the real line, we take the

inverse standard normal distribution transformation of Y. By the integral transform

result, provides the Halton points for the multi-variate normal distribution (see

Fang and Wang, 1994; Chapter 4). The integrand in equation (15) is computed at the resulting

points in the columns of the matrix X for each draw (i.e., each row of X) and then the simulated

likelihood function is developed in the usual manner as the average of the values of the

integrand across the G draws.

4.  EMPIRICAL APPLICATION 4.  EMPIRICAL APPLICATION 4.  EMPIRICAL APPLICATION 4.  EMPIRICAL APPLICATION 

4.1.  Data source and  Variable Specification4.1.  Data source and  Variable Specification4.1.  Data source and  Variable Specification4.1.  Data source and  Variable Specification

The data source for the analysis is the San Francisco Bay Area Household Travel Survey

conducted by the Metropolitan Transportation Commission (MTC) in the Spring and Fall of

1990 (see White and Company, Inc., 1991 for details of survey sampling and administration

procedures). 

In this paper, we examine mode choice among three motorized travel modes: drive alone,

shared-ride, and transit. The sample comprises 1617 home-based work trip observations

associated with the morning home-to-work commute. These trips originate at the home end

from 193 different traffic analysis zones with at least five trips originating in each zone. These

traffic analysis zones are used as the spatial unit to accommodate the home-end spatial

heterogeneity. At the work end, the trips are scattered substantially across 558 traffic analysis

zones with most zones attracting one or two trips, and a handful of zones (for example, the San

Francisco and San Jose downtown zones) attracting a substantial number of trips. Since the

large fraction of zones with one or two trips can cause instability in multi-level modeling, we

adopt a typology based on area density (rather than using work zones) to accommodate work-
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end heterogeneity. The work location types are a) central business districts (CBDs), b) urban

business zones, c) urban zones, d) suburban zones, and e) rural zones.

Three level-of-service variables are used in the current analysis: travel cost, travel time

and out-of-vehicle travel time over distance. A detailed description of the procedures and

assumptions employed in arriving at the level-of-service data is beyond the scope of the current

paper, but is available in Purvis (1996). Table 1 presents the mode choice shares and the mean

sample statistics for the level-of-service measures.

A number of variables associated with individual socio-demographics and trip

characteristics were considered for accommodating observed taste heterogeneity. The final

variable specification was determined after systematic testing of several alternative

specifications. The variables in the final specification for capturing observed heterogeneity in

intrinsic preferences include: a) vehicles per worker in the household, b) household income, and

c) an indicator for whether the individual making the commute trip is a non-caucasian or

caucasian.

4.2.  Empirical Results 4.2.  Empirical Results 4.2.  Empirical Results 4.2.  Empirical Results 

In this section, we present the empirical results obtained from applying the multi-level

cross-classified MNL (MCMNL) to the mode choice sample. We also estimate a standard

multinomial logit (MNL) model and a multi-level hierarchical multinomial logit (MHMNL)

model with home-end clustering but no work-end clustering for comparison with the more

general MCMNL model. 

For the MHMNL model, we found that two quadrature points for each dimension were

adequate for approximating the bivariate integration in the likelihood function (we conducted

a sensitivity analysis with 2,4, and 10 quadrature points for each dimension and found little

difference in the log-likelihood values at convergence and the parameter estimates across the

different estimations). For the MCMNL model, we used 2 quadrature points for the inner

integration and 100 Halton draws for the simulation estimation of the outer integral (we
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     2This result is very encouraging regarding the efficiency of the Halton sequence compared to the random Monte-Carlo approach,
where typically 500-1000 or even more draws may be required for accurate simulations. However, a careful and extensive examination
of the performance of the Halton sequence vis-a-vis the random approach in the context of a multinomial logit kernel is needed to
draw more definitive conclusions. The author is currently pursuing such an effort.

estimated the log-likelihood function with 25, 50, 75, and 100 Halton draws to examine the

sensitivity of results to the number of draws; there was a substantial difference in estimated

model parameters between 25 and 50 draws, lesser difference between 50 and 75 draws, and

very little difference between 75 and 100 draws).2

Table 2 presents the results of the three models. The effects of all explanatory variables

are in the same direction in all three models. The coefficients on the socio-demographic

variables indicate that individuals from high income earning households are unlikely to use

transit. Individuals in households with a high ratio of number of vehicles to number of workers

are likely to use the drive alone mode since there is less competition for cars in such households.

Non-caucasians appear to be more likely to use the shared-ride mode compared to caucasians.

The level-of-service variables have the expected negative signs. The parameters in the

MNL and MHMNL models are about the same, but quite different from those obtained in the

MCMNL model. The estimated value of time from the MNL model is $6.59 per hour for in-

vehicle time and $14.48 per hour for out-of-vehicle time (at the mean one-way distance to work

of 9.3 miles). The corresponding values for the MHMNL model (MCMNL model) are $6.40

($7.23) per hour and $13.68 ($14.46) per hour, respectively, for in-vehicle and out-of-vehicle

times. These results indicate that the implied value of in-vehicle time from the MCMNL model

is higher than from the other two models. 

Among the spatial heterogeneity parameters, the unobserved variation in utility of the

transit mode across home-end zones was not statistically significant and is therefore suppressed

in the MHMNL and MCMNL models. In addition, the unobserved variation in utility of the

shared-ride mode across work locations was not statistically significant and is therefore

suppressed in the MCMNL model. However, the shared-ride utility variance across home zones

is statistically significant in the MHMNL and MCMNL models, and the transit utility variance
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across work locations is statistically significant in the MCMNL models. These results indicate

that: a) there is no significant difference in the between-zone unobserved heterogeneity for the

drive alone utility and the transit utility at the home-end, but the between-zone heterogeneity

at the home-end for the shared-ride mode is higher than for the other two modes and b) there

is no significant difference in the between-location unobserved heterogeneity for the drive alone

utility and the shared-ride utility at the work-end, but the between-location heterogeneity at the

work-end for the transit mode is higher than for the other two modes.

The log-likelihood values at convergence for the three models are provided in the last

row of the table. Nested likelihood ratio tests among the three models using these log-likelihood

values indicate that the MCMNL model provides a superior data fit relative to the other two

models. Thus, it appears to be important to accommodate spatial heterogeneity (and the

resulting spatial auto-correlation) at both the home and work ends in the current empirical

context. Of course, this may not always be the cased in other empirical contexts. However, by

structure, the MCMNL model is more general and subsumes the more restrictive models as

special cases. Thus, it would be best to estimate the MCMNL model in any empirical context

and then settle for a more restrictive structure if the results suggest so.

4.3.  Policy Evaluation4.3.  Policy Evaluation4.3.  Policy Evaluation4.3.  Policy Evaluation

In this section, we examine the results of three policy evaluations using the MNL,

MHMNL, and MCMNL models. The first policy measure is an increase in drive alone cost by

an average of 50 cents due to a congestion pricing measure (the 50 cents average hike

corresponds to an increase in drive alone cost of 29.8% for each sample observation). The

second is a decrease in transit in-vehicle travel time by an average of 10 minutes (this

corresponds to a 38% decrease in transit in-vehicle time for each sample observation). The third

is a decrease in transit out-of-vehicle time by an average of 10 minutes (this corresponds to a

33.6% decrease in transit out-of-vehicle time for each sample observation).
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The effect of each policy measure on aggregate mode shares is assessed by modifying

exogenous variables to reflect a change, computing revised disaggregate probabilities of mode

choice using equation (5), calculating revised expected aggregate shares of each mode by

sample enumeration, and then obtaining a percentage change from the baseline estimates.

Table 3 provides the results of the policy evaluations. As expected, all models show an

increase in non-drive alone mode shares and a decrease in the drive alone mode share for the

congestion pricing measure. The models also indicate a decrease in non-transit mode shares and

an increase in transit mode share for the transit improvement policies. However, the magnitude

of change are very different among the models. For the congestion pricing scheme, the

MHMNL model show a substantially lower increase in shared-ride mode share compared to the

MNL model. This is an expected result since the MHMNL model accommodates spatial

heterogeneity across home-end zones in the shared-ride mode, thus increasing the variance for

the shared-ride mode relative to the other two modes (see the discussion in section 3 for the

implication of differential utility variances across alternatives on competitive structure). The

MCMNL model provides dramatically different results from the other two models. Compared

to the MNL model, the MCMNL model indicates a substantially lower draw away from the

drive alone mode and to the non-drive alone modes. This is, of course, because of the home-end

spatial heterogeneity in the transit mode utility combined with the work-end spatial

heterogeneity in the transit mode utility. Compared to the MHMNL model, the MCMNL model

allows a much lower shift to the transit mode because the latter heterogeneity component is

ignored by the MHMNL model. For the transit improvement policies, we see a similar pattern

of a small draw from the drive alone mode to the transit mode in the MCMNL model compared

to the other two models.

To summarize, the substantive implications for policy analysis from the MNL, MHMNL,

and MCMNL models are quite different in the current empirical context. Specifically, the MNL

and MHMNL models overestimate the potential traffic congestion alleviation due to auto-use

dis-incentives (such as congestion pricing) and non-drive alone use incentives (such as
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     3These statements assume that the MCMNL model is more reflective of reality than the other models; the assumption is based
on the superior data fit of the MCMNL model compared to the MNL and MHMNL models.

improvements in transit service). Thus, ignoring the spatial context (or clustering) of individuals

into home-end zones and work-end locations has the potential to lead to misleading evaluations

and misinformed policy implementations.3

5.  SUMMARY AND CONCLUSIONS5.  SUMMARY AND CONCLUSIONS5.  SUMMARY AND CONCLUSIONS5.  SUMMARY AND CONCLUSIONS

This paper formulates and applies a model that accommodates cross-classification in the

context of a multi-level analysis of a discrete response variable. The model takes the form of

a mixed logit structure that incorporates spatial heterogeneity at both the home-end and the

work-end within the context of urban work travel mode choice. 

The likelihood function for model estimation includes the computation of an (I-1)

dimensional integral (I being the number of choice alternatives) nested within a (I-1)*W-

dimensional integral (W being the number of work-end location types). The former integral is

computed using a Gaussian quadrature technique because of its relatively low dimensionality,

while the latter integral is evaluated using a simulation approach because of its high

dimensionality. Unlike previous applications of a (pseudo-) random Monte Carlo procedure for

simulation in the mixed logit literature, the current paper uses a quasi-random Monte Carlo

procedure based on the Halton sequence. The results suggest that about 100 draws from the

Halton sequence are sufficient for the multi-dimensional integration in the current empirical

context. This is very encouraging and suggests more widespread consideration of quasi-random

sequences in simulation-based econometric methods. It is indeed quite surprising that while

there is a substantial body of theoretical and computational literature in physics and

mathematics extolling the much faster convergence rate and superior accuracy of quasi-Monte

Carlo methods over traditional (pseudo-) random Monte Carlo methods, the quasi-methods have

seldom been applied in econometric literature (to the author's knowledge, the only other study
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in econometrics that uses quasi-methods is the time series analysis by Feenberg and Skinner,

1994). 

The application of the cross-classified multi-level model to travel mode choice suggests

that it is important to accommodate the spatial context in which individuals make such

decisions. Failure to recognize the spatial context can lead to a diminished data fit as well as

misleading evaluations of traffic control measures aimed at alleviating traffic congestion.
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Table 1: Mode Choice Shares and Mean Sample Values of Level-of-Service Attributes

Mode Choice
shares

In-vehicle
travel time in

mins. 

Out-of-vehicle
travel time in mins.

Cost in cents

Drive alone 0.756 17.3  4.1 167.6

Shared ride 0.141 22.2  4.1  83.8

Transit 0.103 26.3 29.7 129.8
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Table 2:  Urban Work Mode Choice Estimation Results

Variable
Multinomial Logit Model

(MNL)
Multi-Level Hierarchical 

MNL (MHMNL)
Multi-Level Cross-Classified

MNL (MCMNL)

Parameter t-stat. Parameter t-stat. Parameter t-stat.

Alternative specific constants
(Drive alone or DA mode is base)

Shared-ride (SR) -0.918 -4.87 -1.206 -5.21 -1.147 -4.96

Transit (TR)  1.348  4.07  1.345  4.23  0.456  1.16

Socio-demographic variables
Income in 000's (specific to TR) -0.009 -2.58 -0.009 -2.49 -0.009 -2.81

Vehicles per worker (specific to DA)  0.859  6.33  0.871  6.84  0.860  6.18

Non-caucasian (specific to SR)  0.703  4.61  0.643  4.07  0.671  3.96

Level-of-service variables
Total travel time (minutes) -0.047 -7.25 -0.048 -8.59 -0.033 -4.42

Out-of-vehicle time over distance (mins./mile) -0.313 -4.47 -0.302 -6.96 -0.180 -3.12

Travel cost (dollars) -0.430 -9.98 -0.451 -10.53 -0.270 -5.14

Spatial heterogeneity parameters
SR utility variance across home zones -  0.945  6.63  0.932  6.51

TR utility variance across work locations - -  2.040  4.83

Log-likelihood at convergence -900.31 -887.22 -879.35

Note: The log-likelihood at equal shares is -1776.46 and at sample shares is -1168.06. The number of observations in the sample is 1617.
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Table 3:  Results of Policy Evaluation

Policy scenario Travel mode
Percentage change in aggregate share due to policy action

from... 

MNL Model MHMNL Model MCMNL Model 

50 cents increase (on average across the sample) in drive
alone cost 

Drive alone  -4.1   -3.4   -0.9

Shared-ride +12.3   +1.1   +0.6

Transit +13.4 +17.03   +0.4

10 minutes decrease (on average across the sample) in
transit in-vehicle time

Drive alone  -5.2   -5.7   -2.4

Shared-ride  -8.5   -0.8   -1.1

Transit +49.3  +44.4   +5.3

10 minutes decrease (on average across the sample) in
transit out-of-vehicle time

Drive alone  -3.3   -4.0   -1.0

Shared-ride  -7.1   -0.7   -0.5

Transit +33.5  +31.7   +2.2
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