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ABSTRACT 

Several consumer demand choices are characterized by the choice of multiple alternatives 

simultaneously.  An example of such a choice situation in activity-travel analysis is the type of 

discretionary (or leisure) activity to participate in and the duration of time investment of the 

participation.  In this context, within a given temporal period (say a day or a week), an individual 

may decide to participate in multiple types of activities (for example, in-home social activities, 

out-of-home social activities, in-home recreational activities, out-of-home recreational activities, 

and out-of-home non-maintenance shopping activities). 

In this paper, we derive and formulate a utility theory-based model for 

discrete/continuous choice that assumes diminishing marginal utility as the level of consumption 

of any particular alternative increases (i.e., satiation).  This assumption yields a multiple 

discreteness model (i.e., choice of multiple alternatives can occur simultaneously).  This is in 

contrast to the standard discrete choice model that is based on assuming the absence of any 

diminishing marginal utility as the level of consumption of any alternative increases (i.e., no 

satiation), leading to the case of strictly single discreteness.  The econometric model formulated 

here, which we refer to as the Multiple Discrete-Continuous Extreme Value (MDCEV) model, 

has a surprisingly simple and elegant closed form expression for the discrete-continuous 

probability of not consuming certain alternatives and consuming given levels of the remaining 

alternatives.  To our knowledge, we are the first to develop such a simple and powerful closed-

form model for multiple discreteness in the literature.  This formulation should constitute an 

important milestone in the area of multiple discreteness, just as the multinomial logit (MNL) 

represented an important milestone in the area of single discreteness.  Further, the MDCEV 

model formulated here has the appealing property that it collapses to the familiar multinomial 

logit (MNL) choice model in the case of single discreteness.  Finally, heteroscedasticity and/or 

correlation in unobserved characteristics affecting the demand of different alternatives can be 

easily incorporated within the MDCEV model framework using a mixing approach.  

The MDCEV model and its mixed variant are applied to analyze time-use allocation 

decisions among a variety of discretionary activities on weekends using data from the 2000 San 

Francisco Bay Area survey. 

 

 



1. INTRODUCTION 

Several consumer demand choices related to travel decisions are characterized by the 

choice of multiple alternatives simultaneously.  Examples of such choice situations include 

vehicle type holdings and usage, and activity type choice and duration of time investment of 

participation.  In the former case, a household may hold a mix of different kinds of vehicle types 

(for example, a sedan, a minivan, and a pick-up) and use the vehicles in different ways based on 

the preferences of individual members, considerations of maintenance/running costs, and the 

need to satisfy different functional needs (such as being able to travel on weekend getaways as a 

family or to transport goods).  In the case of activity type choice and duration, an individual may 

decide to participate in multiple kinds of recreational and social activities within a given time 

period (such as a day) to satisfy variety seeking desires.  Of course, there are several other travel-

related and other consumer demand situations characterized by the choice of multiple 

alternatives, including airline fleet mix and usage, carrier choice and transaction level, brand 

choice and purchase quantity for frequently purchased grocery items (such as cookies, ready-to-

eat cereals, soft drinks, yoghurt, etc.), and stock selection and investment amounts.  

Classical discrete and discrete-continuous models deal with situations where only one 

alternative is chosen from a set of mutually exclusive alternatives.  Such models assume that the 

alternatives are perfectly substitutable for each other.  On the other hand, the simultaneous 

demand for multiple alternatives discussed above corresponds to the situation where the 

alternatives are imperfect substitutes for one another.  In this paper, we formulate a new 

econometric model for such multiple discreteness in demand that is based on utility 

maximization theory.  Specifically, we assume a translated non-linear, but additive, form for the 

specification of the direct utility function, as proposed recently by Kim et al. (2002).  The 
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translated non-linear form allows for multiple discreteness as well diminishing marginal returns 

(i.e., satiation) as the consumption of any particular alternative increases.  This is in contrast to 

standard discrete and discrete-continuous choice models that allow only single discreteness and 

assume a linear utility structure (i.e., no satiation effects).  The econometric model formulated 

here, which we refer to as the Multiple Discrete-Continuous Extreme Value (MDCEV) model, is 

based on introducing a multiplicative log-extreme value error term into the utility function.  The 

result of such a specification is a surprisingly simple closed form expression for the discrete-

continuous probability of not consuming certain alternatives and consuming given levels of the 

remaining alternatives.  To our knowledge, we are the first to develop such a simple and 

powerful model for multiple discreteness in the literature.  Further, the MDCEV model has the 

appealing property that it collapses to the familiar multinomial logit (MNL) choice model in the 

case of single discreteness, and represents an extension of the single discrete-continuous models 

of Dubin and McFadden, 1984, Hanemann, 1984, Chiang, 1991, Chintagunta, 1993, and Arora et 

al., 1998.  Finally, heteroscedasticity and/or correlation in unobserved characteristics affecting 

the demand of different alternatives can be easily incorporated within the MDCEV model 

framework.  Such an extension represents the multiple discrete-continuous equivalent of the 

mixed multinomial logit (MMNL) model (see Bhat, 2003 or Train, 2003 for detailed reviews of 

the MMNL model). 

 There have been several relatively recent studies in the marketing literature on the topic 

of multiple-discreteness.  Hendel (1999) and Dube (2004) consider the purchase of multiple 

varieties within a particular product category as the result of a stream of expected (but 

unobserved to the analyst) future consumption decisions between successive shopping occasions 

(see also Walsh, 1995).  Due to varying tastes across individual consumption occasions between 
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the current shopping purchase and the next, consumers are observed to purchase a variety of 

goods at the current shopping occasion.  The above studies use a linear utility function at each 

individual consumption occasion, with the utility parameters varying across consumption 

occasions.  A Poisson distribution is assumed for the number of consumption occasions and a 

normal distribution is assumed regarding varying tastes to complete the model specification.  

Such a “vertical” variety-seeking model may be appropriate for frequently consumed grocery 

items such as carbonated soft drinks, cereals, and cookies.  However, in many other choice 

occasions, such as time allocation to different types of discretionary activities, the true decision 

process may be better characterized as “horizontal” variety-seeking, where the consumer selects 

an assortment of alternatives due to diminishing marginal returns for each alternative.  Kim et al. 

(2002) propose a utility structure for such “horizontal” variety-seeking with a non-linear utility 

function to accommodate satiation behavior.  This is the overall structure maintained in the 

current paper.  However, the econometric development and the estimation procedure are 

different between our paper and Kim et al.’s paper.  The MDCEV model formulated here also 

represents a very simple and parsimonious model structure compared to the model proposed in 

Kim et al. (2002). To be sure, Kim et al.’s model is not practical for realistic applications, while 

the MDCEV model of this paper is very practical even for situations with a large number of 

discrete consumption alternatives. In fact, we submit that the MDCEV model structure is the 

MNL model-equivalent for multiple discrete-continuous choice analysis. Extensions of the 

MDCEV model to accommodate unobserved heteroscedasticity and error correlation among 

alternatives is straightforward and is similar to the movement from the MNL to the MMNL 

model in the standard discrete choice literature1.  

                                                 
1 There have also been other formulations proposed to handle multiple-discreteness in the literature.  These include 
the Mixed Multinomial-Poisson Approach of Terza and Wilson (1990) and the multivariate probit (logit) approaches 
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In the current paper, we develop the multiple discrete-continuous extreme value 

(MDCEV) model in the context of individual time use in different types of activity pursuits using 

data from the 2000 San Francisco Bay area.  However, the formulation is applicable to any other 

multiple discrete-continuous choice situation.  

 The next section of the paper introduces the importance of time use analysis in travel 

demand modeling, and briefly reviews earlier literature in the area.  Section 3 advances the 

econometric framework for the MDCEV model of time allocation.  Section 4 discusses the data 

source and sample used in the empirical analysis.  Section 5 presents empirical results.  The final 

section provides a summary and identifies directions for future research. 

 

2. OVERVIEW OF TIME-USE ANALYSIS 

2.1 Time-Use Analysis in the Travel Demand Context 

In the past several years, the activity-based approach to travel demand analysis has 

received much attention and seen considerable progress (see Bhat and Koppelman, 1999; 

Pendyala and Goulias, 2002, and Arentze and Timmermans, 2004).  A fundamental difference 

between the commonly-used trip-based approach and the activity-based approach is the way time 

is conceptualized and represented in the two approaches (Pas, 1996; Ye et al., 2004).  In the trip-

based approach, time is reduced to being simply a “cost” of making a trip.  The activity-based 

approach, on the other hand, treats time as an all-encompassing continuous entity within which 

individuals make activity/travel participation decisions.  Thus, the central basis of the activity-
                                                                                                                                                             
of Manchanda et al. (1999), Baltas (2004), Edwards and Allenby (2003), and Bhat and Srinivasan (2004).  But all 
these formulations do not model the continuous component in a multiple discreteness setting.  Further, the multiple 
discreteness is handled through statistical methods that generate correlation between univariate utility maximizing 
models of single discreteness rather than being fundamentally derived from a rigorous underlying utility 
maximization model for multiple discreteness.  The resulting multiple discrete models also do not collapse to the 
standard discrete choice models when all individuals choose one and only one alternative at each choice occasion.  
However, these non-utility maximization models of multiple discreteness are also of value, and can be extended to 
include a continuous component in a flexible manner. 
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based approach is that individuals’ travel patterns are a result of their time-use decisions. 

Individuals have 24 hours in a day (or multiples of 24 hours for longer periods of time) and 

decide how to use that time among activities (and with whom) subject to their schedule, socio-

demographic, locational, and other contextual constraints.  These decisions determine the 

generation and scheduling of trips (see Bhat et al., 2004 for details of an implementation of an 

activity-based approach to travel demand modeling). 

 

2.2 Earlier Studies Relevant to Current Research 

The study of activity time use has received attention in several fields, including 

psychology, anthropology, sociology, urban planning, economics, and travel behavior analysis. 

Qualitative paradigms and frameworks of time use have emerged from all these fields, while 

most of the mathematical frameworks have been developed in the microeconomics and travel 

demand fields.  The next two sections provide a very brief overview of the mathematical studies 

in the microeconomics and travel demand fields that are relevant to the current research effort.  

Section 2.3 positions the current research effort in the context of the earlier studies. 

 

2.2.1 Microeconomic studies 

 The economic approach to time use is based on the assumption that individuals (and the 

households of which they are a part) use their time so that the total utility derived from all the 

activities is maximized.  Each person in the household allocates time as well as money income to 

various activities - receiving income from time expended in the market place and receiving 

utility from spending this income on the consumption of goods and services (Gramm 1975, 

Gronau 1973, Becker 1981; 1965, Mincer 1962; 1963).  Individuals “produce” non-market 

 5



activities using “inputs” - their time and market goods and services.  An individual's choice of 

work time and time in other non-market activities depends on market wages and prices of the 

“inputs” used to produce non-market activities.  In particular, non-market time and consumer 

goods used in “production” of each non-market activity is chosen so as to maximize utility 

subject to constraints imposed by wages, prices of consumption goods, and time (Juster, 1990).  

Recently, Jara Diaz (2003) has focused on the technological relationship between time and goods 

consumption in more detail, and shed new light on the technological relations and constraints 

characterizing the utility maximization problem.  

The economic studies of time use have been comprehensive in their frameworks, and 

have considered a variety of constraints under which individuals make their time-use decisions.  

However, most of these studies are rather theoretical in nature (but see Jara Diaz and Guevera, 

2003 for a study that formulates and applies a microeconomic model). 

 

2.2.2 Travel behavior analysis 

 Travel behavior researchers have turned to the examination of activity time use from a 

need to better understand and forecast travel.  Some of these studies are based on frameworks 

that are not rigorously derived from utility theory (for example, see Allaman et al., 1982; Damm 

and Lerman, 1981; Lu and Pas, 1999; Bhat, 1998), while others use frameworks with utility 

theory as the fundamental basis for time use (Munshi, 1993; Kitamura et al., 1996; Yamamoto 

and Kitamura, 1999; Bhat and Misra, 1999; Meloni et al., 2004).  It is not at all clear that one 

type of studies is necessarily better than the other; in fact, both classes of studies have provided 

important insights into time use behavior.  It should also be noted that utility-theoretic based 
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models in the travel behavior research arena have generally considered time as being the only 

constraint in time allocation, and focused on discretionary activities.  

 

2.2.3 The current research effort 

The research in this paper is aligned with the utility-theoretic class of studies in the travel 

behavior area.  As with earlier studies within this class, time is the only resource constraint 

considered and the empirical focus is on allocation among discretionary activities.  The current 

research, however, generalizes earlier models by formulating a structure that is applicable to 

allocation among any number of activity categories (rather than just two categories).  The 

underlying utility structure of the proposed structure is also very closely tied to preference and 

indifference curve theory, as discussed next.  

 

3. UTILITY STRUCTURE  

Kim et al.’s (2002) proposed utility structure remains at the core of the current research 

effort.  However, for completeness and also because our model development procedure in 

Section 3.1 is different from Kim et al.’s, the discussion here begins from first principles.  In 

Section 3.2, we specify an alternative error structure specification to the one used in Kim et al. 

and adopt a different way of writing the likelihood function, leading to a much simpler model 

formulation. 

Let there be K different activity purposes that an individual can potentially allocate time 

to.  Let  be the time spent in activity purpose j (j = 1, 2,…, K).  We specify the utility accrued 

to an individual as the sum of the utilities obtained from investing time in each activity purpose.  

Specifically, we define utility over the K purposes as: 

jt
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where )( jxψ  is the baseline utility for time invested in activity purpose j, and jγ  and jα  are 

parameters (note that ψ  is a function of observed characteristics, , associated with purpose j). jx

 As discussed by Kim et al. (2002), the utility form in Equation (1) belongs to the family 

of translated utility functions, with jγ  determining the translation and jα  influencing the rate of 

diminishing marginal utility of investing time in activity purpose j.  The function in Equation (1) 

is a valid utility function if )( jxψ > 0 and 0 < jα  ≤ 1 for all j.  Further, the term jγ  determines if 

corner solutions are allowed (i.e., an individual does not participate in one or more activity 

purposes) or if only interior solutions are allowed (i.e., an individual is constrained by 

formulation to participate in all activity purposes).  To see this, consider the case where an 

individual has a total time T available to participate in one or both of two activity purposes and 

spends all the time T between these two activity purposes.  Thus ,21 Ttt =+  which serves as the 

constraint when maximizing utility.  Figure 1 presents this two activity purpose case.  The slope 
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The indifference curve is shown in Figures 1a and 1b for the case where )(2)( 12 xx ψψ =  and 1α  

= 2α  = 0.5.  In Figure 1a, 1γ  = 2γ  = 0, which leads to the case where the slope of the 

indifference curve approaches infinity at the y-axis (i.e.,  = 0 in Equation 2) and approaches 

zero at the x-axis (i.e.,  = 0 in Equation 2).  Thus, the indifference curve is tangential to both 

axes, and only interior solutions are possible.  In the figure, the linear line indicates a time budget 

1t

2t
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of 5 hours, and the optimal consumption point is 1 hour of activity purpose 1 and 4 hours of 

activity purpose 2.  Figure 1b shows the case when 1γ  = 1.25, but 2γ  = 0.  In this situation, the 

indifference curve has a finite slope at the y-axis (since the slope is non-zero and finite by 

Equation (2) when  = 0 and 1t 1γ  ≠ 0).  But the indifference curve remains tangential to the x-axis 

(since the slope is zero by Equation (2) when   = 0 and 2t 2γ  = 0).  In such a case, it is possible 

that no amount of time is invested in activity purpose 1, as is the case in Figure 1b (note, 

however, that an interior solution is still possible in Figure 1b depending on the values of the α, 

γ, and ψ parameters in an individual’s utility function; the values in Figure 1b have been set such 

that a corner solution results).  Figure 1c shows the reverse case when )(5.0)( 12 xx ψψ = , 1α  = 

2α  = 0.5, 1γ  = 0, and 2γ  = 1.25.  Here, the indifference curve is tangential to the y-axis, but has 

a finite non-zero slope at the x-axis.  The values of the parameters are such that a corner solution 

arises with no consumption of activity purpose 2. 

 The discussion above indicates that the utility form of Equation (1) is flexible enough to 

accommodate both internal and corner solutions.  Specifically, if jγ  ≠ 0, it is possible that 

individual q allocates no time to activity purpose j.  On the other hand, if jγ  = 0, it implies that 

individual q allocates some non-zero amount of time to activity purpose j.  In addition, the utility 

form is also able to accommodate a wide variety of time allocation situations based on the values 

of )( jxψ  and jα  (j = 1, 2,…, J).  A high value of )( jxψ  for one activity purpose (relative to all 

other activity purposes), combined with a value of jα  close to 1, implies a high baseline 

preference and a very low rate of satiation for activity purpose j.  This represents the situation 

when individual q allocates almost all her/his time to only activity purpose j (i.e., a 

“homogeneity-seeking” individual).  On the other hand, about equal values of )( jxψ  and small 
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values of jα  across the various purposes j represents the situation where the individual invests 

time in almost all activity purposes (i.e., a “variety-seeking” individual).  More generally, the 

utility form allows a variety of situations characterizing an individual’s underlying behavioral 

mechanism with respect to time allocation to activity purpose j, including (a) low baseline 

preference and high satiation (low jψ  and low jα ), (b) high baseline preference and high 

satiation (high jψ  and low jα ), (c) low baseline preference and low satiation (low jψ  and  high 

jα ), and (d) high baseline preference and low satiation (high jψ  and  high jα ). 

 

3.1 Random Utility Model 

 We develop a statistical model from the utility structure of the previous section by 

adopting a random utility specification.  Specifically, we introduce a multiplicative random 

element to the baseline utility as follows: 

jexx jjj
εψεψ ⋅= )(),( ,                (3) 

where jε  captures idiosyncratic (unobserved) characteristics that impact the baseline utility for 

purpose j.  The exponential form for the introduction of random utility guarantees the positivity 

of the baseline utility as long as )( jxψ  > 0.  To ensure this latter condition, we further 

parameterize )( jxψ  as )exp( jxβ ′ , which then leads to the following form for the baseline 

random utility: 

)exp(),( jjjj xx εβεψ +′= .                (4) 

The  vector in the above equation includes a constant term reflecting the generic preference in 

the population toward purpose j.  The overall random utility function then takes the following 

form: 

jx
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From the analyst’s perspective, the individual is maximizing random utility ( ) subject to the 

time budget constraint that , where T is the time available for allocation among the K 

activity purposes.  The analyst can then solve for the optimal time allocations by forming the 

Lagrangian and applying the Kuhn-Tucker conditions.  The Lagrangian function for the problem 

is: 

U
~
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)( )exp( λγεβ α

where λ  is the Lagrangian multiplier associated with the time constraint.  The Kuhn-Tucker (K-

T) first-order conditions for the optimal time allocations (the  values) are given by: *
jt

[ ] 0)( )exp( 1* =−++′ − λγαεβ α j
jjjjj tx , if , j = 1, 2,…, K           (7) 0* >jt

[ ] 0)( )exp( 1* <−++′ − λγαεβ α j
jjjjj tx , if , j = 1, 2,…, K 0* =jt

The above conditions have an intuitive interpretation.  For all activity purposes to which time is 

allocated (i.e., ), the time investment is such that the marginal utilities are the same across 

purposes (and equal to λ) at the optimal time allocations (this is the first set of K-T conditions; 

note that the first term on the left side of the K-T conditions corresponds to marginal utility).  

Also, for an activity purpose j in which no time is invested, the marginal utility for that activity 

purpose at zero time investment is less than the marginal utility at the consumed times of other 

purposes (this is the second set of K-T conditions in Equation 7).  

0* >jt
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 The optimal demand satisfies the conditions in Equation (7) plus the time budget 

constraint .  The time budget constraint implies that only K-1 of the  values need to 

be estimated, since the time invested in any one purpose is automatically determined from the 

time invested in all the other purposes.  To accommodate this constraint, designate activity 

purpose 1 as a purpose to which the individual allocates some non-zero amount of time (note that 

the individual should participate in at least one of the K purposes, given that T > 0).  For the first 

activity purpose, the Kuhn-Tucker condition may then be written as: 

Tt j

K

j

=∑
=

*

1

*
jt

[ ] 1
1

*
1111

1)( )exp( −++′= αγαεβλ tx                           (8) 

Substituting for λ  from above into Equation (7) for the other activity purposes (j = 2,…, K), and 

taking logarithms, we can rewrite the K-T conditions as: 

11 εε +=+ VV jj  if  (j = 2, 3,…, K) 0* >jt

11 εε +<+ VV jj  if  (j = 2, 3,…, K), where             (9) 0* =jt

)ln()1(ln *
jjjjjj txV γααβ +−++′=  (j = 1, 2, 3,…, K). 

The satiation parameter, jα , needs to be bounded between 0 and 1, as discussed earlier.  To 

enforce this condition, we parameterize jα  as )]exp(1/[1 jδ−+ .  Further, to allow the satiation 

parameters to vary across individuals, we write jjj yθδ ′= , where  is a vector of individual 

characteristics impacting satiation for the jth alternative, and 

jy

jθ  is a corresponding vector of 

parameter.  Also, note that, in Equation (9), a constant cannot be identified in the jxβ ′  term for 

one of the K alternatives (because only the difference in the  from  matters).  Similarly, 

individual-specific variables are introduced in the ’s for (J-1) alternatives, with the remaining 

jV 1V

jV
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alternative serving as the base (these identification conditions are similar to those in the standard 

discrete choice model).  

 

3.2 Econometric Model  

3.2.1 Basic structure 

 To complete the model structure, we specify a standard extreme value distribution for jε  

and assume that jε  is independent of  (j = 1, 2, …, K) .  The jx jε ’s are also assumed to be 

independently distributed across alternatives.  From Equation (9), the probability that the 

individual participates in M of the K activity purposes (M ≥ 2), given 1ε , is: 

( ) 1
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where g is the standard extreme value density function, G is the standard extreme value 

distribution, the first M activity purposes are taken to be the ones in which the individual 

participates for notational convenience, and J is the Jacobian whose elements are given by: 

*
1

111 ][

+

+

∂
+−∂

=
h

i
ih t

VV
J

ε
; i, h = 1, 2, …, M – 1.            (11) 

The term in the first parenthesis in Equation (10) is the continuous density component 

corresponding to the optimal time investment for the M purposes in which the individual 

participates (the first purpose does not appear in this component because it is always selected for 

participation and because the optimal time allocation for this purpose is implicitly determined by 

the time allocation to other purposes).  To see that the term in the first parenthesis in Equation 

(10) corresponds to the continuous density component, note from the first-order conditions in 
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Equation (9) that the optimal time for activity purposes with non-zero time investment is 

governed by the nonlinear function given by 11 εε +−= ii VV  (i = 2, 3, …, M).  A change-of-

variable technique is used to obtain the density of  from ),...,,( **
3

*
2

*
Mtttt = ε  ),...,,( 32 Mεεε= , 

and results in the Jacobian term J.  The term in the second parenthesis in Equation (10) is a 

discrete distribution component corresponding to the purposes in which the individual does not 

participate. 

 Substituting the extreme value density and distribution functions for g(.) and G(.), 

respectively, Equation (10) can be equivalently written as: 
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Next, the determinant of the Jacobian term can be derived to be as follows (see Appendix A): 
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1   where,1 ||            (13) 

Finally, one can uncondition out 1ε  from Equation (12) to obtain the following unconditional 

probability expression: 
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The integral above can be simplified as shown in Appendix B.  The final result is a remarkably 

elegant and compact closed form structure: 
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                 (15) 

In the case when M = 1 (i.e., only one alternative is chosen), the model in Equation (15) 

collapses to the standard MNL model (if M = 1, the continuous component drops out, because 

the time invested in the chosen activity will be T).  Also, note that the utilities are assumed to be 

linear in the standard MNL model (i.e., jα  = 1 for all j).  This results in the ’s in Equation (9) 

becoming linear.  Thus, the model proposed in this paper is a multiple discrete-continuous 

extension of the standard MNL model. In addition, the model also represents a multiple discrete-

continuous extension of the single discrete-continuous models of Dubin and McFadden, 1984, 

Hanemann, 1984, Chiang, 1991, Chintagunta, 1993, and Arora et al., 1998. Specifically, the case 

of a single discrete-continuous model may be viewed as a two alternative case within the 

multiple discrete-continuous formulation, with one alternative (say the first) always being 

consumed. To see this, assume that the objective was to analyze if an individual participates in 

jV
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recreational activities during a certain time period and the time invested in recreational activities. 

Then, the first activity purpose can be labeled as “non-recreational” (essentially, an “outside 

good”) and the second as “recreational”. Since all individuals would invest some amount of time 

in “non-recreational” activities, 1γ  = 0. One can then use the multiple discrete-continuous 

formulation to model participation choice and duration of time in recreational activity, with T 

being the total amount of time within the period under consideration (for example, 24 hours if 

the time period is a day).  

 

3.2.2 Accommodating heteroscedasticity and error correlations across alternative utilities 

 The previous section assumed that the jε  terms are independently and identically 

distributed across alternatives, and are distributed standard Gumbel.  However, these 

assumptions are needlessly restrictive.  Incorporating heteroscedasticity and error correlation in 

the MDCEV model is straightforward, and leads to the Mixed MDCEV (or MMDCEV) model 

(this is similar to the movement from the MNL model to the mixed MNL model).  Specifically, 

the error term jε  may be partitioned into three independent components jζ , jwη′ , and jzµ′ .  

The first component, jζ , is assumed to be independently and identically standard Gumbel 

distributed across alternatives. The second component, jwη′ , allows the estimation of distinct 

scale (variance) parameters for the error terms across alternatives.  is a column vector of 

dimension K with each row representing an alternative.  The row corresponding to alternative j 

takes a value of 1 and all other rows take a value of 0.  The vector 

jw

η  (of dimension K) is 

specified to have independent, normally distributed and mean-zero elements, each element 

having a variance of .  Let 2
jω ω  be a vector of true parameter characterizing the variance-

 16



covariance matrix of the multivariate normal distribution of η .  The third component in the error 

term, jzµ′ , constitutes the mechanism to generate correlation across unobserved utility 

components of the alternatives.  is specified to be a column vector of dimension H with each 

row representing a group h (h = 1,2,...,H) of alternatives sharing common unobserved 

components.  The row(s) corresponding to the group(s) of which j is a member take(s) a value of 

one and other rows take a value of zero.  The vector 

jz

µ  (of dimension H) may be specified to 

have independent normally distributed elements, each element having a variance component .  

The result of this specification is a covariance of  among alternatives in group h.  Let 

2
hσ

2
hσ σ  be a 

parameter vector characterizing the variance-covariance matrix of µ . 

 For given values of the vectors η  and µ , one can follow the derivation of the earlier 

section and obtain the usual MDCEV probability that the individual participates in M of the J 

activity purposes (M ≥ 2): 
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The unconditional probability can then be computed as: 
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where F is the multivariate cumulative normal distribution.  The reader will note that the 

dimensionality of the integration above is dependent on the number of elements in η  and µ . 

 

3.2.3 Estimation of the mixed MDCEV model 

 The parameters to be estimated in the MMDCEV model of Equation (17) include the β  

vector, the jθ  vectors and jγ  scalars for each alternative j (these are embedded in the  

values), and the 

jV

σ  and ω  vectors.  Let θ  be a column vector that stacks all the jθ  vectors 

vertically, and let γ  be another column vector of the jγ  elements stacked vertically. 

 We use the maximum likelihood inference approach to estimate the parameters of the 

MMDCEV model.  Introducing the index q for individuals, we can write the likelihood function 

as: 
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We apply quasi-Monte Carlo simulation techniques to approximate the integrals in the 

likelihood function and maximize the logarithm of the resulting simulated likelihood function 

across all individuals with respect to β , θ , γ , σ , and ω . Under rather weak regularity 

conditions, the maximum (log) simulated likelihood (MSL) estimator is consistent, 

asymptotically efficient, and asymptotically normal (see Hajivassiliou and Ruud, 1994; Lee, 

1992; McFadden and Train, 2000). 
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In the current paper, we use a scrambled version of the Halton sequence to draw 

realizations for η  and µ  from their population normal distributions. Details of the Halton 

sequence and the procedure to generate this sequence are available in Bhat (2003). 

 

4. DATA SOURCES AND SAMPLE FORMATION 

4.1 Data Sources 

The data source used for this analysis is the 2000 San Francisco Bay Area Travel Survey 

(BATS). This survey was designed and administered by MORPACE International Inc. for the 

Bay Area Metropolitan Transportation Commission.  The survey collected information on all 

activity episodes undertaken by individuals from over 15,000 households in the Bay Area for a 

two-day period (see MORPACE International Inc., 2002 for details on survey, sampling, and 

administration procedures).  The information collected on activity episodes included the type of 

activity (based on a 17-category classification system), start and end times of activity 

participation, and the whether the episode was pursued in-home or out-of-home.  Furthermore, 

data on individual and household socio-demographics, individual employment-related 

characteristics, household auto ownership, and internet access and usage were also obtained. 

In addition to the 2000 BATS data, we also obtained zonal-level land-use and 

demographics data for each of the Traffic Analysis Zones (TAZ) in the San Francisco Bay area. 

This data included: (1) area by land-use purpose, (2) number of housing units, (3) employment 

levels by sector, (4) zonal population, income and age distribution of the population, and (5) area 

type of the zone (core CBD, other CBD, urban, suburban, or rural). This information was used to 

study the impact of the characteristics of the residence zone. 
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4.2 Sample Formation 

The process of generating the sample for analysis involved several steps. First, only 

individuals 16 years or older were considered to focus the analysis on the subgroup of the 

population who clearly exercise a choice in their time-use.  Second, we selected only weekend 

day data from the original survey sample.  This was done because individuals participate more 

frequently, and for longer durations, in discretionary activities over the weekends than during the 

weekdays (as indicated earlier in the paper, our empirical focus is on discretionary activities in 

this paper).  Individuals also participate in more variety of types of discretionary activities on the 

weekends than weekdays (Bhat and Lockwood, 2004).  Thus, time use analysis modeling for 

discretionary activities is particularly interesting over the weekends.  Third, social activity 

episodes (including conversation and visiting family/friends) and recreational activity episodes, 

including such activities as hobbies, exercising, and watching TV, were selected from the larger 

file of all activity episodes.  Fourth, the total time invested during the weekend day in each of the 

following four activity purpose categories was computed based on appropriate time aggregation 

across individual episodes within each category: (1) time spent in in-home social activities (IHS), 

(2) time spent in in-home recreational (IHR) activities, (3) time spent in out-of-home social 

(OHS) activities, and (4) time spent in out-of-home recreational (OHR) activities.  Fifth, out-of-

home shopping activity episodes were selected from the original survey file and those episodes 

unrelated to grocery shopping were selected.  The total time invested over the weekend day 

across all out-of-home non-grocery shopping episodes was then computed to provide a fifth 

category of discretionary time-use: time spent in out-of-home non-maintenance shopping 

activities.  For convenience, we will refer to this fifth category as “time spent in out-of-home 

shopping (OHSh) activities” in the rest of this paper.  Sixth, data on individual, household, and 

 20



residence zone characteristics were appropriately cleaned and added. Finally, several screening 

and consistency checks were performed and records with missing or inconsistent data were 

eliminated. 

The final sample for analysis includes the weekend day time-use information of 1917 

individuals.  The analysis of interest is the participation and time invested in five types of 

discretionary activities over the weekend day: in-home social (IHS), in-home recreation (IHR), 

out-of-home social (OHS), out-of-home recreation (OHR), and out-of-home shopping (OHSh).  

Of the 1917 individuals, 1169 (61%) participated in only one activity type, 605 (31.5%) 

participated in two activity types, 126 (6.5%) participated in three activity types, and 17 (1%) 

participated in four activity types (no individual participated in all activity types).  These 

statistics clearly indicate the problem of using standard discrete choice models, since 39% of 

individuals participate in more than one activity type.2 

Table 1 provides descriptive details of participation in each type of discretionary activity.  

The second and third columns indicate the number (percentage) of individuals participating in 

each activity type and the mean duration of participation among those who participate, 

respectively.  Several observations may be made from the statistics in these two columns.  First, 

individuals participate most in OHSh activity over the weekend from among the various 

discretionary activity types.  However, the duration of participation in OHSh activity is short 

compared to other activity types.  This suggests an overall high baseline preference, but also a 

high level of satiation, for OHSh activity in the population.  Second, there is also a high 

                                                 
2 In the current analysis, we assume that the total time invested in discretionary activities is given for each 
individual, and examine the allocation of this total discretionary time to the five types of discretionary activities. A 
more general empirical model would be one that considers non-discretionary activities as an “outside good”, and 
models not only the allocation to the five different types of discretionary activities, but also the time invested in 
discretionary activities and non-discretionary activities.  
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likelihood of participation in IHR activities, and the participation duration in such activities is 

also long.  This suggests a high baseline preference and a low satiation for IHR activities.  Third, 

there appears to be a relatively low baseline preference for IHS activities; the overall baseline 

preferences for the OHS and OHR activities are between those of the IHS activity type and the 

OHSh/OHR activity types.  Fourth, the extent of satiation for IHS, OHS, and OHR activities is in 

the same general range, and these are between the satiation levels for OHSh and IHR activities 

based on the mean durations of participation.  The last two columns in Table 1 indicate the split 

between solo participations (i.e., individual participation in only one activity type or a corner 

solution) and multiple activity participations (i.e., individual participation in multiple activity 

types or interior solutions) for each activity type.  Thus, the number for the IHS activity type 

indicates that, of the 118 individuals participating in IHS activity, 33 (or 28%) participated only 

in IHS activity during the day and 85 (or 72%) participated in IHS activity along with 

participation in other activity types during the day.  The results clearly indicate that individuals 

tend to participate in IHS activity more often in conjunction with participation in other activity 

types during the day.  This may be because individual observed and unobserved factors that 

increase participation in IHS activity also increase participation in other activity types or because 

of a high satiation rate for IHS activity.  The model in the paper accommodates both possibilities 

and can disentangle the two alternative effects.  The results also show that IHR activity is more 

often participated in isolation than other activity types.  Again, this may reinforce the notion of 

low satiation for the IHR activity type (as discussed earlier) or may reflect a strong preference 

for IHR activity by some individuals.  
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5. EMPIRICAL ANALYSIS  

5.1 Variables Considered 

Several types of variables were considered in the discretionary time-use model. These 

included household sociodemographics (household size, presence and number of children, 

number of household vehicles, number of bicycles in the household, household income, family 

structure, and dwelling type), household location attributes (discussed below), individual 

demographics and employment characteristics (age, license holding to drive, student status, 

employment status, number of days of work, internet use, and ethnicity), and day of week/season 

of year. 

 The household location variables included a land-use mix diversity variable, fractions of 

detached and non-detached dwelling units, area type variables classifying zones into one of 6 

categories (core central business districts, central business districts, urban business, urban, 

suburban, and rural), and residential density and employment density variables. The first of these 

variables, the land-use mix diversity variable, is computed as a fraction between 0 and 1. Zones 

with a value closer to one have a richer land-use mix than zones with a value closer to zero. 

Three categories of land-uses are considered in the computation of the mix diversity variable: 

acres in residential use (r), acres in commercial/industrial use (c), and acres in other land-uses 

(o). The actual form of the land-use mix diversity variable is: 

Land-use mix diversity ,
)3/4(
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where . The functional form assigns the value of zero to zones in which land-use is 

focused in only one category, and assigns a value of 1 to zones in which land-use is equally split 

among the three land-use categories. 

ocrL ++=

 Finally, the day of week/season variables were introduced to capture the day of weekend 

(Saturday or Sunday) and season of year effects (fall, winter, spring, or summer). 

 

5.2 Empirical Results 

5.2.1 Model specification and error-component specification 

As discussed in Section 3, the utility form of Equation (1) includes the jγ  translation 

parameters to allow the possibility of corner solutions for each activity type (i.e., zero 

consumption of each activity type).  However, we found it difficult to identify the γ  vector and 

the satiation vector α  separately, because both these vectors determine the slope of the 

indifference curves at the corner points (see Equation 2).  Thus, we fixed the elements of the γ  

vector to 1.0 (see also Kim et al., 2002). 

In our analysis, we considered several error component specifications to introduce 

unobserved heteroscedasticity and correlation in the utilities of the five activity types.  The best 

statistical result included the following error components: (1) five error components, one for 

each alternative, to capture the variance of the baseline utility terms, (2) one error component to 

accommodate correlation between the two in-home activities (IHS and IHR), and (3) one error 

component to accommodate correlation between the OHS and OHSh activity types.  In the first 

category of error components, corresponding to pure variance elements, the variances of the out-

of-home activity types were constrained to be equal for identification and stability. 
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5.2.2 Variable effects 

The final specification results of the leisure time-use model are presented in Table 2. In 

the following sections, we discuss the effect of variables by variable category.  In instances 

where some alternatives do not appear for a variable, the excluded alternatives constitute the 

base category. 

 

5.2.2.1 Household Sociodemographics  Among the household sociodemographic variables, the 

effect of the number of adults indicates that individuals in households with several adults have a 

higher baseline preference for IHR activity compared to individuals in households with few adult 

members.  This may be a reflection of the increased opportunity for joint in-home recreational 

participation in households, such as watching a movie or television at home with other adults 

(see Bhat and Misra, 1999 and Kitamura et al., 1996 for a similar result using a Dutch dataset). 

 The presence of very young children (0 to 4 years of age) increases the baseline 

preference for out-of-home activity types (OHS, OHR, and OHSh), perhaps because of a 

stronger need of adults in such households to have a change from the activity of caring for 

children inside the home.  The same higher baseline propensity to participate in out-of-home 

activities is also observed among adults in households with young children (5-15 years of age), 

though the out-of-home activity types tend to be recreational or shopping rather than social.  The 

higher propensity of adults in households with young children to participate in recreational 

activity is perhaps a result of the outdoor recreational pursuits with young children (such as 

participation in youth soccer and baseball leagues, family walks, and bicycle trips; see Mallett 

and McGuckin, 2000 for a similar result). 
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The next household attribute is the number of bicycles in the household. As the number 

of bicycles increases in an individual’s household, the individual is more likely to pursue OHR 

activity. This is quite reasonable.  Households who own more bicycles may be more outdoor-

oriented by nature, and owning bicycles also provides an additional means to participate in 

outdoor recreation. 

Finally, among the set of household sociodemographics, the results indicate that 

individuals in low income households have a higher baseline preference for in-home recreation 

than those in high income households.  Further, individuals in the middle income range (35,000 

to 95,000 dollars per annum) are more likely to participate in out-of-home recreation than those 

in the low or high income ranges.  This non-monotonic income effect on time investment in 

OHR activity deserves additional attention; it appears that increasing income does increase the 

ability to participate in out-of-home recreation, but other constraints set in at high incomes. 

 

5.2.2.2 Household Location Variables  Among the many household location variables considered 

in the analysis, the only ones having a marginally significant effect on time use were the area 

type variable and the land-use mix variables.  The results indicate that individuals residing in 

CBD areas have a higher baseline preference for OHR activity compared to individuals residing 

in non-CBD areas.  This is possibly because of the “pedestrian-oriented” urban forms associated 

with the high density of CBD areas.  In addition, CBD areas are likely to be correlated with 

better accessibility to recreational activity centers.  The effect of the land-use mix variable 

indicates a higher propensity to participate in shopping activities among individuals residing in 

areas with a diverse land-use mix, perhaps because of the increased ease of reaching shopping 

activity centers and combining shopping with other out-of-home activity participations. 
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5.2.2.3 Individual Sociodemographics and Employment Characteristics Several individual 

characteristics were tested in the model, but only those related to age, vehicle license holding, 

employment, whether or not the individual shops over the internet, gender, and ethnicity 

appeared in the final specification. The results indicate that older individuals are less likely to 

participate in OHR activity compared to younger individuals.  Further, teenagers (16-17 years of 

age) are less likely to participate in shopping, and teenagers and young adults (18-29 years of 

age) are more likely to participate in out-of-home social (OHS) activity.  Also, the elderly 

(greater than 65 years of age) are more likely to participate in IHR activity and less likely to 

pursue shopping activity relative to younger individuals, perhaps reflecting mobility constraints. 

 The availability of a license to drive has a positive effect on participation in all out-of-

home activity types, which can be attributed to the greater mobility to reach out-of-home activity 

centers.  Employed individuals have a higher propensity to participate in shopping activity over 

the weekend than do unemployed individuals, perhaps because of the inability to access 

shopping activity centers and pursue shopping during the course of the work week.  The effect of 

the male variable indicates that men pursue more IHR activity than women, a reinforcement of 

the notion of men being “glued to the tube”.  Individuals who shop over the internet also pursue 

more OHSh activity, suggesting a complementary effect of internet use on OHSh activity.  

Alternatively, it may be that the same unobserved shopping orientation factors affect both use of 

the internet for shopping and out-of-home shopping. The race-related variables indicate that 

African-Americans are less likely to pursue out-of-home recreation (OHR) activity relative to 

other races. This finding is similar to those of previous works in the area of recreational activity 

participation (see Bhat and Gossen, 2004 and Mallett and McGuckin, 2000).  Also, Hispanic 
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Americans participate more in OHS activity, while Asian Americans are less likely to pursue 

OHS activity, relative to other races. 

 

5.2.2.4 Day of Week and Seasonal Effects  The results for the day of week effects shows a 

higher level of preference for in-home activities (IHS and IHR) on Sundays relative to Saturdays.  

This is reasonable since Sundays serve as a transition day between the weekend and the work 

week, and many individuals use it as an in-home “rest” day. 

The seasonal effects reflect a lower propensity to participate in OHR activity during the 

winter season and, to a lesser extent, the fall season compared to the spring and summer seasons.  

This is intuitive, since the spring and summer seasons provide more conducive weather 

conditions for outdoor recreation than the fall and winter seasons in the San Francisco Bay area. 

 

5.2.2.5 Baseline Preference Constants  The baseline preference constants do not have any 

substantive interpretations because of the presence of two continuous exogenous variables (age 

and land-use mix).  But since almost all of the variables are dummy variables, the constants may 

be viewed informally as providing the baseline preferences for the “base” individual defined by 

the combination of the base dummy variable categories.  From this perspective, the constants 

reinforce our discussion in Section 4.2.  Specifically, the IHS activity type (the base activity 

type) is least preferred of all activity types at the point when no time has yet been invested in any 

activity type.  On the other hand, the OHSh activity type clearly has the highest baseline 

preference of all the activity types. 
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5.2.3 Satiation parameters 

 The satiation parameter, jα , for each activity type j is parameterized as 1/[1+exp(- jδ )], 

where jjj yθδ ′=  (see Section 3.1).  This parameterization allows jα  to vary based on individual 

and day of week/seasonal characteristics and still be bounded between 0 and 1.  In our empirical 

analysis, we did not find any statistically significant variation in the jα  parameters based on 

individual and day of week/season of year characteristics for the IHS, IHR, OHS, and OHR 

activity types. However, there was variation in the satiation parameter for the OHSh activity type 

based on the sex of the individual.  After estimating the jθ  parameters, one can compute the jδ  

parameters and then the jα  parameters.  

 Table 3 provides the estimated values of jα  and the t-statistic with respect to the null 

hypothesis of jα  = 1 (note that standard discrete choice models assume jα  = 1).  Several 

important observations may be drawn from the table.  First, all the satiation parameters are 

significantly different from 1, rejecting the linear utility structure employed in standard discrete 

choice models.  Thus, there are clear satiation effects in discretionary time use decisions.  

Second, satiation effects are lower for the in-home activity types than for the out-of-home 

activity types. Between the two in-home activity types, there is lower satiation for IHR compared 

to IHS.  Third, the highest satiation occurs in the OHSh category.  This indicates that individuals 

are not willing to invest too much time on shopping activity.  The satiation effect for shopping is 

higher for men relative to women (that is, women tend to shop longer than men). 
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5.2.4 Variance-covariance parameters 

 The error components introduced in the baseline preference function (see Section 5.2.1) 

generate heteroscedasticity and covariance in unobserved factors across activity types.  From the 

estimated standard deviations of the error components, it is straightforward to compute the 

estimated variance-covariance matrix.  This is presented in Table 4.  The variance terms (i.e., the 

diagonal elements) indicate higher variance due to unobserved factors for the out-of-home 

activity types relative to the in-home activity types.  Further, the matrix is dominantly diagonal, 

indicating that there is not much covariance in unobserved factors between the various activity 

types after controlling for the observed factors.  However, there is significant covariance 

between the two in-home activity types, reflecting individual-specific unobserved components 

(such as inertial tendencies and preference for privacy of the home) that predispose individuals to 

in-home activity pursuits.  The implied correlation between the baseline preferences of the in-

home activity types is 0.5.  There is also a marginally significant covariance in the baseline 

preferences of the out-of-home social and out-of-home shopping activity types due to 

unobserved individual-specific factors.  The implied correlation is, however, very low at 0.05. 

 

5.3 Overall Likelihood-Based Measures of Fit 

 The log-likelihood value at convergence of the final mixed multiple discrete-continuous 

extreme value (MMDCEV) model is -10,053.  The corresponding value for the MMDCEV 

model with only the constants in the baseline preference terms, the satiation parameters, and the 

variance-covariance terms is -10,142.  The likelihood ratio test for testing the presence of 

exogenous variable effects is 178, which is substantially larger than the critical chi-square value 

with 25 degrees of freedom at any reasonable level of significance.  This clearly indicates 
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variations in the baseline preferences for the discretionary activity types based on household 

demographics/location variables, individual demographics/employment attributes, and day of 

week/seasonal effects.  Further, the log-likelihood value at convergence of the MDCEV model 

that does not allow unobserved heteroscedasticity and correlation across the baseline preferences 

of the different activity types is -10,102.  The likelihood ratio test for comparing the MDCEV 

model with the MMDCEV model is 98, which is again substantially larger than the critical chi-

square value with 5 degrees of freedom (corresponding to the five parameters estimated to 

characterize the variance-covariance matrix).  Thus, there is statistically significant unobserved 

variation across individuals in their baseline preferences, and statistically significant correlation 

between the IHS and IHR activity types and the OHS and OHSh activity types. 

 

5.4 Prediction Procedure 

 The final end-objective of the discretionary time model is to be able to predict the time 

use of individuals in the several discretionary activity types.  This prediction provides 

information on participation, as well as the level of participation in each discretionary activity 

type. 

 The MMDCEV model can be used in a rather straight forward manner for prediction 

purposes.  Note that consumer q allocates time to the various activities based on maximizing qU
~

 

in Equation (5) subject to the time budget constraint that qjq
j

Tt =∑  and  for all j (the 

index q for individual is introduced in the notation here).  Thus, the consumer’s time allocation is 

based on the following problem: 

0≥jqt

Max qU
~

 = [ ]{ }qj
jqjjqjqqjqj

j
tzwx αγµηζβ )()exp( +⋅′+′++′∑                                           (20) 
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subject to                 

0  , ≥=∑ qjqjq
j

tTt  for all j (j = 1, 2, …K). 

Of course, the error components qjζ , jq wη′ , and jq zµ′  are not observed to the analyst, making 

qU
~

 random.  Thus, the predictions for individual q may be obtained by solving the following 

optimization problem: 

[ ]{ }
)|()|()()...()(                   

)()exp(         
~

Max  

21

21

ωησµζζζ

γµηζβ α

ζζζµη

qqqsqq

jqjjqjqqjqj
j

q

dFdFdGdGdG

tzwx qj

qKqqqq
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∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

∞

−∞=

LU
  (21) 

subject to              

0  , ≥=∑ qjqjq
j

tTt  for all j, 

where G is the standard cumulative Gumbel distribution and F is the multivariate normal 

distribution function.  The objective function above can be evaluated using simulation techniques 

and the time allocations  can be predicted using a constrained optimization routine.  In the 

current paper, the optimization was achieved using the constrained optimization application of 

the GAUSS matrix programming language.  The multidimensional integral in the objective 

function was evaluated using 5,000 random draws (we tested the sensitivity of the  values to 

the number of draws for the first several observations and found little difference in the predicted 

 values beyond 5,000 draws). 

jqt

jqt

jqt

 The prediction procedure discussed above can be used to assess the performance of the 

model by comparing the actual time allocations to the predicted time allocations in the estimation 

sample.  Table 5 shows the actual and predicted time allocations for the first 5 individuals in the 

sample.  The predicted time allocations in Table 5 are rounded to the closest minute.  As can be 
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noticed, the predictions satisfy the non-negativity constraint and the total time budget constraint 

because of the constrained optimization prediction process. 

 Summary disaggregate non-likelihood measures of fit can be computed in several ways 

based on a comparison of actual and predicted time allocations.  Two measures of fit are 

presented here to reflect the discrete as well as continuous nature of the predictions from the 

MMDCEV model.  The first measure evaluates the ability of the model to correctly predict 

participation in the various activity types (this is the discrete component of the model).  This 

measure, which we label as the “hit rate” measure, indicates the percentage of correct predictions 

across all individuals and activity types regarding participation, and is computed to be 66%.  The 

second measure evaluates the ability of the model to predict the duration of participation 

conditional on a correct prediction regarding participation (this is the continuous component of 

the model).  This measure, computed as the mean absolute percentage error (MAPE) ratio, is 

29%. Both the “hit rate” and MAPE ratio measures indicate reasonable prediction fits, but also 

suggest that we are perhaps missing individual-specific factors (such as, for example, the 

intrinsic attitude/lifestyle preference for each kind of discretionary activity) that impact 

participation in different kinds of discretionary activity pursuits. Such individual-specific factors 

can be accommodated if data on multiple weekend days are collected from the same individual. 

 

6. CONCLUSIONS 

Classical discrete and discrete-continuous models deal with situations with only one 

alternative chosen from a set of mutually exclusive alternatives. On the other hand, many 

consumer demand situations are characterized by the choice of multiple alternatives 

simultaneously. Until recently, there has been limited research on modeling such multiple 
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discreteness situations in the literature. This paper formulates a new model for multiple 

discreteness in demand that is derived from utility maximization theory. Specifically, based on 

Kim et al. (2002), we assume a translated non-linear, but additive, form for the specification of 

the utility function, which allows for multiple discreteness as well diminishing marginal returns 

(i.e., satiation) as the consumption of any particular alternative increases. The econometric model 

formulated here, which we refer to as the Multiple Discrete-Continuous Extreme Value 

(MDCEV) model, is derived by introducing a multiplicative log-extreme value error term into 

the utility function. The result of such a specification is a surprisingly simple closed form 

expression for the discrete-continuous probability of not consuming certain alternatives and 

consuming given levels of the remaining alternatives. The paper proposes a mixing distribution 

to accommodate heteroscedasticity and covariance in unobserved characteristics affecting the 

demand for different alternatives, leading to the Mixed MDCEV (or MMDCEV) model 

structure. Estimation of the MDCEV model is straightforward and easily achieved using a 

maximum likelihood inference procedure, while estimation of the MMDCEV model is 

accomplished using a simulated maximum likelihood procedure.  

In the current paper, we demonstrate an application of the model to individual time use in 

different types of discretionary activity pursuits on weekend days using data from the 2000 San 

Francisco Bay area. The analysis included several different kinds of variables, including 

household demographics, household location variables, individual demographics and 

employment characteristics, and day of week and season of year. Important findings from the 

analysis include the following: 

1. Individuals in households with several other adults and in households with low incomes have 

a high propensity to participate in in-home recreation over the weekend days; on the other 
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hand, individuals in households with children, with medium household incomes, and with 

bicycles prefer out-of-home leisure activities relative to in-home leisure activities.  

2. Household location variables do not significantly impact time use in leisure activities. 

However, this finding may be the result of using a coarse spatial level for computing location 

characteristics in the current study. 

3. Older individuals, men, and African-Americans are less likely to participate in out-of-home 

recreation than younger individuals, women, and non-African-Americans, respectively. 

Young adults (16-17 years), Hispanic Americans, and individuals with a motor vehicle 

driving license are more likely to participate in out-of-home social pursuits than adults over 

the age of 17 years, non-Hispanic Americans, and individuals without a driving license, 

respectively. Young adults are not very likely to participate in out-of-home shopping 

activities over the weekend, while employed individuals and those who shop on the internet 

have a high likelihood of participating in out-of-home shopping activities. Men prefer in-

home recreation more so than women. 

4. Individuals prefer to pursue in-home leisure activities on Sundays relative to Saturdays. 

Individuals participate less in out-of-home recreation during the winter and fall seasons. 

 The model can be used to assess the impacts of changing demographics and employment 

patterns on time-use patterns, using the prediction process described in Section 5.4. Such an 

analysis is important at a time when demographics and employment characteristics are changing 

rapidly. The predicted changes in time use patterns can then be used within an activity-based 

modeling framework to examine the implied travel changes (see Bhat et al., 2004). 
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Appendix A: Computation of the Determinant of the Jacobian in Probability Expression 

 
 
From Equation (11), the elements of the Jacobian are given by: 

 

*
1

111 ][

+

+

∂
+−∂

=
h

i
ih t

VV
J

ε
;  i, h = 1, 2, …, M – 1.                    (A.1) 

 

Using Equation (9) in the text, we can write: 
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To compute the determinant of the Jacobian, consider a case where an individual participates in 4 

activity types.  Then the Jacobian matrix is: 
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It is straightforward to see that, because of the structure of the Jacobian, the determinant of the 

Jacobian is given by: 
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In the general case when the individual participates in M alternatives, the determinant is given by 

the following expression after substituting 1−= iia α : 
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Appendix B: Derivation of the Structure of the Multiple Discrete Continuous Extreme 

Value (MDCEV) Model 

 

From Equation (14) of the text. 
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Now, consider the last term with the integral in the expression above, and let k = 1ε−e .  Then 

1
1 εε dedk ⋅−= − , and we can write: 
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Next, let b = –ak, where .  Then, db = –adk, and the integral in (B.2) can be 

rewritten as: 
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To evaluate the final integral, one can use the following recursive formula: 
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This results in the following: 
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Putting the values of the integral back in (B.3), we get: 
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Finally, we can re-write Equation (B.1) as: 
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Figure 1a: 1 2 0;γ γ= = 1 2 0.5; α α= = 2 1( ) 2 ( )and x xψ ψ=  

6

 
Figure 1b: 1 2, 0;1.25γ γ= = 1 2 0.5; α α= = 2 1( ) 2 (and )x xψ ψ=  

0
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Table 1. Descriptive Statistics of Activity Type Participation and Duration Over the Weekend Day 
 

Number of individuals (% of total number 
participating) who participate….b 

Activity Type Total number (%) of 
individuals participatinga 

Mean duration of 
participation (mins) 

Only in activity type In the activity type and 
other activity types 

In-home social (IHS) 118 (6.2) 197 33 (28%) 85 (72%) 

In-home recreational (IHR) 738 (38.5) 275 355 (48%) 383 (52%) 

Out-of-home social (OHS) 496 (25.9) 181 180 (36%) 316 (64%) 

Out-of-home recreational (OHR) 632 (33.0) 188 262 (41%) 370 (59%) 

Out-of-home shopping (OHSh) 841 (43.9) 81 339 (40%) 502 (60%) 

 
 
 
 
 
 
 
 
 
                                                 
a Percentages across rows in the column do not sum to 100% because some individuals participate in more than one activity type. 
b Percentages sum to 100% for each row across the two columns, since the percentages are with respect to the total number of individuals participating in each 
activity type (the second column in the table). 
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Table 2. Effect of Exogenous Variables on Baseline Preference to Participate in Each Activity Type 
Explanatory Variables Parameter t-statistic 
Household sociodemographics   
Number of adults   

In-home recreation 0.2738 2.51 
Presence of very young children (0 to 4 years of age)   

Out-of-home social, out-of-home recreation, and out-of-home shopping 0.5141 1.77 
Presence of young children (5-15 years of age)   

Out-of-home recreation 0.9801 2.93 
Out-of-home shopping 0.7069 2.60 

Number of bicycles   
Out-of-home recreation 0.1142 1.45 

Low annual household income (<35,000 dollars)   
In-home recreation 0.9323 3.64 

Medium annual household income (35,000-90,000 dollars)   
Out-of-home recreation 0.5596 2.21 

Household location variables   
Central business district   

Out-of-home recreation 0.6771 1.03 
Diversity in land use-mix   

Out-of-home shopping 0.4846 0.92 
Individual demographics and employment characteristics   
Age   

Out-of-home recreation -2.1541 -2.65 
Age 16 or 17 years   

Out-of-home social 1.1916 1.75 
Out-of-home shopping -1.7242 -2.54 

Age 18-29  years   
 Out-of-home social 0.5489 1.617 

Age >65  years   
 In-home recreation 0.3701 1.213 
 Out-of-home shopping -0.7306 -1.913 

Driver’s license   
Out-of-home social, out-of-home recreation, and out-of-home shopping 1.4007 3.22 

Employed   
Out-of-home shopping 0.3359 1.33 

Male   
In-home recreation 0.5915 3.49 

Shopping on the internet   
Out-of-home shopping 0.7958 1.81 

African-American   
Out-of-home recreation -2.3893 -1.92 

Hispanic-American   
Out-of-home social 1.2894 2.40 

Asian-American   
Out-of-home social -0.7621 -2.26 

Day of the week and seasonal effects   
Sunday   

In-home recreation and in-home social 1.0757 5.14 
Winter   

Out-of-home recreation -0.9564 -2.23 
Fall   

Out-of-home recreation -0.5128 -1.96 
Baseline preference constants   

In-home recreation 1.9300 3.08 
Out-of-home social 0.8161 1.07 
Out-of-home recreation 2.2227 2.66 
Out-of-home shopping 3.0191 3.75 



 
 

 
 

 
 

Table 3. Satiation Parameters 
 

Activity Type Parameter t-statistic1 

In-home social (IHS) 0.8794 3.09 

In-home recreational (IHR) 0.9556 3.47 

Out-of-home social (OHS) 0.7660 6.34 

Out-of-home recreational (OHR) 0.7822 6.39 

Out-of-home shopping (OHSh)   

Women   0.4586 7.60

Men   0.4028 7.50

 
 
 
 
 
 
 
 
 
 

                                                 
1 The t-statistic is computed for the null hypothesis that the satiation parameter is equal to 1.  Equivalently, the t-statistic is for the test that there are no satiation 
effects or that the utility structure is linear. 
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Table 4. Variance-Covariance Matrix 

 

Activity Type 
Activity Type 

In-home social In-home 
recreational 

Out-of-home 
social 

Out-of-home 
recreational 

Out-of-home 
shopping 

In-home social (IHS) 7.87 
(2.98) 

3.04 
(2.50) 

0   0 0

In-home recreational (IHR)  4.74 
(3.85) 

0   0 0

Out-of-home social (OHS)   11.88 
(4.26) 

0  0.64
(1.21) 

Out-of-home recreational (OHR)    11.24 
(4.11) 

0 

Out-of-home shopping (OHSh)       11.88
(4.26) 

 
 

 

 

 

 50



 

 

 

 

Table 5. Predicted and Actual Discretionary Time Allocations for the First Five Individuals in the Sample 

 

 

Predicted (Actual) time use in… 
Individual 
Number In-home social 

activity 
In-home 

recreational activity 
Out-of-home social 

activity 
Out-of-home 

recreational activity 
Out-of-home 

shopping activity 

1 0 (0) 116 (120) 0 (0) 0 (0) 4 (0) 

2 0 (0) 238 (240) 0 (0) 0 (0) 2 (0) 

3 0 (0) 7 (0) 0 (0) 6 (0) 2 (15) 

4 0 (0) 84 (0) 9 (0) 0 (0) 27 (120) 

5 0 (0) 330 (240) 0 (0) 0 (90) 0 (0) 
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