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ABSTRACT 
Traditional multiple-discrete continuous choice models that have been formulated and applied in 
recent years consider a single linear resource constraint, which, when combined with consumer 
preferences, determines the optimal consumption point. However, in reality, consumers may face 
multiple resource constraints, such as those associated with time, money, and storage capacity. 
Ignoring such multiple constraints and instead using a single constraint can, and in general will, 
lead to poor data fit and inconsistent preference estimation, which can then have a serious negative 
downstream effect on forecasting and welfare/policy analysis. Unlike earlier attempts to address 
this multiple constraint situation, we formulate a new multiple-constraint (MC) multiple discrete 
continuous extreme value (MDCEV) model (or the MC-MDCEV model) that retains a closed-
form probability structure and is as simple to estimate as the MDCEV model with one constraint. 
We achieve this by assuming a type-I extreme value distribution for the error term in its 
minimization form in the baseline utility preference of each good rather than a maximization form 
as in Bhat’s (2005; 2008) original MDCEV formulation. The statistical foundation of the proposed 
model is based on the fact that the difference between a minimal type-I extreme value random 
variable with scale σ and the weighted sum of the exponential of standardized minimal type-I 
extreme value random variables (scaled up by σ) leads to an apparently new multivariate 
distribution that has an elegant and closed-form survival distribution function. Results from a 
simulation experiment show that our proposed model substantially outperforms single-constraint 
models; the results also highlight the serious mis-estimation that is likely to occur if only a subset 
of active constraints is used. The proposed model is applied to a case of week-long activity 
participation where individuals are assumed to maximize their utility from time-use subject to time 
and money budgets. It is hoped that our proposed simple closed-form multi-constraint MDCEV 
model will contribute to a new direction of application possibilities and to new research into 
situations where consumers face multiple constraints within a multiple discrete-continuous choice 
context.  

 
Keywords: Consumer theory, multiple discrete-continuous extreme value model, extreme value 
distribution, multivariate distributions, multiple constraints, closed-form structure. 
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1. INTRODUCTION 
Single discrete choice models have been widely used in a variety of fields to model the choice of 
a single alternative from a set of available alternatives. While it is not atypical to derive such single 
discrete choice models from indirect utility maximization, such models can also be derived from 
direct utility formulations in which the marginal utility of each good is linear with no satiation 
effects. In fact, the multiple continuous extreme value (MDCEV) model proposed by Bhat (2005; 
2008) is an extension of such a direct utility-based single discrete choice model in which the utility 
functions of alternatives are considered non-linear. Since its introduction to the literature, the 
closed-form nature of the MDCEV model and its variants have led to their applications in many 
different contexts. Some recent applications, to name just a few, include the proportion of annual 
income spent on different transportation categories (such as vehicle purchase, gas costs, 
maintenance costs, and air travel; see Ma et al., 2019), the holding and usage level of traditional 
and alternative fuel vehicles (such as gasoline, diesel, hybrid, electric, and fuel cells; see Shin et 
al., 2019), participation in different types of activities (such as sleeping, reading, listening to music, 
playing games, talking with other passengers, and working) that an individual may pursue as part 
of multi-tasking during travel (Varghese and Jana, 2019), household choice of different types of 
fuel sources and expenditures for energy (such as kerosene, firewood, Liquid Propane Gas (LPG), 
and electricity; see Acharya and Marhold, 2019), and children’s weekly time spent in different 
types of out-of-home after-school activities (academic, sports, arts, and other; see Leung et al., 
2019).  

The essential ingredient of the MDCEV model and related direct utility maximization-
based MDC models is the use of a non-linear (but increasing and continuously differentiable) 
utility structure with decreasing marginal utility (or satiation), which immediately introduces 
imperfect substitution in the mix and allows the choice of multiple alternatives. Within this 
context, Bhat (2008) proposed a non-linear utility form that is quite general and subsumes the 
earlier specifications as special cases. His utility specification also allows a clear interpretation of 
model parameters. Also, by using log-extreme value error terms in the baseline utility preference 
of each alternative to introduce stochasticity, and assuming independent and identically distributed 
(IID) error terms across alternatives, he derived the closed-form MDCEV model. While the 
MDCEV model can be extended in many ways to include random parameters and/or allow more 
general non-IID covariance structures for the error terms across alternatives (see, for example, 
Bhat et al., 2015), doing so can destroy the elegant closed-form nature of the MDCEV. Indeed, it 
can be argued that the wide applicability of the basic MDCEV model in different fields is because 
of its attractive (and relatively simple) closed form nature. While the field has evolved substantially 
in the ability to evaluate multi-dimensional integrals today (see, for example, Bhat, 2018), there is 
still value in striving to obtain closed-form analytic models. The reasons for this are multi-fold, as 
also highlighted in a large body of scientific literature across disciplines. First, closed-form 
solutions are much more computationally efficient than open-form solutions, as highlighted even 
recently by Krivochiza et al. (2018), Miraldo et al. (2018), and Zaplana and Basañez (2018). This 
is because open-form solutions are generally solved using numerical or simulation techniques that 
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typically entail the generation of a large number of random sequences and function evaluations. 
The computational efficiency of closed-form models, on the other hand, can allow a more 
comprehensive investigation of the many observed factors (and their interaction effects) affecting 
the choice behavior of interest. As highlighted by Bhat (2000), the end-goal of choice models is to 
examine the effects of observed variables (and their interaction effects), and so adopting the best 
systematic specification is paramount in modeling. Second, and related to the first point, closed-
form solutions provide a better understanding of how different design variables affect the outputs 
or the solution. Because closed-form solutions are presented as exact math expressions, they offer 
a clear view into how variables and interactions between variables affect the result. Moreover, a 
closed-form structure allows for a better definition of the properties of a solution due to its 
exactness and also provides better insights about generalization (in some cases) of a solution (see 
for example, Cong et al., 2020, where the authors underscore the virtues of the exactness of closed-
form solutions for interpretations of variables in a machine learning context). Third, closed-form 
models provide the exact same estimation solution if correctly implemented, regardless of the 
platform used or the specific numerical technique adopted in estimation. On the other hand, the 
results from open-form models depend on the numerical technique implemented and the procedure 
followed for random number generation (also sometimes referred to as the problem of 
reproducibility; see Lenhard and Küster, 2019). Open-form solutions will also, in many instances, 
need some hand-holding or specialized code to steer the optimization away from “nether regions” 
and facilitate convergence. This is because of rounding errors and more basic computational error 
bounds that can particularly affect gradient computations.  

The closed-form MDCEV model (as it stands currently) is based on the notion that 
consumers maximize utility subject to a single linear binding constraint. But, as discussed in detail 
in Castro et al. (2012), consumers usually face multiple resource constraints in many MDC 
situations. For example, consumers’ time-use decisions may be based not only on time constraints, 
but also an income constraint because the expenditure on the chosen activity participations cannot 
exceed the money budget available. Thus, for example, consider families with children who tend 
to be time poor (see Bernardo et al., 2015) and who are also budget tight. Such families may not 
be very responsive to service time reductions at the checkout at upscale retail stores (as a promotion 
strategy to draw in more patrons) because of the budget constraint they face. Ignoring the budget 
constraint in this case and using a single time constraint can lead to an under-estimation of time-
sensitivity and large model prediction inaccuracies. Similarly, these same families may not be very 
responsive to a price reduction strategy adopted by upscale retail stores, because of the time 
constraints they face. In this situation, ignoring the time constraint and using a single budget 
constraint will lead to an underestimation of price-sensitivity and, again, potentially large model 
prediction inaccuracies. Another similar example is provided by Satomura et al. (2011) for the 
purchase of consumer goods, in the presence of both a budget constraint as well as a storage space 
constraint. In this case, using only a single budget constraint may lead (incorrectly) to purchase 
predictions of a specific product (say a perishable grocery item that needs to be refrigerated at 
home) in very large quantities (because of the utility-cost tradeoff); however, consumers may not 
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be able to exercise this preference for large quantities because of say storage space constraints in 
their refrigerator at home. Thus, ignoring this second storage space constraint will lead to the 
incorrect estimation of the preference for the good. The fundamental problem is that there is a co-
mingling of preference and constraint effects when a constraint is not considered, leading to 
inconsistent preference estimation. That is, ignoring constraints will, in general, have serious 
negative repercussions for both model forecasting performance and policy evaluation. 

Castro et al. (2012) provide a discussion of earlier studies that have attempted to deal with 
utility maximization models with more than one constraint, which include Becker (1965), Larson 
and Shaikh (2001), Hanemann (2006), and Carpio et al. (2008) in the case of a single discrete 
choice model, and Parizat and Shachar (2010) and Satomura et al. (2011) in the case of multiple 
discrete continuous models. However, the models of single discrete choice above with multiple 
constraints are not easily extendable to the MDC case because of the non-linearity of the utility 
function, while the MDC models with multiple constraints are difficult to estimate and/or consider 
restrictive utility function forms. For example, Castro et al. (2012) develop a model based on an 
extension of Bhat’s (2008) MDCEV model that is flexible and can accommodate any number of 
constraints. But it has the drawback that the probabilities do not provide a closed form expression 
for the probabilities. In fact, the probabilities contain as many integrals (over the real line of 
univariate extreme value distributions) as the number of constraints in the model. While Castrol et 
al.’s model can be estimated using simulation techniques, the wide applicability of the basic 
MDCEV model with a single constraint clearly points to the value of deriving an MDC model that 
retains the utility structure of the MDCEV model as well as a closed-form expression for the 
probabilities, regardless of the number of constraints. This is the focus of the current paper. To 
achieve our objective, we use a stochastic distribution for the error term in the baseline preference 
for each alternative’s utility that, like the traditional MDCEV, employs a log-extreme value error 
term. However, this error term is introduced in subtractive form in the baseline preference rather 
than in an additive fashion. Equivalently, rather than using a type-I extreme value error term in 
additive form based on the maximum of a very large collection of random observations from the 
same arbitrary distribution, we use the type-I extreme value error term in additive form based on 
the minimum. In fact, an important supplementary statistical contribution of this paper is that we 
show that the difference between a minimal type-I extreme value random variable with scale   
and the weighted sum of the exponential of standardized minimal type-I extreme value random 
variables (scaled up by  ) leads to an apparently new multivariate distribution that has an elegant 
and closed-form survival distribution function. In addition to this difference in the stochastic 
distribution of the baseline preference between our proposed model and the MDCEV model, we 
use a linear form of utility (or the L MDCEV, as labeled by Bhat, 2018 and also discussed in 

detail in Bhat et al., 2020) for the baseline preference for the outside goods, rather than the non-
linear form of utility (or the NL MDCEV) adopted in Bhat (2008). Finally, to provide additional 

model flexibility, we also employ a slightly different version of the utility functional form relative 
to earlier MDCEV formulations, which nicely integrates with the other two changes indicated 
above to provide a new closed-form multiple constraint MDCEV model. Interestingly, in the case 
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of a single constraint, our proposed closed-form model collapses to a form that is similar to, though 
slightly different from, Bhat’s original MDCEV structure. Before we move ahead with the model 
formulation of our proposed methodology, we would like to digress a little and emphasize the 
importance of having closed form solutions as opposed to open-form solutions.  
 To summarize, the purpose of this paper is to develop a new MDCEV model that allows 
for any number of linear constraints, while also retaining a closed-form expression for the 
probability expressions (we will label the proposed model as the multi-constraint RG L MDCEV 

model; that is, the reverse Gumbel L  MDCEV model). The rest of the paper is structured as 

follows. Section 2 presents the model formulation and estimation procedure. Section 3 discusses 
the forecasting techniques for our proposed model. A simulation experiment to evaluate our model 
is presented in Section 4, while Section 5 illustrates an application of the proposed model for 
analysing time use subject to budget and time constraints. The sixth and final section offers 
concluding remarks and directions for further research. 
 
2. MODEL FORMULATION 
Consider a variant of Bhat’s (2018) general functional form for the utility function that is 
maximized by a consumer subject to two-constraints (we focus on two-constraints for presentation 
ease, but the closed-form model we derive is immediately extendable to any number of constraints, 
as we discuss later): 

(1 )
1 1 2 2

3

( ) 1 1
K

k k
k

k k

x
U x x



  
 





         
   

x  

s.t.       1 1
3

, 0
K

k k
k

x p x E x


    (1) 

2 2
3

, 0
K

k k
k

x g x T x


    

where the utility function )(xU  is quasi-concave, increasing, and continuously differentiable. 

0x  is the consumption quantity ( x  is a vector of dimension )1( K  with elements kx ), and k  

and k  are parameters associated with good k. The parameter   is a fixed satiation parameter 

across all the inside goods (however, note that the effective satiation is different across the inside 

goods because of the presence of the good-specific k  parameter). Let the first good be the 

numeraire good with respect to the first constraint (with a total budget of E). This first good does 

not appear in the second constraint and let its consumption be denoted by 1x  ( 1 0)x  . Similarly, 

let the second good be the numeraire good with respect to the second constraint (with a total budget 

of T), which does not appear in the first constraint. Let its consumption be denoted by  2x  ( 2 0)x 

The function )(xU  in Equation (1) is a valid utility function if 0k  for all k, 0k for all the 

inside goods ( 3, 4,..., )k K , and 1  . The utility structure for the inside goods is similar to Bhat 
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(2008), except that the parameter k  is now raised to a power equal to (1 )  (as discussed later, 

doing so provides a more general model than not doing so, while also retaining a closed form 
structure for the model). In this way of writing the utility structure for the inside goods, the 
marginal utility for any inside good may be written as follows: 

1
1

1 1
( ) 1

1 1 , where 1 , 3,4,..., .k k
k k

k k k

x xU
k K

x




  
  

                                             

x
              (2) 

A few things of note here. Since 1  , we have 0  . Second, if 0,   we obtain the 

  profile as discussed in Bhat (2008). Additionally, this implies that 1,  but then, as discussed 

in Bhat (2018), one is able to (theoretically) identify the scale of the stochastic parameters k  in 

the MDCEV model with only one-constraint (however, for our model with multiple constraints, 
we need to use a standard scale for the stochastic parameters for the outside goods for a closed-
form solution, but we make up for that restriction by introducing a fixed satiation parameter   
directly in the utility function for the inside goods, and allow it to be estimated; see Bhat et al., 
2020 for further discussion, as well as Section 2.3 of this paper for additional details on 

identification). Third, the baseline marginal utility in this new utility structure is given by 1/
k
 , 

which is but a simple exponential transformation of the baseline marginal utility k  in Bhat 

(2008). k  is the vehicle to introduce the possibility of corner solutions (that is, zero consumption) 

for the inside goods k ( 3, 4,..., )k K as well as serves the role of a satiation parameter (higher 

values of k  imply less satiation). Also, the constraint that k > 0 for 3, 4,...,k K is maintained 

by reparametrizing k  as exp( )ωk k  , where ωk  is a vector of decision maker-related 

characteristics and k  is a vector to be estimated.    

The first constraint in Equation (1) has a budget of E  across all goods k ( 1, 2,..., )k K , 

and 0kp   is the unit price investment of the inside goods k  ( 3, 4,..., )k K  along this first 

dimension. The second constraint in Equation (1) has a budget of T, and 0kg   is the unit price 

investment along this second dimension. Also, 1 0g   and 2 0p  .  

 
2.1. Optimal Allocation 
To find the optimal allocation of goods, we construct the Lagrangian and derive the Karush-Kuhn-
Tucker (KKT) conditions. The Lagrangian function for the model of Equation (1) is: 

1 2
3 3

( )
K K

k k k k
k k

L U E x p x T x g x 
 

            
   

 x , (3) 
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where   and   are Lagrangian multipliers for the first and second constraints, respectively. The 

KKT first order conditions for optimal consumption allocations ( *
kx ) are as follows, given that 

1 0x   and 2 0x  : 

1 20; 0        
1

1*

1 0k
k k k

k

x
p g



  


  
     
   

 if consumption = *

kx  ( 0* kx ), 3, 4,...,k K ,  (4) 

 
1

0k k kp g      if 0* kx , 3, 4,...,k K . 

As in the case of a single constraint, the positive consumption of an inside good leads to a density 
contribution (the equality constraint above), while zero consumption of an inside good leads to a 
mass contribution (the inequality constraint above). Substituting   and   from the first equation 

line into the next two lines, we obtain: 
1

1*
2

1

1
1

( / )
k

k
k k k k

x

p p g

  


  
    
   

  if consumption= * *( 0)k kx x  , 3, 4,..., k K ,     (5)
 

 
1

2
1

1

( / )k
k k kp p g


     if 0* kx , 3, 4,..., k K . 

The KKT conditions above have an intuitive interpretation. For example, if kp  refers to 

the unit price of good k, and kg  refers to the unit space needed to store good k, the left side of the 

equations above correspond to the price-normalized marginal utility at the point of optimal 

consumption *
kx  for the inside goods. If consumption of a good k is positive, it will be such that 

the marginal utility at the consumed point of good k is equal to the baseline utility of outside good 
1 (with a unit price of one) plus the opportunity cost-normalized baseline utility (where /k kp g  

refers to the opportunity cost of storing one unit of good k) of outside good 2. On the other hand, 
if the price-normalized marginal utility at zero consumption of good k is less than the baseline 
utility of outside good 1 plus the opportunity cost-normalized baseline utility of outside good 2, 
there will be no consumption of good k. 

Rearranging terms and taking logarithms, the KKT conditions of Equation (4) may be 
rewritten as:  

*
* *

1 2

*
1 2

ln ln ( ) ln 1 if consumption ( 0), 3, 4,...,

ln ln ( ) 0 if 0, 3,4,...,

k
k k k k k

k

k k k k

x
p g x x k K

p g x k K

   


   

 
       

 
    

                 (6) 

 
2.2. Statistical Specification 
The baseline random marginal utility for each good is defined as follows: 
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 kk   kzβexp , 1, 2,...,k K  (7) 

where kz  is a set of attributes that characterize alternative k and the decision maker (including a 

constant), and k  captures the idiosyncratic (unobserved) characteristics that impact the baseline 

utility of good k. This parameterization guarantees the positivity of the baseline utility. Substituting 
this baseline utility form in Equation (6), and defining 

1 2

*

1 2ln 1 , , , and ,k
k k0 k k k k

k

x
V V a p e a g e


  

        
 

β z β z
k kβ z β z  the KKT conditions, after 

some algebraic manipulations, are equivalent to: 

1 2

1 2

* *
1 2

*
1 2 0

ln ( ) if consumption ( 0), 3,4,...,

ln ( ) if 0, 3,4,...,

k k k k k k k

k k k k k k

a e a e V x x k K

a e a e V x k K

 

 

  

  

      

                             (8) 

Note that, by construction, 1 20 and 0k ka a   ( 3, 4,...,k K ). The challenge now is to 

assume a distribution for the unobserved error terms k  ( 1, 2,...,k K ) that leads to a closed-form 

expression for both the multivariate cumulative distribution as well as all partial derivatives of the 

vector 3 4( , ,..., )K   η  (once there are closed-form expressions for these, the probability of any 

pattern of consumption is easily written down in closed form from the conditions above, as will be 
discussed later). Unfortunately, assuming the typical type-1 extreme value distribution (based on 
the limiting distribution of the maximum of random variables) for these error terms does not 
provide a closed-form solution, as shown in Castro et al. (2012). In this paper, we assume a type-
1 distribution based on the limiting distribution of the minimum of random variables. That is, we 
assume that the error terms 1  and 2  are independent and identically distributed (IID) with a type-

1 standard extreme value (minimum) distribution.  

( ) . and ( ) Prob( ) 1 for 1,2.f F
u u

k k

e u e
ku e e u u e k                                                          (9) 

We also assume that the error terms ( 3,4,..., )k k K   have a location parameter of zero 

and a scale parameter of  . Essentially, we are allowing heteroscedasticity in the error variances, 
with the error variances of the outside goods normalized to one and the error variances of the inside 
goods estimated. That is,  

/ //( ) . and ( ) Prob( ) 1 for 3,4,..., .f F
u u

k k

e u e
ku e e u u e k K

 
                                          (10) 

The key insight is that doing so does lead, very surprisingly, to closed-form expressions. To move 
forward, we first state the following four properties with proofs.  
 
Property 1 
With the above-mentioned distributional assumptions on the error terms k , the multivariate 

survival distribution function (SDF) of the vector η  takes a closed-form as follows: 
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3 4 3 3 4 4
/ /
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 

    
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  

 
    (11) 

 

Proof: 3 3 4 4Prob( , ,..., )K Kw w w     =

1 2 1 2 1 2
3 3 1 2 4 4 1 2 1 2= Prob ln ( ), ln ( ),..., ln ( )k k k k K K k kw a e a e w a e a e w a e a e                      

1 2ln ( )1 2

1 2
1 2

1 2

1 2
3

 .

w a e a ek k k
K

e e e

k

e e e e e d d

 
   

 

 

   
  

 
  

 

                                                                   (12) 

Straightforward, even if tedious, integration of the above expression results in the needed 
multivariate survival distribution function (see Appendix A for the derivation). This is a neat 
multivariate distribution in statistics that we have not encountered in the literature.  
 
Property 2 
The survival distribution of any sub-vector of the η vector is readily obtained from the SDF 
expression above for the entire η vector. For example, the SDF of only the first two elements is: 

  3 4 3 34 4
, 3 3 4 4 / // /

13 14 23 24

1
( , ) .

1 1
S

w ww w
w w

a e a e a e a e
    

   
   

                              (13)  

 

Proof: This is straightforward by putting kw    for 5,6,...,k K  in Equation (11). 

 
Property 3 
The multivariate cumulative distribution function (CDF) of the η vector can be written as a 
function of the SDFs corresponding to the random variates as follows: 

| |
3 4 3 3 4 4

{3,... },| | 1

( , ,..., ) Prob( , ,..., ) 1 ( 1) ( ) ,ηF S wD
K K K D D

D K D

w w w w w w  
 

                 (14) 

where SD (.) is the SDF of dimension D, D represents a specific combination of the   terms 

(representing a specific sub-vector of the η vector; there are a total of 
2( 2) ( 2,2) ( 2,3) ... ( 2, 2) 2 1KK C K C K C K K            possible combinations, |D| is the 

cardinality of the specific combination D, and Dw  is a sub-vector of the vector 3 4( , ,..., )K= w w ww  

with the appropriate elements corresponding to the combination D extracted.  
 
Proof: This is based on the inclusion-exclusion probability law for all Fréchet class of multivariate 
distribution functions with given univariate margins (Feller, 1960). 
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Property 4 
Define the following matrices for the two-constraint case (the generalization to the case of more 
than two-constraints will be defined later): 

13 14 15 1

23 24 25 2

K

K

a a a a

a a a a

 
  
 




A  [2×(K–2)] matrix,                                                                      (15) 

Let nA  be a sub-matrix of A with all rows included, but only the first n columns (so, the sub-matrix 

nA  is of dimension 2×n). Also define matrix nB  as a matrix of all possible combinations of the 

elements of nA  of length n (with duplication of elements not allowed within any combination and 

selection of only one element from each column allowed), with the many combinations stacked 

vertically (so the matrix nB  is of size 2n n ). Let nH  be another 2n n  matrix that replaces the 

entries in matrix nB  with values corresponding to the row of matrix nB  in which each element of 

nB  lies. Finally, let nC  be a 2 2n   matrix, with each element in each row of each of the two 

columns representing a count of the number of elements in each row of matrix nB  appearing in 

each of the two rows of matrix nA . Thus, if n=3, we will have the following: 

nA = 13 14 15

23 24 25

a a a

a a a

 
 
 

, 

13 14 15

13 14 25

13 24 15

13 24 25

23 14 15

23 14 25

23 24 15

23 24 25

n

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

 
 
 
 
 
   
 
 
 
 
  

B  , 

1 1 1

1 1 2

1 2 1

1 2 2
,

2 1 1

2 1 2

2 2 1

2 2 2

n

 
 
 
 
 
   
 
 
 
 
  

H  and 

3 0

2 1

2 1

1 2

2 1

1 2

1 2

0 3

n

 
 
 
 
 
   
 
 
 
 
  

C                   (16) 

With the above matrix definitions, the general formula for the nth order partial derivative of the 

multivariate survival distribution with respect to the first n variates 3 4 2( , ,..., )n      is: 

,

2

, ,2
1 13 4

12

31

2

3

13 4 2

( !)
( , , , )

1 exp

exp
( 1)

. ... C

C B
S

n vr

n

n

n vr n vgn
r gK n

K
k

rk
kr

n
i

i
n

vn

w
w w w

w
a

w w w







 











  
  
  
 

          


 

  

 







                          (17) 

The full derivative is obtained by putting n= K–2 in the above formula, and the multivariate density 

function of 3 4( , ,..., )η K    may be obtained as:  
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2,

2

2 2

2, 2,2 2
1 13 42

3 4 12

31

3
2

13 4

( !)
( , , , )

( , , , )

1 exp

exp
( 1)

. ... C

C B

f
S

K vr

K

K

K vr K vgK
r gKK

K
K

k
rk

kr

K
k

k
K

vK

w

w w w
w w w

w
a

w w w







 





 
 










     
     

          




  

 







  (18) 

Proof: Please see Appendix B. 
 
With the properties just discussed, the probability that the first M of the inside goods are consumed 

( 1; 2M M K   ) at levels * * *
3 4 2, ,..., Mx x x   (with the implied consumptions of 

* * * *
1 2

3 3

and
K K

k k k k
k k

x E p x x T g x
 

     ) may be written from Equation (8) as follows1: 

 
3 3,0 4 4,0 ,0

3 4

3 3

* *
3 2

3 4 2 3 4 3 4

3 4 2 3,0 4,0 ,0

3 4 2 ,

,..., ,0,0,...,0

| |  ... ( , ,..., , , , , ) ,...,

( , ,..., , , , , )
| |  

...

M M M M K K

M M K

M

V V V

M M M K M M K

M
M M M K

M V

P x x

J V V V d d d

V V V
J

  



  



     

  
  

   

 



  

    

  

  

 






  

   

η

f

F

4 4 2 2,..., M MV V    

 

,

2

, ,2
1 1

12 2

31

2

, ,
1 1| |

2
0

3

2

3

1

2

3

( !)
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| |

( !)

( 1)

1 exp exp

exp
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M vr

M

M
k

M vr M vg
r g

M
k

rk
kr

M

M vr M vg
r gD

M
M
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rk rk

k

M

k
M

v

M
i

i

V
a

J
V

V V
a a

V



 







 





 















     
    

          


 
 
 

     
  

 



 








C

C B

C B

,

2

1| | 22{ 3, 4,..., },| | 1

31

1

M

M vrD MD M M K D

k Mr

v
    

 



 
 
 
 
 
 
 
  
  
  
  
   
      




 C

  (19)          

where 
2

3

| |  ,
M

i
i

J f




 
  
 
 *

1
i

i i

f
x 

 
   

,   

  

                                                 
1 Note, however, that there is no need to have information on the budgets E and T in our framework (because of the 
linear utility function for the outside goods). Also, important to note is that, simply because there is no need to observe 
E and T in our formulation, does not mean that the constraints are not at play in consumption decisions. As discussed 
in the context of Equation (5), consumers still make a trade-off decision among the unit prices of the inside goods 
along the many constraint dimensions when determining their consumption point. To be specific, the consumption 
pattern of the inside goods of a consumer, given the unit prices of the inside goods along each dimension (pk and gk in 
the two-constraint case), provides the information needed to extract the trade-offs implied by the constraints for the 
consumer.  
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The probability that all the inside goods are consumed at levels * * *
3 4, ,..., Kx x x  is: 

 

2,

2

* *
3

2 2

2, 2,2
1 1

3 4 12

31

3
2

1

,...,

( !)

| |  ( , ,..., ) | |

1 exp

exp

K vr

K

K

K
k

K vr K vg
r g

K
K

k
rk

kr

K

k
K

v

P x x

J V V V J
V

a

V






 





 
 










     
     

          

 




 C

C B

f
                      (20) 

The probability that none of the inside goods are consumed is: 

 
0 0

| |

{3,..., },| | 1 / /
1 2

1
0,...,0 1 ( 1)

1 1k k

D

D K D V V
k k

k D k D

P

a e a e  

 

  
     
  


 

                                    (21) 

Thus, the proposed model is referred to as the multi-constraint MDCEV model, which provides a 
closed form expression for the probabilities of consumption with any number of constraints.  
 
2.3. Model Identification 
A couple of issues related to identification. First, in general, the scale parameter   will be 
estimable in the multiple constraint case. This is because the unit prices must vary across the goods 
for at least one-constraint dimension.2 As soon as there is price variation in even a single 
dimension,   become identifiable (see Bhat, 2018 and Bhat et al., 2020).  In fact, from a pure 
theoretical point, even if there were only a single constraint with no price variation, the scale is 
identifiable in our proposed model, as it becomes similar to the linear outside good MDCEV model 
of Bhat et al. (2020). However, empirically speaking (and as discussed in Bhat et al., 2020), 
allowing a free scale parameter in such a single constraint case without price variation can lead to 
instability in many situations because of the entangling of two different mechanisms to produce 
satiation, and so the analyst may have to normalize the scale.  Second, as also discussed in Castro 
et al. (2012), and as can be observed from the KKT conditions in Equation (6), it is not the case in 

the multiple constraint situation that only differences in the kzβ  terms matter. This is because the 

logarithm functional form operates on a standardized function of the sum of quantities associated 
with the first two goods. Thus, the KKT conditions themselves (because of their functional form) 
do not impose any theoretical need for the normalization of constants and consumer-specific 
variables. However, the KKT conditions in Equation (8), as well as the probability expression in 
Equation (19), involve only the consumption pattern of 2K  goods, and so it would be prudent 

to set the component of kzβ  corresponding to constants and individual-specific variables to zero 

for one or both of the first two goods. 
 

                                                 
2 That is, in the two-constraint case, if the pk and gk values are the same across all the inside goods, there is no issue 
of having two-constraints; if this were the case, the two-constraints effectively collapse to a single constraint. 
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2.4. More Than Two-Constraints 
The applications in the literature of a multi-constraint multiple discrete-continuous (MDC) model 
have been limited to two constraints, at least in part because adding more constraints poses 
computation problems in the open-form domain of earlier models. However, our proposed closed-
form model should open up possibilities to easily estimate and apply MDC models with more than 
two constraints. For instance, in the context of household time-use in individual and joint non-
work activities, there could be multiple budget constraints of time availability for non-work 
activity participation corresponding to each individual household member (based on, for example, 
each individual’s employment status and work duration). Another application, especially relevant 
in today’s pandemic world, is the addition of a storage space constraint in the house, along with 
other time and money budget constraints, in the purchase of grocery and other consumer items 
(that is, how households prioritize purchases so as to minimize shopping trips and/or home 
deliveries, while also being cognizant of storage space constraints and the impending possible lack 
of availability in the marketplace of consumer items).  

We now show how our closed-form model can be applied to the general case with R 
constraints. Each constraint is associated with a limited resource (money, time, space, etc.). To 
estimate the MDCEV model with R constraints, individuals should consume at least R goods from 
the choice set, and the maximization problem is given by: 

(1 )
1 1 2 2

1

1 1 1 1
1

2 2 2 2
1

1

( ) ... 1 1

. . , 0

, 0

, 0

K
k k

R R k
k R k

K

k k
k R

K

k k
k R

K

R Rk k R R
k R

x
Max U x x x

s t x p x E x

x p x E x

x p x E x


   

 


 

 

 

 

          
   

  

  

  











x

                                        (22) 

where rkp  is the unitary contribution of good k ( )k R  to constraint r 

( 0 1,  2,...,  ),rkp k R R K      and rE  is the total availability of resource r ( 1, 2,...,r R  ). 

This problem can be solved in the same way as for the case with two-constraints, with 

( 1, 2, , ).kz
rk rka p e k R R K      The corresponding expressions are: 
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Identification considerations in this multiple constraint case are similar to that discussed in the 
case of the two-constraint case.  

We also present the discrete consumption probability expression for each possible 
consumption bundle as follows: 

1 1,0 1 1,0 ,01 2

1 1,0 2 2,0 ,0 1 1

1 2 1 1

1 2 1

( 1, 1, , 1, 0, , 0, 0)

 ... ... ( , ,..., ) ,...,f

R M R M K K K KR R R M

R R R R R M R M R M K K

R R R M R M K K

V V V

R R K K K

V V V

P d d d d d d

d d d

    

     

    
       

        

     

    

  

     

     

      

 

1,R 

 

 (26) 

where 1 2( , ,..., )R R K   f  represents the multivariate density function (pdf) of the random 

variates 1 2, ,...,R R K    . The above expression may be written as:  
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     

      
    

     

  

 
      (27)      
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where SN (.) for any dimension N is the multivariate survival distribution function given by 

Equation (11), D represents a specific combination of the non-consumed goods (there are a total 

of 2 1K M R    possible combinations of the non-consumed goods), |D| is the cardinality of the 
specific combination D, and ,0VD  is a vector which is specific to combination D. The discrete 

consumption probability for the case of none of the inside goods being consumed is already 
provided in Equation (21), while the discrete consumption probability for the case of all the inside 
goods being consumed is given by: 

1 2 1 1

1,0 2,0 ,0

( 1, 1, 1, 1, 1, 1)

( , ,..., )S
R R R M R M K K

K R R R K

P d d d d d d

V V V
     

  

     


 
                                                      (28) 

A final point on model formulation. In the case that one or more of the inside goods is 
consumed by every individual, the utility formulation of Equation (1) is not applicable because the 

presence of k  requires at least a few individuals to have a corner solution for good k. However, 

this situation is easily handled through a minor modification of the utility function. In particular, 
consider that the inside goods 1, 2,...,l R R L    are consumed by every individual, and the 

remaining inside goods 1, 2,...,t L L K    are not. Then, the utility formulation below is the 

appropriate one:   

(1 ) (1 )
1 1 2 2

1 1

1 1 1 1 1
1 1

2 2 2 2 2
1 1

1 1

1
( ) ... 1 1

. . , 0

, 0

, 0

L K
t t

R R l l t
l R t L t

L K

l l t t
l R t L

L K

l l t t
l R t L

L K

R Rl l Rt t R R
l R t L

x
U x x x x

s t x p x p x E x

x p x p x E x

x p x p x E x


      

  
 

   

   

   

   

           
   

   

   

   

 

 

 

 



x

                         (29) 

There is little change from the earlier formulation, except that 
*ln ( 1, 2,..., )l l lV x l R R L    β z  and some minor adjustments to Equations (23), (24), and 

(25), as presented in Appendix C. 
 
3.  FORECASTING 
The KKT conditions of Equation (8) for the inside goods ( 3,..., )k K  translate to the following 

conditions on the error terms: 

 * * *

*

( ) and exp( ) 1  if consumption ( 0), 3,4,...,

( ) if 0, 3,4,..., ,

k k k k k k k k

k k k

x x x k K

x k K

    

 

          

    
k k

k

β z β z

β z
  (30) 

1 2 1 2
1 2 1 2where ln ( ), , and .k k k k k k ka e a e a p e a g e       β z β z  
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The simplest forecasting procedure for each observation is as follows: 

 Step 1: Draw K–R+1 independent realizations of k (say k ), one for each inside good 

( 1,..., )k k R K  , from the extreme value distribution with location parameter of 0 and the 

scale parameter equal to the estimated   value (label this distribution as EV(0, )̂ ). Also, draw 

R independent realizations of k from EV(0,1) for the outside goods ( 1,2,..., )k R . 

 Step 2: Given estimated values of β  and  , and the input values kp , and kg     

( 1, 2,..., )k R R K    and kz  ( 1,2,..., )k K , compute an estimate of k (say k̂ ) for each 

inside good as well as an estimate of  kβ z  (say, ˆ ˆ
k   kβ z ) for each inside good. If 

 1ˆ ˆ , 2, ,k k k k R R K       , declare the inside good k as being selected for 

consumption ( 1)kd  ; otherwise, declare the inside good as not being selected for 

consumption ( 0)kd  . 

 Step 3: For the inside goods that are selected ( 1)kd  , forecast the continuous value of 

consumption as follows:   * ˆ ˆ ˆˆ exp 1k k k k kx          
.   

To conserve on space, two other more advanced forecasting approaches are relegated to an 
online supplement available at 
https://www.caee.utexas.edu/prof/bhat/ABSTRACTS/MCMDCEV/OnlineSupp.pdf. 

 
4. SIMULATION EVALUATION 
The simulation exercises undertaken in this section examine the effect of employing a single 
constraint model when there are in fact two budget considerations that consumers are faced with. 
We do so by estimating the proposed closed-form model that correctly considers both budget 
constraints as well as the proposed model assuming that only a single constraint is operational. 
The appropriateness of the models is assessed by the ability to recover parameters from finite 
samples by generating simulated data sets with known underlying model parameters. As well, we 
investigate the predictive ability of the different models.  
 
4.1. Experimental Design 
In the design, we generate a sample of 3000 observations with four alternatives and two 
independent variables in the qkz  vector in the baseline utility for each alternative (we introduce 

the subscript q for individuals here; 1, 2,...,3000q  ). For this simulation experiment, we do not 

consider constants in the baseline preference. Of the two independent variables, the first is a 
dummy variable, while the other is a continuous variable. That is, consider the following for the 

qkz  vectors (k=1 and k=2 are the two outside goods): 

   1 2 3 3 3 40,0 ,  0,0 ,  , , and , .q q q q q q q qy z y z          z z z z  (31) 
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For the dummy variable ( qy ) in ( 3,4)qk k z , we treat this as an individual-specific 

variable (that does not vary across alternatives). To construct this dummy variable, 3000 
independent values are drawn from the standard uniform distribution. If the value drawn is less 
than 0.5, the value of ‘0’ is assigned to the dummy variable. Otherwise, the value of ‘1’ is assigned. 
The coefficients on this dummy variable are specified to be 0 for the first two alternatives (the two 
outside goods) and 1.25 for the second two alternatives (considered as the inside goods). Thus, a 

single parameter 1  (=1.25) is to be estimated for the dummy variable. The values for the 

continuous variable 3qz are drawn from a standard univariate normal distribution, while the 

corresponding values 4qz are drawn from a univariate normal distribution with mean 0.5 and 

standard deviation of 1. The parameter 2  on this continuous variable is specified to be one. The 

scale   is set to one. Furthermore, a constant-only satiation parameter of 1e  is set for both the 

inside goods (i.e., 3 41 and 1,    and the satiation parameters 3 and 4  are effectively 2.718 

for both inside goods). Additionally, we consider two budget considerations. The qkp  value for 

the first outside good is 1, and the qkp  value for the second outside good is zero (for all 

q=1,2,…,Q). The qkp values for the inside goods (k=3,4) for each individual q is drawn from a 

truncated uniform distribution with a mean of 0.5 for the first inside good (truncated between 0.25 

and 0.75) and a mean of 1.5 for the second outside good (truncated between 1 and 2). The qkg  

value for the first outside good is 0, and the qkg  value for the second outside good is one (for all 

q=1,2,…,Q). The qkg  values for the inside goods (k=3,4) for each individual q is drawn similar to 

that for the first budget consideration, but the values are reversed. That is, qkg  is drawn from a 

truncated uniform distribution with a mean of 1.5 for the first inside good (truncated between 1 
and 2) and a mean of 0.5 for the second outside good (truncated between 0.25 and 0.75). Once 
generated, the independent variable values and the unit prices are held fixed in the entire rest of 
the simulation exercise.  
 
4.2. Data Generation and Performance Metrics 
Using the design presented in the previous sections, we generate the consumption quantity vector 

*xq  for each individual using the forecasting algorithm of the previous section. The parameters to 

be estimated from the data generating process correspond to 

1 2 3 4[ 1.25,  1, =2.718, =2.718 1] .           The above data generation process is 

undertaken 500 times with different realizations of the qz  vector to generate 500 different data 

sets. For each of the 500 datasets, we estimate three models: (a) the proposed multiple constraint 

model, (b) the single constraint model with only the first set of unit prices (the qkp values) active 

and ignoring the second budget constraint, (c) the single constraint model with only the second set 
of unit prices (the qkg  values) active and ignoring the first budget constraint. The performances of 
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the three models in recovering the “true” parameters, their standard errors, as well as predicting 
the consumption values are evaluated as follows: 

(1) Estimate the parameters using each of the three models for each data set s. Estimate the 
standard errors. 

(2) Compute the mean estimate for each model parameter across the data sets to obtain a mean 
estimate. Compute the absolute percentage (finite sample) bias (APB) of the estimator as: 

.100
 valuetrue

 valuetrue-estimate mean
(%) APB  

(3) Compute the standard deviation for each model parameter across the data sets, and label this 
as the finite sample standard error or FSSE (essentially, this is the empirical standard error). 

(4) Compute the median standard error for each model parameter across the data sets and label 
this as the asymptotic standard error or ASE (essentially, this is the standard error of the 
distribution of the estimator as the sample size increases). 

(5) Next, to evaluate the accuracy of the asymptotic standard error formula, compute the APB 
associated with the ASE of the estimator as: 

100
FSSE

FSSE-ASE
(%) APBASE  

(6) Examine the data fit at a disaggregate level by comparing the log-likelihood values at 
convergence of the models. A rigorous statistical test of data fit cannot be undertaken using 
traditional nested likelihood ratio tests, because the models are not nested forms of each other. 
But the model with the higher log-likelihood value is to be preferred, because all the models 
have the same number of estimated parameters. Based on the log-likelihood values for each of 
the 500 runs (corresponding to the 500 datasets), compute a mean log-likelihood value for each 
of the two-constraint and one-constraint models. In addition, also compute the average 
probability of correct prediction for the discrete consumption across the 500 datasets. That is, 
using Equations (21), (27), and (28), and for each of the 500 datasets, we compute the predicted 
bivariate probability of the observed discrete choice for each observation (which can be one of 
four discrete choice combinations based on whether or not good 3 is consumed and whether or 
not good 4 is consumed), and then compute an average across individuals. This average 
probability of correct prediction at a dataset-level is then averaged across the 500 datasets to 
obtain a single average probability of correct prediction. For the continuous consumption level, 
for each dataset, remove any effects of poor discrete choice predictions on the continuous 
prediction outcomes by assuming the observed multivariate discrete outcome for each 
observation, and predict the continuous consumptions for each individual using Step (4) of the 
forecasting algorithm with 1000 error vector replications per individual observation. Compute 
an absolute percentage error (APE) for each of goods 3 and 4, and each observation, for these 
continuous predictions by comparing with the actual consumption values of goods 3 and 4 
(ignoring zero consumptions based on the discrete choice), and then compute a mean APE 
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(MAPE) across all goods and all individuals for each dataset. At the end, compute an MAPE 
across all the 500 datasets.  

(7) Finally, at the aggregate level, examine model fit at both the discrete consumption level as well 
as the continuous consumption level. For the discrete level, for each dataset, predict the 
aggregate share of individuals participating in each of the four possible discrete outcomes, and 
compare these predicted shares with the actual percentages of individuals in each combination 
(using the weighted MAPE statistic, which is the MAPE for each combination weighted by the 
actual percentage shares of individuals participating in each combination). Next, compute the 
average of the weighted MAPE statistic across the 500 datasets. For the continuous 
consumption level, for each dataset, compute an aggregate mean (across observations) of the 
observation-level continuous consumptions for each of the inside goods (goods 3 and 4), as 
predicted earlier, and compute an MAPE by comparing the mean of the predicted aggregate 
consumption of each of the inside goods with the corresponding actual mean value of 
consumption of the inside good  (again, ignoring zero consumptions based on the discrete 
choice, so this MAPE corresponds to consumption conditional on a positive discrete 
consumption decision). Then, average the dataset-level MAPE (across the 500 datasets) to 
obtain an overall MAPE for the continuous consumption quantity. 

  
4.3. Simulation Results 
The simulation results for the evaluation of the parameter estimates are provided in Table 1. For 
each of the five parameters to be estimated, the first row provides the true value, followed by the 
estimate obtained and the following metrics for each estimate: APB, FSSE, ASE, and APBASE. 
A number of observations may be made from the table. First, the proposed multi-constraint model 

(third column of the table) recovers the “true” baseline parameter values ( 1  and 2 ) very 

accurately, with an APB of less than 0.05%; on the other hand, the single-constraint models clearly 
are nowhere as good as the proposed model in recovering these baseline parameter values. In 
particular, the single constraint models show a very severe bias of more than 55% for the first 
parameter, and more moderate biases (but still much larger than the one obtained for the proposed 
model) for the second parameter. The substantially higher bias for the first parameter is to be 
expected, because the first variable is a dummy “switch” variable, and so its coefficient is very 

sensitive to the use of the correct constraint specification. Also, the estimated values of 1  and 2  

are lower in magnitude than the corresponding “true” parameters in both the single constraint 
specifications. Again, this is to be expected, because of the KKT conditions. For the two-constraint 

case, the right side of Equation (5) has the term 2
1 ( / )k kp g

  , while in the one-constraint case, 

this right side would be 1  (if the first constraint is the only one active) or 2  (if the second 

constraint is the only one active). Thus, the right side is lower in magnitude for the one-constraint 
cases than for the two-constraint case. At the same time, the magnitude of this right side determines 
the discrete consumption decision, based on the inequality condition of the KKT. With the same 
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simulated data, therefore, the single constraint cases will underestimate the baseline preference of 
the inside goods to achieve a reasonable fit for the discrete consumption decisions, which gets 

translated to the lower estimates of 1  and 2 . Of course, the recovery of these parameters in the 

two-constraint and one-constraint cases is quite precise (as can be observed from the entries in the 
APBASE rows for these parameters in Table 1), because, given individual discrete consumption 
patterns, the estimation should converge toward the same parameter. Even so, we find that the 
ASE estimate is closer to the FSSE for the two-constraint estimation relative to the one-constraint 
estimations, as also evidenced by the higher values of the APBASE metric for the one-constraint 
estimations.  

As far as the satiation parameters 3 and 4  are concerned, the MC-MDCEV model records 

an absolute bias of below 0.2%, while the APB of the one-constraint models hover in the 25-55% 
range. The reason for the biases in the satiation parameters in the single constraint cases may not 

be that obvious as for the 1  and 2  preference parameters, but will become clear in our discussion 

later in this section. The basic point is that these satiation parameters work in tandem with the 
preference parameters to determine the continuous consumptions. Thus, given the substantial 
variations in the estimated preference parameters, it is not surprising that these variations get 
transmitted to the estimated satiation values. The APBASE values for the satiation parameters are 

all similar across the three models, even if particularly higher for the 4  parameter in the one-

constraint cases.  
Finally, even in terms of recovering the scale parameter, our proposed model exhibits much 

smaller APB and APBASE values relative to the single-constraint models. All these findings 
underscore the superiority of our proposed model in accurately recovering model parameters. 

The substantial difference in estimated parameters from the one-constraint models (relative 
to the “true” parameters) does not necessarily mean that the discrete-continuous predictions will 
be poor too (after all, as discussed in the context of the KKT conditions, the under-scaling of the 
preference parameters in the one-constraint cases is but natural, given the quantity that appears on 
the right side of the KKT conditions). Thus, to obtain a sense of performance, it is imperative that 
model predictions of the multiple discrete-continuous consumptions also be undertaken. We do so 
using the approach discussed in the sixth and seventh points in the previous section. Our results 
show that the mean (across the 500 datasets) log-likelihood at convergence of the two-constraint 
model is -14262.96, while the log-likelihoods at convergence for the one-constraint models are      
-14953.20 and -14969.98. The average probability of correct prediction for the discrete 
consumption is 0.431 from the two-constraint model, and 0.365 and 0.371 from the one-constraint 
models, while the disaggregate-level MAPE is 20.7% for the two-constraint model and 24.9% and 
24.6% for the one-constraint models. All of these disaggregate-level metrics clearly favor the two-
constraint estimation, and reveal the pitfalls (from a disaggregate predictive level) of using a one-
constraint model when the two-constraint model is the correct formulation.  

The aggregate-level fit measures for the three models are shown in Table 2. The top panel 
of this table corresponds to the discrete choice consumption and the bottom panel correspond to 
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the continuous consumption of the two inside goods. The weighted MAPE value for the proposed 
model at the discrete choice consumption level comprehensively outperforms the corresponding 
values for the one-constraint models. It may be illustrative to note that the price value for the first 
good along the first constraint, by construction in our data generation process, is lower than that 
of the second good; hence, in the single-constraint model with only the first constraint active, the 
model, at the discrete consumption level, substantially overpredicts the “first inside good 
consumption” and underpredicts the “second inside good consumption”. A similar but reverse 
pattern is observed for the one-constraint model with only the second constraint active, where the 
first good has a higher price than the second good. The results in the lower panel of Table 2 for 
the continuous choice consumption (conditional on positive discrete choice consumption) once 
again highlights the superior performance of our proposed model over single-constraint models. 
The weighted MAPE values for the single-constraint models are in the 50-60% range, nowhere 
even close to the accuracy level of the two-constraint model with a weighted MAPE of less than 
3%. The reason for this is that the first single constraint model leads to an (incorrect) high baseline 
preference for the first good (as discussed above). However, the continuous consumptions 
(conditional on consumption) in the data are not large, and so the MDCEV model attempts to 
compensate/correct for the high baseline preference for the first good by also estimating a high 
satiation for this first good, even as it fits to the continuous consumption values. This is also clearly 

evident in the dramatically lower estimate of 3  (which implies higher satiation) when only the 

first constraint is active (see the second row panel and fourth column of Table 1). Thus, the much 
smaller continuous value (conditional on discrete consumption) predicted by the first constraint-
only model in Table 2. The situation, as expected, gets exactly reversed in the second constraint-
only model.  

In summary, the results from the simulation experiment underscore the utility of the 
proposed MC-MDCEV model in situations where an individual’s multiple discrete-continuous 
consumption decision is subjected to more than one active constraint. Both from a preference 
parameter estimation standpoint, as well as a data fit and predictive standpoint, serious mis-
specification is likely to occur if only one-constraint is considered in a true multiple constraint 
scenario. Importantly, our proposed multiple constraint closed-form model is no more difficult to 
estimate than a single-constraint MDCEV model.   
 
5. APPLICATION 
In this section, we demonstrate an application of our proposed model to the case of individuals’ 
weekly activity participation, subject to a time-constraint as well as a money-constraint. We briefly 
describe the data source and sample, followed by a discussion of the results and data fit. 
  
 5.1. Data Description  
The data source for the study is the Dutch Longitudinal Internet Studies for the Social Sciences 
(LISS) panel, which is based on a probability sample of Dutch households drawn from the 
country’s population register. The panel, administered via the internet by CentERdata 
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(www.lissdata.nl), is a standard social monthly survey undertaken in 2009, 2010, and 2012. A few 
questions related to time use and expenditure in different activities were included in the surveys 
(Cherchye et al., 2012). In the current paper, we focus on the data from the latest wave (October 
2012). Respondents reported (1) the time allocated to multiple activities (including work) during 
the seven days prior to the survey, and (2) the average monthly expenditure (in euros) in 30 expense 
categories for each of the 12 months prior to the survey. To achieve consistency between activity 
durations and expenditures, monthly expenditures were divided by four to obtain weekly 
expenditures. The resulting weekly time use and consumption data are complemented with socio-
demographic information drawn from the LISS panel.   
 The sample used to estimate our model includes individuals who are the sole workers 
within their respective households. This recognizes that employed individuals maybe distinctly 
different in their time use decisions relative to those who are unemployed. Several consistency 
checks were performed to obtain the estimation sample. Further details are provided in Astroza et 
al. (2017). The final estimation sample includes the time-use of 1,193 workers.  

5.2. Classification of Activities and Unit Price for Expenditures 

The focus of our analysis is on time-use subject to the budget constraints of time and money. We 
consider the following four non-work, non-education, and non-sleep activities as the inside goods:   

1) Household chores, including cleaning, shopping, cooking, gardening, washing, dressing, 
eating, visiting the hairdresser, seeing the doctor, and activities with any own children less 
than 16 years of age 

2) Leisure, including in-home and out-of-home recreational activities, such as watching TV, 
reading, practicing sports, hobbies, computer as hobby, visiting family or friends, going out, 
walking the dog, cycling, being physically intimate, etc. 

3) Personal business, including family finances and assisting friends/family.  

4) Social, including religious activities, civic and volunteer activities, and attending social 
gatherings. 

The MDC dependent variable corresponds to weekly participation and weekly time 
investment in each of these four inside activity purposes (the procedure to obtain these weekly 
time-use variables is discussed in detail in Astroza et al., 2017). In addition, we consider two 
outside goods (or two outside activity purposes, denoted by k=1 and k=2). The first outside activity 
purpose does not involve any money expenditure (such as, say sleeping), while the second activity 
purpose does not involve any time expenditure (this may seem tricky, but can be considered as, 
for example, “clicking to purchase online goods and services”, in which the “click” is almost 
instantaneous; in any case, in our formulation, there is no need to explicitly define the outside 
purposes, and so these outside purposes can be “imaginary” activities). The time constraint 
represents time as a limited resource, bounded by the available time after considering activities 
such as work and sleep. The unit price for time use in each of the inside activities is unity (that is, 

qkp =1 for all q and k=3,4,5,6), since the decision variables themselves represent time investments. 
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The money constraint represents limited purchasing power, and the unit price for expenditure (that 
is, qkg  for all q and k=3,4,5,6) is computed as the average (across all individuals who participate 

in the respective activities) of the ratio of expenditure to time duration in activity k. The unit price 
is in Euros/hour. Among the four inside activities, personal business and social activities did not 
have expenses associated with them (in the dataset), and so their unit prices of expenditure are 
zero.  

Descriptive statistics for time duration (the dependent variable in our model), and the unit 
price for expenditure, are presented in Table 3. As can be observed from the table, a large fraction 
participates in household chores, leisure, and personal business activities during the course of a 
week. However, less than half of all individuals partake in social activities. Among those who 
participate in an activity purpose, the average duration of participation is highest for leisure 
(individuals participate on average for just under 32 hours/week or about 4.6 hours per day) and 
lowest for personal business (individuals participate on average for 7.5 hours/week or about an 
hour per day).  

 
5.3. Results 
The emphasis of our empirical efforts in this paper is to demonstrate the application of the proposed 
model rather than necessarily on substantive interpretations and policy implications. But, within 
the context of the data available, we explored alternative variable specifications to arrive at the 
best possible specification (including considering alternative functional forms for continuous 
independent variables such as income and age, including a linear form, piecewise linear forms in 
the form of spline functions, and dummy variable specifications for different groupings). The final 
variable specification was based on statistical significance testing as well as intuitive reasoning 
based on the results of earlier studies.  

In this section, we discuss the effects of the variables on activity participation by variable 
category (see Table 4). The effects relate to the impact of variables on the logarithm of the baseline 
preference (that is, they correspond to the β vector elements in Equation (7)), except when 
discussing the satiation effects toward the end of this section.  
 
Individual Characteristics: Our results suggest that women are more likely than men to partake 
in household chores. This gender asymmetry in maintenance-oriented household activities has 
been well established in the time-use literature (see Bernardo et al., 2015, Bernstein, 2015, and 
Cerrato and Cifre, 2018). Interestingly, while gender perceptions have changed considerably over 
the years in terms of universal support for women pursuing professional and political careers, 
perceptions regarding traditional gender roles dominate on the home front. In particular, while men 
have picked up a little over time in terms of household chores, there is still a significant gap, with 
women spending, on average, about an hour more than men (U.S. Bureau of Labor Statistics, 
2015). And this gap exists even in the younger generation (18-30 years of age). One possible 
explanation is that men are pitching in just a little more at home as a means to encourage women 
to work outside the home and bring in another paycheck, rather than because their gender role 
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perceptions may have shifted. That is, the increasing support for women in the workforce may not 
necessarily be tied solely to progressive thinking on the part of men, but may be at least as much 
due to a “money buffering” notion for times of economic challenges (Donner, 2020). Another 
possible explanation is that society perceives a clean house as a signal of the residence of a “good 
family” (see Mulder and Lauster, 2010), and this societal pressure for cleanliness appears to rest 
squarely on the shoulders of women, resulting in the woman being more concerned about how the 
house looks and investing more time in household chores. Besides, some studies reveal that women 
think they are more efficient in cleaning and household chores, and do not trust a male partner to 
do the job “right” (see Vieira et al., 2019).  

Age also impacts time-use. Individuals below the age of 30 years have a lower preference 
for household chores relative to their older peers. Younger individuals are likely to be either 
students or young professionals in the formative years of their career, and such individuals 
generally participate less and allocate relatively limited time to household responsibilities 
compared to older individuals (Sánchez et al., 2014). Moreover, such individuals are also less 
likely to invest time in personal and household care activities relative to older individuals (Regitz-
Zagrosek, 2012). Also interesting to note is that younger individuals (those below the age of 45 
years) have a lower preference for personal business and social activity purposes, implying that 
they are generally less likely to participate in these two activities relative to their older peers. The 
lower proclivity for participating in personal business (that is, family finances and assisting 
family/friends) among younger individuals may be attributed to such individuals being more 
focused on asset building and not as much on financial planning and asset investment for 
retirement (Taft et al., 2013). The lower participation in social activities among young individuals 
may be tied to being more time poor, because of juggling career pressures and family pressures. 
As observed by Harvey and Mukhopadhyay (2007) and Williams et al. (2016), the convergence of 
career pressures and life-cycle pressures is a leading cause for time poverty. Further, religious 
activities, which also serve a social purpose and are included within the social category, are less 
likely to be engaged in by younger individuals (see Pew Research Center, 2018), because of 
generally lower religiosity among the younger generation.  
 
Household Attributes: The influence of household attributes indicates that individuals in large 
households have a higher baseline preference for personal business and social activity purposes. 
(see Bhat et al., 2016 and Astroza et al., 2017 for similar findings). The latter finding is perhaps a 
reflection of a simple “numbers” effect; a larger family provides more opportunity to interact and 
partake in rewarding social activities. The results also point to the higher investment of time in 
household chores as the number of children (less than 15 years of age) increases, perhaps reflecting 
a general preference for personally (and in the comfort and privacy of the home) meeting the 
biological needs of young children (see Farkas et al., 2000 for a similar result). Also, and not 
surprisingly, respondents in households with many children are less likely (than respondents in 
households with zero or fewer children) to invest time in leisure activities. This is consistent with 
the hypothesis that employed parents with children are prone to time poverty for leisure and 
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relaxation activities, reinforcing the high time cost of children found by Ekert-Jaffé (2011) and the 
time crunch experienced by working parents found by Bernardo et al. (2015) and Craig and Brown 
(2016). Finally, within the group of household socio-demographics, a higher household income 
leads to more household chores, and more leisure and less social activities (for income levels of 
750 or more euros relative to lower income levels).  The elevated participation in leisure among 
high income individuals is expected, given that leisure activities have an associated financial 
outlay and higher income households are better positioned to absorb these costs (see Highfill and 
Franks, 2019, and Parady et al., 2019). In addition, an explicit show of leisure indulgence may be 
a socio-cultural vehicle to signal wealth, power and status, and privileged access to limited 
resources. The lower social activity participation among high income individuals (or, alternatively, 
the higher social activity participation among the low income individuals) is reasonable because 
social activities typically do not cost money. Besides, this effect may also be proxying for the 
effect of the closer-knit extended family and community unit of socialization among immigrants 
in the Netherlands, who generally earn less than domestic-born citizens. 
  
Baseline Preference Constants: The baseline preference constants do not have any clear and 
substantive interpretations because of the presence of count variables (such as number of 
household members and number of children in the household). However, the negative sign 
corresponding to social activities is consistent with the low participation in this activity purpose 
relative to other activity purposes, as presented earlier in Table 3.  
 

Satiation Effects Through k  Parameters: To allow heterogeneity in the parameters across 

individuals, while also guaranteeing the positivity of the parameters, they are parameterized as 

=exp( )ωk k k   . The estimates in Table 4 for the satiation effects correspond to the elements of the 

k  vector.  A positive value for a k  element implies that an increase in the corresponding element 

of the k  vector increases k , which has the result of reducing satiation effects and increasing the 

continuous consumption quantity of alternative k (conditional on consumption of alternative k). 

On the other hand, a negative value for a k  element implies that an increase in the corresponding 

element of the ωk  vector decreases k , which has the result of increasing satiation effects and 

decreasing the continuous consumption quantity of alternative k (conditional on consumption of 
alternative k).   

The final specification (see bottom panel of Table 4) indicates that, while there is no 
statistically significant difference between men and women in participation in leisure, conditional 
on participation, women engage for less time in leisure. This gender inequality in leisure activity 
time is well-established in the time poverty literature. Sociologists Hochschild and Machung 
(1989) coined the term “the second shift” to describe the additional time burdens and 
responsibilities of working mothers, leaving them with little time for leisure and relaxation 
pursuits. Hochschild and Machung posit that working women are not only responsible for a daily 
shift of paid work, but also an additional shift of unpaid work in the home. More recent studies in 
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different countries around the world (see Powell and Craig, 2015, Balish et al., 2016, and 
Annandale and Hammarstrom, 2015) confirm this gender-based leisure time inequality. This is 
also supported by the 2018 American Time Use (ATUS) data, which indicates that men, on 
average, spend 50 more minutes per day in leisure relative to women (U.S. Bureau of Labor 
Statistics, 2019).   

The age effect on duration of participation in social activities is interesting, and highlights 
the MDCEV model’s ability to allow different directions of impact on the discrete choice of 
participation and the continuous time investment conditional on participation. Specifically, while 
younger individuals are less likely to partake in one or more social activity episodes during the 
course of the week (as discussed earlier), they participate for longer periods in social activity if 
they participate in one or more episodes. This may be reflecting a justification effect or a “fixed 
cost” effect, wherein once the relatively time-poor young individuals decide to participate in social 
activities, they decide to invest a good amount of time in it. Finally, as the number of individuals 
in a household increases, not only does participation in household chores increase, but so does the 
time invested in household chores. 

The satiation effects constants generally reflect the high duration of time investment in 
leisure activity and the low duration of time investment in personal business activity, subject to 
participation. Of course, these constants also adjust for the sample range of explanatory variables, 
as well as the magnitudes of the estimated baseline preferences, to provide the best fit for the 
continuous consumption values.  

 
Scale Parameter: The estimated value of the scale parameter is presented in the last row of Table 
4. The scale parameter is statistically significant and is greater than zero (as it should be). 
Importantly, it is also statistically different from one (the t-statistic for this test is 45.0). Clearly, 
an arbitrary normalization of the scale parameter to one will lead to an unnecessary degradation of 
the model fit.     

  
5.4. Data Fit Measures 
To evaluate the fit of our model, we compute the same disaggregate and aggregate metrics as 
discussed in the simulation experiment section.  The log-likelihood at convergence of the two-
constraint model is -15,693.2, while the log-likelihood measure at constants is -16425.6. A nested 
likelihood ratio test clearly rejects the null hypothesis that the estimated model is no better than 
the constants-only model (the test statistic is 1464.8, which is greater than the chi-squared table 
statistic with 23 degrees of freedom at any reasonable level of significance. For comparison, the 
log-likelihoods at convergence for the one-constraint models are -16249.9 and -16715.5, clearly 
lower than the log-likelihood at convergence of the two-constraint model. Also, the average 
probability of correct prediction for the discrete consumption is 0.374 from the two-constraint 
model, and 0.337 and 0.336 from the one-constraint models, while the disaggregate-level MAPE 
is 31.2% for the two-constraint model and 44.7% and 51.6% for the one-constraint models  
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The aggregate-level fit measures for the three models are shown in Table 5. For ease of 
presentation, we provide the pairwise predictions of activity participation at the disaggregate level 
for the four activities in our application (based on whether or not an individual participates in each 
of these four activities, there are a total of 24 = 16 activity-combinations; however, to make our 
presentation simple and to avoid clutter, we only provide pairwise predictions of activity 
participation, which corresponds to 6 possible combinations). For each of the three models, the 
predicted shares of the pairwise combinations at the discrete level are computed and provided in 
the top panel of Table 5. Our proposed model with a weighted MAPE value of just over 3% 
outperforms both the single-constraint models having weighted MAPE values of more than 8%. 
Even in terms of the number of inside alternatives chosen, the weighted MAPE values of just under 
30% for the one-constraint models are 2 times the weighted MAPE value of our proposed model. 
The aggregate fit measures in the bottom panel of Table 5 correspond to the conditional continuous 
consumption dimension (that is, to the average predicted continuous values; in our context, these 
values are the number of hours in a week for which an individual engages in the respective “inside” 
activity, given that an individual decides to participate in that activity). Once again, the prediction 
accuracy of the two-constraint model is superior to the one-constraint models. In fact, unlike the 
case of our simulation exercise, wherein the data generation process itself is embedded in the two-
constraints assumption, the data that we use in our application is naturally observed and derived 
from individuals’ weekly activity participation decisions; therefore, the performance of the 
proposed model at the aggregate as well as disaggregate levels reinforces the notion that consumers 
indeed consider multiple resource constraints when deciding their multiple discrete-continuous 
consumption choices. In summary, the closed-form MC-MDCEV proposed here is a clear winner 
(and by a huge margin) over the single-constraint models.  
 
5.5. Comparison with Earlier Multiple-Constraint Study 
In this section, we compare the performance of our closed-form model with Castro et al.’s open-
form model (that assumes the usual type-I extreme value based on the maximum distribution for 
the error terms and proposes an open-form probability structure), in terms of log-likelihood values 
at convergence and prediction accuracy. To do so, we retain the final empirical specification 
obtained in our closed-form model. However, the Castro et al. model needs overall budgets for 
time and expenditure before estimation. We constructed these overall budgets by including all non-
work related activities (that included all the four inside activity categories of the current paper as 
well as the activity categories of “education” and “sleep and relaxing”) in the budget computation. 
The outside Hicksian good along the time duration dimension is considered to be “sleeping and 
relaxing” (in which there was zero expenditure across all individuals) and the outside Hicksian 
good along the expenditure dimension is considered to be “education, other weekly cost and 
savings” (in which there was no or very little time investment among the group of workers, even 
those who studied).  

The performance comparison of our proposed model and the Castro et al. model is 
presented in Table 6. The top row corresponding to the log-likelihood values at convergence 
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indicate a better fit for our proposed model than Castro et al.’s open-form model for the empirical 
application. The model predictions in terms of discrete and continuous consumptions are 
subsequently presented in Table 6. The top panel below the log-likelihood row provides the 
discrete consumption predictions for joint participation in pairwise activities; our proposed MC-
MDCEV model with weighted MAPE of just above 3% is found to outperform the open-form MC-
MDCEV which reports a weighted MAPE of close to 13%. The lower panel of the table presents 
the predictions along the continuous consumption dimension for both the models. The prediction 
errors for both the models are quite comparable but our closed-form model has a marginally lower 
weighted MAPE compared to its open-form counterpart. Overall, the performance of our proposed 
model is slightly better than the model presented by Castro et al. (2012), although both the models 
perform reasonably well. However, important to emphasize is that our model is computationally 
much more efficient than the open-form formulation. While the proposed model took a mere 16 
minutes to estimate, the open-form simulated method took more than 9 hours to converge. Of 
course, the convergence time will depend on the capacity of the machine and how one would 
numerically simulate the open-form probability expression (we used a Halton-sequence method 
with 100 draws per individual); nevertheless, these numbers give a reasonable sense of the 
advantage of our closed-form model even for just the two-constraint case. The computational 
advantage of our model can only be anticipated to be substantially more when going beyond the 
two-constraint case.  

The comparison exercise with the Castro et al. shows promise for our proposed closed-
form model with multiple constraints. However, important to keep in mind is that while the Castro 

et al. model is based on the NL MDCEV model of Bhat (2008), our proposed model here is based 

on the RG L MDCEV with a reverse Gumbel error structure. This itself has some implications 

that need further careful investigation to assess the relative data fit performances of the different 
model structures (notwithstanding the computational gains and neat closed-form nature of our 
proposed model). To keep the presentation manageable here, consider the case of only a single 
constraint. The linear outside good utility basis of the proposed RG L MDCEV model (as well 

as Bhat’s (2018) and Bhat et al.’s (2020) L MDCEV), of course, has the advantage of model 

estimation when there is no budget information. This is possible because the outside good 
consumption does not appear in the likelihood function. However, a lingering question may be 
whether the L -based models perform well regardless of the level of the unobserved budget, 

because the model formulation itself, while guaranteeing the positivity of all consumed inside 
goods, does not guarantee the positivity of the outside good consumption. This is in contrast to the 

traditional NL MDCEV Model, where the primal feasibility condition of positive consumption 

of all goods (including the outside good), given a budget, is immediately satisfied based on the 
complementary slackness KKT first-order stochastic conditions; see footnote eight of Pinjari and 
Bhat, 2011).  

To be sure, the application of the L MDCEV models, even when budgets are actually 

observed, does not, by itself, constitute a problem, because the probability expression in the L
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MDCEV is based on stochastic KKT conditions (not deterministic KKT conditions, as in most 
optimization problems). That is, given data, the likelihood expression maximization provides a 
possible optimal solution (the set of estimated model parameters) that then has to be checked for 
primal feasibility when translated to consumption predictions to be declared as the true optimal 
point (primal feasibility here refers to the requirement that the outside good consumption be strictly 
positive). So, once estimated, the budget condition has to be imposed in the L MDCEV models 

during forecasting. This is a case where the model estimation is one step toward optimal 
consumption determination (but it does not guarantee primal feasibility), which then needs to be 
vetted through the back-end forecasting process to satisfy primal feasibility and obtain true optimal 
consumptions. Of course, when the budgets are large (moving toward infinity), there is less need 
to consider any error truncation operations during forecasting because positivity of the outside 
good will be near-guaranteed during the estimation step itself. On the other hand, when budgets 
are tight, there would be more need for truncation operations during forecasting. The empirical 
effects of different truncation levels (equivalently, different budget tightness levels) on the RG L
MDCEV model (and also the L MDCEV model) is an important area for future investigation.3 

                                                 
3 In a recent paper, Palma and Hess (2020) examine this issue of the performance of linear outside good utility models 
when budget information is available. However, any results from that study should be viewed with caution and is not 
immediately applicable to the performance of the L MDCEV models presented here and in Bhat (2018) and Bhat et 

al. (2020). This is because the stochastic error basis in that paper is different from the one used in the L MDCEV 

models. Specifically, similar to several earlier studies in the environmental economics literature (see, for example, 
von Haefen and Phaneuf, 2003 and Kuriyama et al., 2010), Palma and Hess assume away any random error term in 
the outside good utility. The senior author of this paper has already expressed reservations in using such a structure, 
as articulated in Bhat (2008) (please see Section 6.2 of that paper, especially the text surrounding Equation (41) and 
(42)). Basically, the environmental economics approach assumes that the analyst knows all consumer-related and 
market-related factors going into the valuation of the outside good, but not for the inside goods. While it is true that 
only error differences from the outside good error term matter, considering the presence of an outside good error term 
engenders a correlation among the differenced error terms, which gets ignored in the absence of an outside good error 
term. The approach used in the L MDCEV models, in contrast, is conceptually consistent in considering the utilities 

of all alternatives as being random. Another way to see this is that, in the Environmental Economics approach, if 
instead of the outside good’s utility, the utility of some other inside good is considered deterministic, we obtain 
different probability expressions and probability values for the same consumption pattern (again, please see Equations 
43 through 48 of Bhat, 2008 for a detailed explanation of this point). There also is an important implication for 
forecasting if an analyst considers the outside good utility to be linear and deterministic, as in Palma and Hess. In 
particular, the predicted consumptions of the inside goods is based on draws from a log-extreme value error term (that 
is, based on exponentiating draws from a type-I (maximum) extreme value distribution). This will have a severe effect 
on inside good consumption predictions, given the already very fat right tail of the (maximum) extreme value error 
term (which will need substantial truncation during forecasting). In the case of the L MDCEV models, on the other 

hand, as just mentioned, it is the difference in error terms between each inside good and the outside good that are at 
play and determine consumption quantities. These differenced error terms are, in the univariate margins, symmetric 
and logistically distributed. The symmetric logistic distribution does not have anywhere close to the problem of the 
fat right tail as the extreme value, though it still has a fatter tail than the normal distribution. Basically, the stochastic 
distributions play an important role in L MDCEV models, and some initial investigations suggest that the budget 

tightness issue is not that much of a concern in our L MDCEV models as much as that expressed in Palma and Hess. 

Also, to be noted is that for both the extreme value distribution based on the Gumbel and the reverse Gumbel, the 
difference of inside good error terms from the outside good error term, in the univariate margin, takes an identical 
symmetric logistic distribution.  In multivariate space, the discrete and continuous consumptions for the inside goods 
in the L MDCEV and RG L MDCEV models can be determined from a standard multivariate logistic distribution, 
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Also of importance here is that, for the case when budgets are actually observed, the conventional 
approach to generate data based on specific model parameters, and then examining whether the 
resulting data recovers model parameters, is not the right approach for assessing model 
performance. This is because the data generation process, given parameters, will necessarily 
consider the truncation process to develop data sets. That is, with the same parameters but different 
budgets, the data generated will be quite different. Thus, given the data generated, it is meaningless 
to try to see if the generated data (after truncation based on the budget) recovers the model 
parameters (except in the case when the budget goes toward infinity, when there will be little 
truncation needed in generating the data with the parameters). The better measure of the ability of 
L MDCEV models to handle cases with budgets would be to examine the closeness of predicted 

consumptions with actual consumptions in the generated data. 
 

6. CONCLUSION 
The MDCEV model, as formulated by Bhat (2005, 2008, 2018), is based on the notion that 
consumers maximize an additively separable non-linear utility function subject to a single linear 
binding constraint. However, this may not always be the case. For example, in addition to a time-
budget, an individual’s activity-participation decisions will also generally be bounded by a money-
constraint because certain activities incur expenses. Or, an individual’s decisions regarding the 
purchase of consumer goods may be impacted by both a money-constraint and a storage-constraint. 
In such cases, an individual’s multiple discrete-continuous preferences and the multiple-constraint 
effects get entangled; thus, ignoring any one of the multiple constraints will, in general, lead to 
inconsistent and biased model estimations, which, in turn, can have adverse consequences on 
model forecasting and policy evaluations. A limited number of studies in the past have attempted 
to consider multiple-constraints in a multiple discrete-continuous framework; however, they either 
employ restrictive utility function forms or are difficult to estimate because of the non-closed form 
of the resulting probability expressions.  

In this paper, we propose, for the first time, a multiple-constraint MDCEV (MC-MDCEV) 
model that retains the utility structure of the traditional MDCEV model as well as maintains a 
closed-form expression for the probabilities, regardless of the number of constraints. To do so, we 
use a type-I extreme value distribution for the error term in its minimization form in the baseline 
utility preference of each good rather than a maximization form as in Bhat’s original MDCEV 
formulation. In addition, we use a linear form of utility for the baseline preference for the outside 
goods as in Bhat (2018), rather than the non-linear form of utility adopted in Bhat (2008). Finally, 
to provide additional model flexibility, we also employ a slightly different version of the utility 
functional form relative to earlier MDCEV formulations, which nicely integrates with the other 
two changes indicated above to provide a new closed-form multiple constraint MDCEV model.  

                                                 
though using different areas of integration and from different locations of the density space.  However, the estimated 
model parameters (from a given data set) will then simply adjust themselves in the L MDCEV and RG L MDCEV 

models, such that the net effect on the performance of predicted consumptions from both these models should not be 
much different. 
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The statistical foundation of the proposed model is based on the fact that the difference 
between a minimal type-I extreme value random variable with scale σ and the weighted sum of the 
exponential of standardized minimal type-I extreme value random variables (scaled up by σ) leads 
to an apparently new multivariate distribution that has an elegant and closed-form survival 
distribution function. This forms the core of the new model, upon which other model specification 
and identification issues are developed. The new model provides an easy approach for forecasting, 
as presented in detail in the paper.  

A simulation experiment is conducted to assess the ability of our proposed model to recover 
true underlying parameters, and also to examine the potential consequences of employing a single-
constraint MDCEV model when there are in fact two budget considerations. The appropriateness 
of the models is assessed by the ability to recover parameters from finite samples by generating 
simulated data sets. In addition, the predictive ability of the different models is compared. The 
simulation results clearly indicate the preference estimation bias and the predictive inferiority of 
the single-constrained models when the two-constrained model is the correct one. Next, to 
demonstrate an application of our proposed MC-MDCEV model, we use the 2012 LISS 
(Longitudinal Internet Studies for the Social Sciences) Dutch panel data to investigate the 
determinants of individuals’ week-long activity-participation decisions, subject to both a time as 
well as money constraint.  

The proposed MC-MDCEV should prove to be beneficial in a number of multiple discrete-
continuous choice contexts with more than one linear constraint. The closed-form probability 
structure makes the estimation procedure no more difficult than for traditional MDCEV models. 
Of course, one can attempt to enhance the model specification by relaxing the IID assumption 
across the error terms of alternatives or allowing for random coefficients (especially when there 
are alternative-specific variables available); however, doing so will inevitably dismantle the 
closed-form probability structure, making the estimation process relatively tedious (especially as 
the number of constraints increase).  

The comparison exercise with the Castro et al. (2012) model shows promise for our 
proposed closed-form model with multiple constraints. However, based on the discussions in 
Section 5.5, additional research investigations are needed to gain insights into budgetary contexts 
when the proposed model can be expected to perform better than in other contexts, as well as to 
compare the relative data fit performances of different model structures for multiple constraints. 
In any case, we hope that our proposed simple closed-form multi-constraint MDCEV model will 
contribute to a new direction of application possibilities and to new research in situations where 
consumers face multiple constraints within a multiple discrete-continuous choice context.  
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Appendix A: Integration to Arrive at the Multivariate Survival Distribution Function 

To show that the multivariate survival function collapses to a closed-form expression, we start 
off with Equation (12) in text, which is,  
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The integrand above can be simplified as follows: 
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Given that the random variables 1  and 2  are independent, the integration in Equation (A.1) can 

be re-written as, 
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This is a straightforward integration to solve, which results in 
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Now, evaluating the limits, we have, 
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Therefore, the integration in Equation (A.1) results into the following closed-form expression. 
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This is exactly Equation (11) in the text. 



40 

Appendix B: Proof for the Partial Derivative of the Survival Function Formulation 

This proof is best illustrated with the help of an example since the formulation is based on the 
pattern recognition of the partial derivative terms. 

For instance, let us take a case of two-constraints and 4 inside goods (i.e., k=3,4,5, and 6, 
since k=1 and 2 are the two outside goods corresponding to the two-constraints). 

The survival function is given by, 3 4 5 6 6 6
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Now, suppose that we are interested in determining the third order partial derivative of this survival 

function with respect to 3 4,w w , and 5w . This third order derivative takes the following form. 
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In our method, we define the following matrices for determining the third (n=3) order derivative. 
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With the above defined matrices for the case in hand, the derivative terms for the survival function 
can be succinctly written as,  
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Expanding this equation will yield all the partial derivative terms obtained earlier. 
 
For any nth order partial derivative and with respect to any combination of the inside goods, the 
above formulation can be generalized as below,  
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This is exactly the expression in Equation (17) in the text.  
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Appendix C: Adjustments to Probability Expressions in the Situation where Some of the 
Goods are Always Consumed 

 

For all the inside goods ‘L’ that are always consumed, *ln ( 1, 2,..., )l l lV x l R R L    β z . 

In the situation where ‘L’ goods are always consumed and some of the other inside goods 
‘M’ are consumed, Equation (23) in the text would take the following form,  
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When all the inside goods are consumed, there is no change in the formulation because the 

‘L’ goods will automatically be accounted for, so the probability expression remains the same as 
the following. 
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When no other inside goods other than the ‘L’ goods that are always consumed are 
consumed, then the probability expression takes the following form. 
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Table 1. Simulation experiment results 

Parameter Metrics 
Two-constraints 
(both constraints 

active) 

Single constraint 
(only first constraint 

active) 

Single constraint 
(only second 

constraint active) 

1  

True value 1.2500 1.2500 1.2500 

Estimate 1.2506 0.4666 0.5505 

APB (%) 0.0448 62.6754 55.9607 

FSSE 0.0436 0.0388 0.0404 

ASE 0.0435 0.0393 0.0411 

APBASE (%) 0.4285 1.3607 1.8936 

2  

True value 1.0000 1.0000 1.0000 

Estimate 0.9996 0.9937 0.8737 

APB (%) 0.0423 0.6295 12.6348 

FSSE 0.0271 0.0265 0.0266 

ASE 0.0276 0.0253 0.0238 

APBASE (%) 1.6402 4.8593 10.4951 

3  

True value 2.7183 2.7183 2.7183 

Estimate 2.7224 1.3345 3.4059 

APB (%) 0.1523 50.9064 25.2970 

FSSE 0.0591 0.0661 0.0568 

ASE 0.0601 0.0651 0.0558 

APBASE (%) 1.6532 1.4037 1.7262 

4  

True value 2.7183 2.7183 2.7183 

Estimate 2.7170 3.5689 1.2628 

APB (%) 0.0465 31.2914 53.5430 

FSSE 0.0633 0.0600 0.0717 

ASE 0.0619 0.0569 0.0671 

APBASE (%) 2.2397 5.1256 6.3296 

  

True value 1.0000 1.0000 1.0000 

Estimate 0.9990 0.8919 0.9291 

APB (%) 0.1000 10.8126 7.0908 

FSSE 0.0230 0.0224 0.0216 

ASE 0.0237 0.0233 0.0229 

APBASE (%) 2.6191 3.9395 6.0611 
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Table 2. Aggregate measures of fit for the simulation experiment 

Discrete choice consumption: share of observations 
with consumption in outside goods and… 

Actual share 
Two-constraint 

model prediction 

One-constraint 
model prediction: 

first constraint 

One-constraint 
model prediction: 
second constraint 

No inside good consumption 857 876 1337 1252 

First inside good consumption only 479 477 726 205 

Second inside good consumption only  788 791 418 1086 

First and second inside good consumptions only 876 856 519 457 

Weighted Mean Absolute Percentage Error - 1.47 48.47 46.20 

Weighted Mean Absolute Percentage Error for 
number of inside alternatives picked 

- 1.33 32.00 27.93 

Continuous consumption (conditional on positive 
discrete choice consumption) 

Observed 
Two-constraint 

model prediction 

One-constraint 
model prediction: 

first constraint 

One-constraint 
model prediction: 
second constraint 

First inside good consumption 20.76 20.89 5.43 13.61 

Second inside good consumption 30.90 29.59 19.33 6.44 

Weighted Mean Absolute Percentage Error  2.78 52.07 61.89 
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Table 3. Descriptive statistics for the time-use application (N=1193 observations) 

Activity 
Participation 

(%) 
Duration (hours/week) Average unit 

price 
(Euros/hour) Mean St. Dev. Min. Max. 

Household chores 92.8 25.6 15.7 1.0 108.0 6.05 

Leisure 94.3 31.9 16.1 1.0 102.0 1.37 

Personal business 93.2 7.5 8.1 0.2 81.3 0.00 

Social 42.5 11.7 12.5 0.3 71.0 0.00 
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Table 4. Estimation results for the MC-MDCEV model 

 Variables 
Coefficient estimates (t-stats) 

Household 
chores 

Leisure 
Personal  
business 

Social 

Individual characteristics     

Female 
0.349 

(8.44) 
- - - 

Age (Base: More than 45 years)     

Below 30 years 
-0.397 

(-7.54) 
- 

-0.420 
             (-7.30) 

-0.174 
             (-2.51) 

30-45 years - - 
-0.355 

             (-9.32) 
-0.157 

             (-3.35) 

Household sociodemographic     

Household size - - 
0.052 

              (2.81) 
0.065 

              (3.15) 

Number of child(ren) 
0.074 

(1.98) 
-0.107 

             (-4.88) 
- - 

Weekly household income 
(Base: Greater than 1250 Euros) 

    

Less than 500 Euros 
-0.297 

(-3.79) 
-0.232 

             (-4.83) 
- 

0.165 
               (3.26) 

500-749 Euros 
-0.213 

(-2.90) 
-0.163 

             (-3.77) 
- 

0.085 
              (1.89) 

750-999 Euros 
-0.192 

(-1.87) 
- - - 

1000-1250 Euros 
-0.162 

(-2.01) 
- - - 

Baseline preference constant 
2.170 

(20.03) 
1.882 

            (20.85) 
1.062 

             (13.09) 
-0.201 

             (-2.97) 

Satiation effects     

Female - 
-0.084 

             (-2.02) 
- - 

Age (Base: More than 45 years)     

Below 30 years - - - 
0.622 

              (3.79) 

30-45 years - - - 
0.418 

              (3.99) 

Household size 
0.060 

(1.46) 
- - - 

Satiation constant 
1.490 

(11.31) 
2.778 

            (20.40) 
1.199 

             (12.94) 
2.010 

            (35.82) 

Scale parameter 
0.439 

                                                                                                      (35.21) 
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Table 5. Aggregate measures of fit for the model application  

Discrete choice consumption: share of observations 
with consumption in outside goods and joint 
participation in… 

Actual share 
Two-constraint model 

prediction 

One-constraint 
model prediction: 

time constraint only 

One-constraint 
model prediction: 
money constraint 

only 

Household chores and Leisure 1026 1035 1058 1040 

Household chores and Personal business 1003 991 1004 943 

Household chores and Social  449 493 576 540 

Leisure and Personal business 1052 1040 1049 989 

Leisure and Social 463 507 590 558 

Personal business and social 478 508 574 527 

Weighted Mean Absolute Percentage Error - 3.37% 8.63% 8.32% 

Weighted Mean Absolute Percentage Error for 
number of inside alternatives picked 

- 13.75% 29.33% 27.32% 

Continuous consumption (conditional on positive 
discrete choice consumption) 

Observed 
Two-constraint model 

prediction 

One-constraint 
model prediction: 

time constraint only 

One-constraint 
model prediction: 
money constraint 

only 

Household chores 25.60 18.70 12.44 10.89 

Leisure 31.90 27.77 18.01 12.22 

Personal business 7.50 4.63 4.50 6.35 

Social 11.70 15.30 15.17 18.95 

Weighted Mean Absolute Percentage Error - 22.83% 48.70% 55.79% 
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Table 6. Comparison of new closed-form MC-MDCEV vs. Castro et al.’s (2012) open-form MC-MDCEV 

  
Two-constraint model  
(Proposed closed-form 

model) 

Two-constraint model  
(Castro et al.’s 2012, open-

form model) 

Log-likelihood values at convergence  -15693.2 -16295.8 

Discrete choice consumption: share of observations with 
consumption in outside goods and joint participation in… 

Actual share 

Two-constraint model 
prediction 

(Proposed closed-form 
model) 

Two-constraint model 
prediction 

(Castro’s 2012, open-form) 

Household chores and Leisure 1026 1035 819 

Household chores and Personal business 1003 991 788 

Household chores and Social  449 493 400 

Leisure and Personal business 1052 1040 969 

Leisure and Social 463 507 446 

Personal business and Social 478 508 473 

Weighted Mean Absolute Percentage Error - 3.37% 12.88% 

Continuous consumption (conditional on positive discrete 
choice consumption) 

Observed 

Two-constraint model 
prediction 

(Proposed closed-form 
model) 

Two-constraint model 
prediction 

(Castro’s 2012, open-form) 

Household chores 25.60 18.70 34.25 

Leisure 31.90 27.77 37.65 

Personal business 7.50 4.63 8.57 

Social 11.70 15.30 14.99 

Weighted Mean Absolute Percentage Error - 22.83% 24.45% 

 


